1
|
Alva-Chavarría D, Soto-Núñez M, Flores-Soto E, Jaimez R. Hemostatic Effects of Raloxifene in Ovariectomized Rats. Life (Basel) 2023; 13:1612. [PMID: 37511987 PMCID: PMC10381455 DOI: 10.3390/life13071612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to explore the effects of raloxifene (Rx) and estradiol (E2) on prothrombin time (PT), partial thromboplastin time (APTT), coagulation factors (VII, X, XI), and fibrinogen concentrations in rats. Female rats were ovariectomized 11 days prior to starting the treatment. Afterward, they received Rx or E2 (1, 10, 100, and 1000 µg/kg) or propylene glycol (0.3 mL; vehicle, V) subcutaneously for 3 consecutive days. Plasma was collected to measure the hemostatic parameters. Rx significantly increased PT (8%, at 1000 µg/kg; p < 0.05) and APTT at all doses evaluated (32, 70, 67, 30%; p < 0.05, respectively). Rx (1, 10, 100, and 1000 µg/kg) decreased the activity of factor VII by -20, -40, -37, and -17% (p < 0.05), respectively, and E2 increased it by 9, 34, 52, and 29%. Rx reduced factor X activity at 10 and 100 µg/kg doses (-30, and -30% p < 0.05), and E2 showed an increment of 24% with 1000 µg/kg dose only. Additionally, Rx (1, 10, 100 µg/kg) diminished FXI activity (-71, -62, -66; p < 0.05), E2 (1 and 10 µg/kg) in -60 and -38, respectively (p < 0.05), and Rx (1000 µg/kg) produced an increment of 29% (p < 0.05) in fibrinogen concentration, but not E2. Our findings suggest that raloxifene has a protective effect on hemostasis in rats.
Collapse
Affiliation(s)
- Denys Alva-Chavarría
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Maribel Soto-Núñez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Jafari S, Shoghi M, Khazdair MR. Pharmacological Effects of Genistein on Cardiovascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8250219. [PMID: 37275572 PMCID: PMC10238142 DOI: 10.1155/2023/8250219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/14/2022] [Indexed: 06/07/2023]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders that involve the heart or blood vessels and are the leading cause of mortality worldwide. Natural products have several pharmacological activities, such as anti-inflammatory, antioxidant, and immunoregulatory properties. This review summarizes the possible therapeutic effects of Genistein on CVD. The information from the current review study was obtained by searching for the keywords such as "Genistein", "Cardiac dysfunction", "hypertrophy", and "Ischemia" "lipid profile" in different online database such as PubMed, Scopus, and Google Scholar, until February 2022. The results of the studies showed that genistein intake has a promising effect on improving cardiac dysfunction, ischemia, and reperfusion of the heart, decreasing cardiac toxicity, modulating lipid profile, and lowering blood pressure. The preventive effects of genistein on experimental models of studies were shown through mechanisms such as anti-inflammatory, antioxidant, and immunomodulatory effects. Pharmacological effects of genistein on cardiac dysfunction, cardiac toxicity, lipid profile, and hypertension indicate the possible remedy effect of this agent in the treatment of CVD.
Collapse
Affiliation(s)
- Shima Jafari
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Melika Shoghi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
4
|
Yu S, Qin X, Li Z. Quality assessment of Shuxuening injection based on widely targeted metabolomics approach. J Pharm Biomed Anal 2020; 189:113398. [DOI: 10.1016/j.jpba.2020.113398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
|
5
|
Crescitelli MC, Rauschemberger MB, Cepeda S, Sandoval M, Massheimer VL. Role of estrone on the regulation of osteoblastogenesis. Mol Cell Endocrinol 2019; 498:110582. [PMID: 31525430 DOI: 10.1016/j.mce.2019.110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
Although estradiol bone contribution has been deeply studied, little is known about the action of estrone. We investigated the direct action of estrone on osteoblasts growth and differentiation, with focus on the biochemical mechanism displayed by the estrogen. Murine calvarial osteoblast cultures in vitro exposed to 10 nM estrone were employed. Estrone enhanced gene expression of the osteogenic differentiation marker, Runx2 mRNA (150% above control). The hormone significantly increased cell proliferation (38% above control), nitric oxide production (108% above control), alkaline phosphatase activity (50% above control), in addition to stimulation of extracellular matrix mineralization. Using specific antagonists, we found that the mechanism of action of estrone involves estrogen receptor, nitric oxide synthase and MAPK signalling pathways participation. The hormone acts by its own and probably not via conversion to estradiol, since 17 B HSD inhibition did not affect the hormonal action. This work shows a novel action of estrone on bone cells promoting osteoblastogenesis.
Collapse
Affiliation(s)
- M Carla Crescitelli
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - M Belén Rauschemberger
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Sabrina Cepeda
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Marisa Sandoval
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Virginia L Massheimer
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina.
| |
Collapse
|
6
|
Agotegaray MA, Campelo AE, Zysler RD, Gumilar F, Bras C, Gandini A, Minetti A, Massheimer VL, Lassalle VL. Magnetic nanoparticles for drug targeting: from design to insights into systemic toxicity. Preclinical evaluation of hematological, vascular and neurobehavioral toxicology. Biomater Sci 2018; 5:772-783. [PMID: 28256646 DOI: 10.1039/c6bm00954a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple two-step drug encapsulation method was developed to obtain biocompatible magnetic nanocarriers for the potential targeted treatment of diverse diseases. The nanodevice consists of a magnetite core coated with chitosan (Chit@MNPs) as a platform for diclofenac (Dic) loading as a model drug (Dic-Chit@MNPs). Mechanistic and experimental conditions related to drug incorporation and quantification are further addressed. This multi-disciplinary study aims to elucidate the toxicological impact of the MNPs at hematological, vascular, neurological and behavioral levels. Blood compatibility assays revealed that MNPs did not affect either erythrosedimentation rates or erythrocyte integrity at the evaluated doses (1, 10 and 100 μg mL-1). A microscopic evaluation of blood smears indicated that MNPs did not induce morphological changes in blood cells. Platelet aggregation was not affected by MNPs either and just a slight diminution was observed with Dic-Chit@MNPs, an effect possibly due to diclofenac. The examined formulations did not exert cytotoxicity on rat aortic endothelial cells and no changes in cell viability or their capacity to synthesize NO were observed. Behavioral and functional nervous system parameters in a functional observational battery were assessed after a subacute treatment of mice with Chit@MNPs. The urine pools of the exposed group were decreased. Nephritis and an increased number of megakaryocytes in the spleen were observed in the histopathological studies. Sub-acute exposure to Chit@MNPs did not produce significant changes in the parameters used to evaluate neurobehavioral toxicity. The aspects focused on within this manuscript are relevant at the pre-clinical level providing new and novel knowledge concerning the biocompatibility of magnetic nanodevices for biomedical applications.
Collapse
Affiliation(s)
- Mariela A Agotegaray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| | - Adrián E Campelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Roberto D Zysler
- CONICET - Centro Atómico Bariloche, Instituto Balseiro, S.C. de Bariloche, Argentina
| | - Fernanda Gumilar
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristina Bras
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ariel Gandini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Alejandra Minetti
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Virginia L Massheimer
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Verónica L Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
7
|
Cepeda SB, Sandoval MJ, Rauschemberger MB, Massheimer VL. Beneficial role of the phytoestrogen genistein on vascular calcification. J Nutr Biochem 2017; 50:26-37. [DOI: 10.1016/j.jnutbio.2017.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/06/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
|
8
|
|
9
|
Gencel VB, Benjamin MM, Bahou SN, Khalil RA. Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Rev Med Chem 2012; 12:149-74. [PMID: 22070687 DOI: 10.2174/138955712798995020] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/05/2011] [Indexed: 01/10/2023]
Abstract
Phytoestrogens are estrogenic compounds of plant origin classified into different groups including isoflavones, lignans, coumestans and stilbenes. Isoflavones such as genistein and daidzein are the most studied and most potent phytoestrogens, and are found mainly in soy based foods. The effects of phytoestrogens are partly mediated via estrogen receptors (ERs): ERα, ERβ and possibly GPER. The interaction of phytoestrogens with ERs is thought to induce both genomic and non-genomic effects in many tissues including the vasculature. Some phytoestrogens such as genistein have additional non-ER-mediated effects involving signaling pathways such as tyrosine kinase. Experimental studies have shown beneficial effects of phytoestrogens on endothelial cells, vascular smooth muscle, and extracellular matrix. Phytoestrogens may also affect other pathophysiologic vascular processes such as lipid profile, angiogenesis, inflammation, tissue damage by reactive oxygen species, and these effects could delay the progression of atherosclerosis. As recent clinical trials showed no vascular benefits or even increased risk of cardiovascular disease (CVD) and CV events with conventional menopausal hormone therapy (MHT), phytoestrogens are being considered as alternatives to pharmacologic MHT. Epidemiological studies in the Far East population suggest that dietary intake of phytoestrogens may contribute to the decreased incidence of postmenopausal CVD and thromboembolic events. Also, the WHO-CARDIAC study supported that consumption of high soybean diet is associated with lower mortalities from coronary artery disease. However, as with estrogen, there has been some discrepancy between the experimental studies demonstrating the vascular benefits of phytoestrogens and the data from clinical trials. This is likely because the phytoestrogens clinical trials have been limited in many aspects including the number of participants enrolled, the clinical end points investigated, and the lack of long-term follow-up. Further investigation of the cellular mechanisms underlying the vascular effects of phytoestrogens and careful evaluation of the epidemiological evidence and clinical trials of their potential vascular benefits would put forward the use of phytoestrogens as an alternative MHT for the relief of menopausal symptoms and amelioration of postmenopausal CVD.
Collapse
Affiliation(s)
- V B Gencel
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
10
|
Campelo AE, Cutini PH, Massheimer VL. Testosterone modulates platelet aggregation and endothelial cell growth through nitric oxide pathway. J Endocrinol 2012; 213:77-87. [PMID: 22281525 DOI: 10.1530/joe-11-0441] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to investigate the effect of testosterone on the modulation of cellular events associated with vascular homeostasis. In rat aortic strips, 5-20 min treatment with physiological concentrations of testosterone significantly increased nitric oxide (NO) production. The rapid action of the steroid was suppressed by the presence of an androgen receptor antagonist (flutamide). We obtained evidence that the enhancement in NO synthesis was dependent on the influx of calcium from extracellular medium, because in the presence of a calcium channel blocker (verapamil) the effect of testosterone was reduced. Using endothelial cell (EC) cultures, we demonstrated that androgen directly acts at the endothelial level. Chelerythrine or PD98059 compound completely suppressed the increase in NO production, suggesting that the mechanism of action of the steroid involves protein kinase C and mitogen-activated protein kinase pathways. It is known that endothelial NO released into the vascular lumen serves as an inhibitor of platelet activation and aggregation. We showed that testosterone inhibited platelet aggregation and this effect was dependent on endothelial NO synthesis. Indeed, the enhancement of NO production elicited by androgen was associated with EC growth. The steroid significantly increased DNA synthesis after 24 h of treatment, and this mitogenic action was blunted in the presence of NO synthase inhibitor N-nitro-l-arginine methyl ester. In summary, testosterone modulates vascular EC growth and platelet aggregation through its direct action on endothelial NO production.
Collapse
Affiliation(s)
- Adrián E Campelo
- Cátedra de Bioquímica Clínica II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina
| | | | | |
Collapse
|
11
|
Sandoval MJ, Cutini PH, Rauschemberger MB, Massheimer VL. The soyabean isoflavone genistein modulates endothelial cell behaviour. Br J Nutr 2010; 104:171-9. [PMID: 20187999 DOI: 10.1017/s0007114510000413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of the present study was to investigate the direct action of the phyto-oestrogen genistein (Gen) on vascular endothelial behaviour, either in the presence or absence of proinflammatory agents. In rat aortic endothelial cell (EC) cultures, 24 h of treatment with Gen significantly increased cell proliferation in a wide range of concentration (0.001-10 nm). This mitogenic action was prevented by the oestrogen receptor (ER) antagonist ICI 182780 or by the presence of the specific NO synthase inhibitor l-nitro-arginine methyl ester. When monocytes adhesion to EC was measured, Gen partially attenuated leucocyte adhesion not only under basal conditions, but also in the presence of bacterial lipopolysaccharides (LPS). The effect of the phyto-oestrogen on the expression of EC adhesion molecules was evaluated. Gen down-regulated the enhancement in mRNA levels of E-selectin, vascular cell adhesion molecule-1 and P-selectin elicited by the proinflammatory agent bacterial LPS. The regulation of EC programmed death induced by the isoflavone was also demonstrated. Incubation with 10 nm Gen prevented DNA fragmentation induced by the apoptosis inductor H2O2. The results presented suggest that Gen would exert a protective effect on vascular endothelium, due to its regulatory action on endothelial proliferation, apoptosis and leucocyte adhesion, events that play a critical role in vascular diseases. The molecular mechanism displayed by the phyto-oestrogen involved the participation of the ER and the activation of the NO pathway.
Collapse
Affiliation(s)
- Marisa J Sandoval
- Departamento de Biología, Bioquímica y Farmacia, Cátedra de Bioquímica Clínica II, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
12
|
Choi BG, Vilahur G, Zafar MU, Cardoso L, Yadegar D, Ibanez B, Tunstead J, Viles-Gonzalez JF, Schaffler MB, Fuster V, Badimon JJ. Selective estrogen receptor modulation influences atherosclerotic plaque composition in a rabbit menopause model. Atherosclerosis 2008; 201:76-84. [PMID: 18367192 DOI: 10.1016/j.atherosclerosis.2008.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/23/2007] [Accepted: 01/23/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Osteoporosis trials suggest raloxifene decreased cardiovascular events in women with pre-existing atherosclerosis. We assessed the hypothesis that selective estrogen receptor modulation induces plaque stability in "menopausal" animals. METHODS AND RESULTS Atherosclerosis was induced in 42 ovariectomized New Zealand white rabbits by cholesterol feeding and mechanical injury. Animals were imaged by magnetic resonance imaging (MRI) for baseline atherosclerosis, and randomized to control (OVX (ovariectomized control group), n=12), raloxifene 35-60 mg/kg/day by diet admixture (RLX (raloxifene therapy group), n=24), or immediate sacrifice (n=6) for immunohistopathologic correlation of MRI. Six months later, rabbits underwent repeat MRI then sacrifice for micro-computed tomography (microCT) and molecular analysis. Unlike OVX, RLX reduced atheroma volume. Analysis for lesion inflammation revealed reductions in COX-2 (cyclooxygenase-2), MMP-1 (matrix metalloproteinase-1), MCP-1 (monocyte chemoattractant protein-1) expression and macrophage infiltration in RLX versus OVX with concomitant upregulation of estrogen receptor alpha (ERalpha). microCT showed similar total vascular calcification between groups, but calcifications in RLX were less nodular with better radial organization (mean calcific arc angle 63+/-7 degrees versus 33+/-6 degrees in OVX), the predicted result of a 53% increase in BMP-2 (bone-morphogenetic protein-2). CONCLUSIONS Raloxifene treatment results in reduced lesion volume, enhanced mechanical stability of vascular calcification, and less inflamed lesions characterized by less macrophage infiltration and reduced COX-2, MMP-1 and MCP-1 expression.
Collapse
Affiliation(s)
- Brian G Choi
- Cardiovascular Biology Research Laboratory, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|