1
|
Tang Y, Zhang B, Shi H, Yan Z, Wang P, Yang Q, Huang X, Gun S. Molecular characterization, expression patterns and cellular localization of BCAS2 gene in male Hezuo pig. PeerJ 2023; 11:e16341. [PMID: 37901468 PMCID: PMC10607209 DOI: 10.7717/peerj.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Background Breast carcinoma amplified sequence 2 (BCAS2) participates in pre-mRNA splicing and DNA damage response, which is implicated in spermatogenesis and meiosis initiation in mouse. Nevertheless, the physiological roles of BCAS2 in the testes of large mammals especially boars remain largely unknown. Methods In this study, testes were collected from Hezuo pig at three development stages including 30 days old (30 d), 120 days old (120 d), and 240 days old (240 d). BCAS2 CDS region was firstly cloned using RT-PCR method, and its molecular characteristics were identified using relevant bioinformatics software. Additionally, the expression patterns and cellular localization of BCAS2 were analyzed by quantitative real-time PCR (qRT-PCR), Western blot, immunohistochemistry and immunofluorescence. Results The cloning and sequence analysis indicated that the Hezuo pig BCAS2 CDS fragment encompassed 678 bp open reading frame (ORF) capable of encoding 225 amino acid residues, and possessed high identities with some other mammals. The results of qRT-PCR and Western blot displayed that BCAS2 levels both mRNA and protein were age-dependent increased (p < 0.01). Additionally, immunohistochemistry and immunofluorescence results revealed that BCAS2 protein was mainly observed in nucleus of gonocytes at 30 d testes as well as nucleus of spermatogonia and Sertoli cells at 120 and 240 d testes. Accordingly, we conclude that BCAS2 is critical for testicular development and spermatogenesis of Hezuo pig, perhaps by regulating proliferation or differentiation of gonocytes, pre-mRNA splicing of spermatogonia and functional maintenance of Sertoli cells, but specific mechanism still requires be further investigated.
Collapse
Affiliation(s)
- Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Zhou C, Ye F, Wu H, Ye H, Chen Q. Recent advances in the study of 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2)Inhibitors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:47-53. [PMID: 28366868 DOI: 10.1016/j.etap.2017.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
11β-Hydroxysteroid dehydrogenase (11β-HSD), which interconverts hormonally active cortisol and inactive cortisone in multiple human tissues, has two distinct isoforms named 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). 11β-HSD2 is an NAD+-dependent oxidase which lowers cortisol by converting it to cortisone while 11β-HSD1 mainly catalyzes the reduction which converts cortisone into cortisol. Selective inhibition of 11β-HSD2 is generally detrimental to health because the accumulation of cortisol can cause metabolic symptoms such as apparent mineralocorticoid excess (AME), fetal developmental defects and lower testosterone levels in males. There has been some advances on the study of 11β-HSD2 inhibitors and we think it necessary to make a summary of the characteristics and inhibiting properties of latest 11β-HSD2 inhibitors. As another review on 11β-HSD2 inhibitors has been issued on 2011 (see review (Ma et al., 2011)), this mini-review concerns advances during the last 5 years.
Collapse
Affiliation(s)
- Chunchun Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 32500, China.
| | - Fan Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 32500, China
| | - He Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 32500, China
| | - Hui Ye
- Wenzhou Central Hopital, Wenzhou, Zhejiang 32500, China
| | - Quanxu Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 32500, China
| |
Collapse
|
3
|
Drobnis EZ, Nangia AK. Male Reproductive Functions Disrupted by Pharmacological Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1034:13-24. [DOI: 10.1007/978-3-319-69535-8_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Huang H, Wang S, Gui J, Shen H. A study to identify and characterize the stem/progenitor cell in rabbit meniscus. Cytotechnology 2016; 68:2083-103. [PMID: 26820973 DOI: 10.1007/s10616-016-9949-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
The repair of meniscus in the avascular zone remains a great challenge, largely owing to their limited healing capacity. Stem cells based tissue engineering provides a promising treatment option for damaged meniscus because of their multiple differentiation potential. We hypothesized that meniscus-derived stromal cells (MMSCs) may be present in meniscal tissue, and if their pluripotency and character can be established, they may play a role in meniscal healing. To test our hypothesis, we isolated MMSCs, bone marrow-derived stromal cells (BMSCs) and fibrochondrocytes from rabbits. In order to avoid bone marrow mesenchymal stromal cell contamination, the parameniscal tissues and vascular zone of meniscus were removed. The characters of these three types of cells were identified by evaluating morphology, colony formation, proliferation, immunocytochemistry and multi-differentiation. Moreover, a wound in the center of rabbit meniscus was created and used to analyze the effect of BMSCs and MMSCs on wounded meniscus healing. BMSCs & MMSCs expressed the stem cell markers SSEA-4, Nanog, nucleostemin and STRO-1, while fibrochondrocytes expressed none of these markers. Morphologically, MMSCs displayed smaller cell bodies and larger nuclei than ordinary fibrochondrocytes. Moreover, it was certified that MMSCs and BMSCs were all able to differentiate into adipocytes, osteocytes, and chondrocytes in vitro. However, more cartilage formation was found in wounded meniscus filled with MMSCs than that filled with BMSCs. We showed that rabbit menisci harbor the unique cell population MMSCs that has universal stem cell characteristics and posses a tendency to differentiate into chondrocytes. Future research should investigate the mechanobiology of MMSCs and explore the possibility of using MMSCs to more effectively repair or regenerate injured meniscus.
Collapse
Affiliation(s)
- He Huang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Shukui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jianchao Gui
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Haiqi Shen
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
5
|
Ding Z, Huang H. Mesenchymal stem cells in rabbit meniscus and bone marrow exhibit a similar feature but a heterogeneous multi-differentiation potential: superiority of meniscus as a cell source for meniscus repair. BMC Musculoskelet Disord 2015; 16:65. [PMID: 25887689 PMCID: PMC4373281 DOI: 10.1186/s12891-015-0511-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/24/2015] [Indexed: 01/23/2023] Open
Abstract
Background The restoration of damaged meniscus has always been a challenge due to its limited healing capacity. Recently, bone marrow-derived mesenchymal stem cells (BMSCs) provide a promising alternative to repair meniscal defects. However, BMSCs are not ideal chondroprogenitor cells for meniscus repair because they have a high propensity for cartilage hypertrophy and bone formation. Our hypothesis is that mesenchymal stem cells (MSCs) reside in meniscus maintain specific traits distinct from others which may be more conducive to meniscus regeneration. Methods MSCs were isolated from bone marrow and menisci of the rabbits. The similarities and differences between BMSCs and MMSCs were investigated in vitro by a cell culture model, ex vivo by a rabbit meniscus defect model and in vivo by a nude rat implantation model using histochemistry, immunocytochemistry, qRT-PCR and western blotting. Results Our data showed that two types of MSCs have universal stem cell characteristics including clonogenicity, multi-potency and self-renewal capacity. They both express stem cell markers including SSEA-4, Nanog, nucleostemin, strol-1, CD44 and CD90. However, MMSCs differed from BMSCs. MMSC colonies were much smaller and grew more slowly than BMSC colonies. Moreover, fewer MMSCs expressed CD34 than BMSCs. Finally, MMSCs always appeared a pronounced tendency to chondrogenic differentiation while BMSCs exhibited significantly greater osteogenic potential, whatever in vitro and in vivo. Conclusions This study shows the similarities and differences between MMSCs and BMSCs for the first time. MMSCs are a promising source of mesenchymal stem cells in repairing meniscus defect. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0511-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Ding
- Department of Ophthalmology, The 3rd Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, 1 Jinling Road, Nanjing, Jiangsu, 210001, China.
| | - He Huang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
6
|
Ye L, Guo J, Ge RS. Environmental pollutants and hydroxysteroid dehydrogenases. VITAMINS AND HORMONES 2014; 94:349-90. [PMID: 24388197 DOI: 10.1016/b978-0-12-800095-3.00013-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxysteroid dehydrogenases (HSD) are a group of steroidogenic enzymes that are involved in the steroid biosynthesis and metabolism. Four classes of HSDs, namely, 3β-, 11β-, 17β-, and 20α-HSDs, are discussed. 3β-HSDs catalyze the conversion of pregnenolone, 17α-hydroxypregnenolone, and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone, and androstenedione, respectively. 11β-HSDs catalyze the interconversion between active cortisol and inactive cortisone. 17β-HSDs catalyze the interconversion between 17β-hydroxyl steroids and 17-ketoandrogens and estrogens. 20α-HSDs catalyze the conversion of progesterone into 20α-hydroxyprogesterone. Many environmental pollutants directly inhibit one or more enzymes of these HSDs, thus interfering with endogenous active steroid hormone levels. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A, and benzophenone), pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane, and prochloraz), and plant constituents (genistein, gossypol, and licorice). This chapter reviews these inhibitors targeting on HSDs.
Collapse
Affiliation(s)
- Leping Ye
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jingjing Guo
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ren-Shan Ge
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
7
|
Ma X, Lian QQ, Dong Q, Ge RS. Environmental inhibitors of 11β-hydroxysteroid dehydrogenase type 2. Toxicology 2011; 285:83-9. [DOI: 10.1016/j.tox.2011.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/21/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
8
|
Odermatt A, Nashev LG. The glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 has broad substrate specificity: Physiological and toxicological considerations. J Steroid Biochem Mol Biol 2010; 119:1-13. [PMID: 20100573 DOI: 10.1016/j.jsbmb.2010.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 12/21/2022]
Abstract
The primary function of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is to catalyze the conversion of inactive to active glucocorticoid hormones and to modulate local glucocorticoid-dependent gene expression. Thereby 11beta-HSD1 plays a key role in the regulation of metabolic functions and in the adaptation of the organism to energy requiring situations. Importantly, elevated 11beta-HSD1 activity has been associated with metabolic disorders, and recent investigations with rodent models of obesity and type 2 diabetes provided evidence for beneficial effects of 11beta-HSD1 inhibitors, making this enzyme a promising therapeutic target. Several earlier and recent studies, mainly performed in vitro, revealed a relatively broad substrate spectrum of 11beta-HSD1 and suggested that this enzyme has additional functions in the metabolism of some neurosteroids (7-oxy- and 11-oxyandrogens and -progestins) and 7-oxysterols, as well as in the detoxification of various xenobiotics that contain reactive carbonyl groups. While there are many studies on the effect of inhibitors on cortisone reduction and circulating glucocorticoid levels and on the transcriptional regulation of 11beta-HSD1 in obesity and diabetes, only few address the so-called alternative functions of this enzyme. We review recent progress on the biochemical characterization of 11beta-HSD1, with a focus on cofactor and substrate specificity and on possible alternative functions of this enzyme.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
9
|
Zhang J, Wang JHC. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord 2010; 11:10. [PMID: 20082706 PMCID: PMC2822826 DOI: 10.1186/1471-2474-11-10] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 01/18/2010] [Indexed: 12/12/2022] Open
Abstract
Background Tendons are traditionally thought to consist of tenocytes only, the resident cells of tendons; however, a recent study has demonstrated that human and mouse tendons also contain stem cells, referred to as tendon stem/progenitor cells (TSCs). However, the differential properties of TSCs and tenocytes remain largely undefined. This study aims to characterize the properties of these tendon cells derived from rabbits. Methods TSCs and tenocytes were isolated from patellar and Achilles tendons of rabbits. The differentiation potential and cell marker expression of the two types of cells were examined using histochemical, immunohistochemical, and qRT-PCR analysis as well as in vivo implantation. In addition, morphology, colony formation, and proliferation of TSCs and tenocytes were also compared. Results It was found that TSCs were able to differentiate into adipocytes, chondrocytes, and osteocytes in vitro, and form tendon-like, cartilage-like, and bone-like tissues in vivo. In contrast, tenocytes had little such differentiation potential. Moreover, TSCs expressed the stem cell markers Oct-4, SSEA-4, and nucleostemin, whereas tenocytes expressed none of these markers. Morphologically, TSCs possessed smaller cell bodies and larger nuclei than ordinary tenocytes and had cobblestone-like morphology in confluent culture whereas tenocytes were highly elongated. TSCs also proliferated more quickly than tenocytes in culture. Additionally, TSCs from patellar tendons formed more numerous and larger colonies and proliferated more rapidly than TSCs from Achilles tendons. Conclusions TSCs exhibit distinct properties compared to tenocytes, including differences in cell marker expression, proliferative and differentiation potential, and cell morphology in culture. Future research should investigate the mechanobiology of TSCs and explore the possibility of using TSCs to more effectively repair or regenerate injured tendons.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
10
|
Wagner A, Claus R. Aromatase and 11beta-hydroxysteroid dehydrogenase 2 localisation in the testes of pigs from birth to puberty linked to changes of hormone pattern and testicular morphology. Reprod Fertil Dev 2008; 20:505-12. [PMID: 18462613 DOI: 10.1071/rd07136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 01/20/2008] [Indexed: 11/23/2022] Open
Abstract
Oestrogens and glucocorticoids are important for spermatogenesis and are regulated via aromatase for oestradiol synthesis and 11beta-hydroxysteroid dehydrogenase 2 (11beta-HSD 2) as an inactivator of cortisol. In the present study postnatal changes of these two enzymes were monitored together with testicular development and hormone concentrations. Pigs were assigned to three periods: Weeks 0-5, Weeks 5-11 or Weeks 11-17. In Period 1, groups of four piglets were killed after each week. Blood plasma and testes were sampled immediately post mortem. For Periods 2 and 3, groups of six pigs were fitted with vein catheters for daily blood collection. Testes from all pigs were obtained after killing. Levels of testosterone, oestradiol, LH, FSH and cortisol were determined radioimmunologically. The 11beta-HSD 2- and aromatase-expressing cells were stained immunocytochemically. All hormones were maximal 2 weeks after birth. A rise of LH, testosterone and oestradiol occurred again at Week 17. FSH and cortisol remained basal. Parallel to the first postnatal rise, the presence of aromatase and 11beta-HSD 2 in Leydig cells increased, together with germ and Sertoli cell numbers. Expression was low from 3 to 5 weeks, was resumed after Week 5 and was maximal at Week 17. The amount of 11beta-HSD 2 in germ cells was greatest at birth, decreased thereafter and was absent after Week 3.
Collapse
Affiliation(s)
- A Wagner
- Universität Hohenheim, Institut für Tierhaltung und Tierzüchtung, Fachgebiet Tierhaltung und Leistungsphysiologie 470A, Garbenstr. 17, 70599 Stuttgart, Germany
| | | |
Collapse
|