1
|
Yuan N, Sun J, Zhao X, Li W. Relationship between bisphenol A and autoimmune thyroid disease in women of childbearing age. Front Endocrinol (Lausanne) 2024; 15:1333915. [PMID: 38348416 PMCID: PMC10860746 DOI: 10.3389/fendo.2024.1333915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Background Autoimmune thyroid disease (AITD) is the main cause of hypothyroidism in women of childbearing age. Bisphenol A (BPA) is an environmental factor affecting AITD. This study aims to investigate relationship between BPA and AITD in women of childbearing age, thereby contributing novel evidence for the prevention of hypothyroidism in this specific demographic. Methods A total of 155 women of childbearing age were enrolled in this study, including the euthyroid group comprised 60 women with euthyroidism and thyroid autoantibodies negativity and the AITD group consisted of 95 women with euthyroidism and at least one thyroid autoantibody positivity. The general information, thyroid function, thyroid autoantibodies, and thyroid ultrasound results of the two groups of women of childbearing age were recorded. Urinary BPA and urinary BPA/creatinine were detected. The difference of BPA levels between the two groups was compared. logistic regression was used to analyze the correlation between BPA and AITD. Results The proportion of multiparous and serum thyroid stimulating hormone levels were significantly higher in the AITD group compared to the euthyroid group. Logistic regression analysis revealed that BPA levels did not exhibit a statistically significant association with AITD. Spearman correlation analysis revealed a statistically significant correlation between BPA and urinary iodine levels (r=0.30, P < 0.05), as well as a correlation between urinary BPA and free tetraiodothyronine (FT4) levels (r=0.29, P < 0.05). Conclusion This study revealed a correlation between urinary BPA levels and FT4 levels. However, it did not establish a relationship between BPA and AITD in women of childbearing age.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Endocrinology, Peking University International Hospital, Beijing, China
| | - Jianbin Sun
- Department of Endocrinology, Peking University International Hospital, Beijing, China
| | - Xin Zhao
- Department of Endocrinology, Peking University International Hospital, Beijing, China
| | - Wei Li
- Department of General Surgery, Peking University International Hospital, Beijing, China
| |
Collapse
|
2
|
Wu NC, Rubin AM, Seebacher F. Endocrine disruption from plastic pollution and warming interact to increase the energetic cost of growth in a fish. Proc Biol Sci 2022; 289:20212077. [PMID: 35078359 PMCID: PMC8790379 DOI: 10.1098/rspb.2021.2077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Energetic cost of growth determines how much food-derived energy is needed to produce a given amount of new biomass and thereby influences energy transduction between trophic levels. Growth and development are regulated by hormones and are therefore sensitive to changes in temperature and environmental endocrine disruption. Here, we show that the endocrine disruptor bisphenol A (BPA) at an environmentally relevant concentration (10 µgl-1) decreased fish (Danio rerio) size at 30°C water temperature. Under the same conditions, it significantly increased metabolic rates and the energetic cost of growth across development. By contrast, BPA decreased the cost of growth at cooler temperatures (24°C). BPA-mediated changes in cost of growth were not associated with mitochondrial efficiency (P/O ratios (i.e. adenosine diphosphate (ADP) used/oxygen consumed) and respiratory control ratios) although BPA did increase mitochondrial proton leak. In females, BPA decreased age at maturity at 24°C but increased it at 30°C, and it decreased the gonadosomatic index suggesting reduced investment into reproduction. Our data reveal a potentially serious emerging problem: increasing water temperatures resulting from climate warming together with endocrine disruption from plastic pollution can impact animal growth efficiency, and hence the dynamics and resilience of animal populations and the services these provide.
Collapse
Affiliation(s)
- Nicholas C. Wu
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M. Rubin
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Kobayashi Y, Oguro A, Yagi E, Mitani A, Kudoh SN, Imaoka S. Bisphenol A and rotenone induce S-nitrosylation of protein disulfide isomerase (PDI) and inhibit neurite outgrowth of primary cultured cells of the rat hippocampus and PC12 cells. J Toxicol Sci 2021; 45:783-794. [PMID: 33268678 DOI: 10.2131/jts.45.783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA) interferes the function and development of the central nervous system (CNS), resulting in behavioral abnormalities and memory loss. S-nitrosylation of protein disulfide isomerase (PDI) is increased in brains with sporadic Alzheimer's disease and Parkinson's disease. The aim of the present study was to clarify the role of nitric oxide (NO) in BPA-induced neurotoxicity. Since rotenone induces NO-mediated neurodegeneration through S-nitrosylation of PDI, it was used as a positive control. First, rats were treated with BPA and rotenone, and S-nitrosylation of PDI was detected in rat brain microsomes. BPA and rotenone decreased RNase oxidation activity of PDI concomitant with S-nitrosylation of PDI. Next, to clarify S-nitrosylation of PDI by BPA and rotenone in rat brains, we treated the rat pheochromocytoma cell line PC12 and primary cultured neuron cells from the rat hippocampus with BPA (5 and 10 μM) and rotenone (100 or 200 nM). BPA induced S-nitrosylation of PDI, while NG-monomethyl-L-arginine (L-NMMA), a NOS inhibitor, exerted the opposite effects. Finally, to evaluate the toxicity of BPA in the CNS, we investigated its effects on neurite outgrowth of PC12 and primary cultured neuron cells. BPA inhibited neurite outgrowth of these cells, while L-NMMA reversed this inhibition. The involvement of PDI activity in neurite outgrowth was also examined, and bacitracin, a PDI inhibitor, is shown to decrease neurite outgrowth. Furthermore, the overexpression of PDI, but not a catalytically inactive PDI mutant, enhanced neurite outgrowth. These results suggested that S-nitrosylation of PDI induced by excessive NO caused BPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Erina Yagi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Akira Mitani
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Suguru N Kudoh
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
4
|
Molecular interactions of thyroxine binding globulin and thyroid hormone receptor with estrogenic compounds 4-nonylphenol, 4-tert-octylphenol and bisphenol A metabolite (MBP). Life Sci 2020; 253:117738. [PMID: 32360618 DOI: 10.1016/j.lfs.2020.117738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
AIM Endocrine disruption due to environmental chemical contaminants is a global human health issue. The aim of present study was to investigate the structural binding aspects of possible interference of commonly detected environmental contaminants on thyroid function. MATERIAL AND METHODS Three compounds, 4-tert-octylphenol (4-tert-OP), 4-nonylphenol (4-NP), and 4-methyl-2,4-bis(4-hydroxypentyl)pent-1-ene (MBP) were subjected to induced fit docking (IFD) against thyroxine binding globulin (TBG) and thyroid hormone receptor (THR). Structural analysis included molecular interactions of the amino acid residues and binding energy estimation between the ligands and the target proteins. KEY RESULTS All the ligands were successfully placed in the ligand binding pocket of TBG and THR using induced fit docking (IFD). The IFD results revealed high percentage of commonality in interacting amino acid residues between the aforementioned compounds and the native ligand for both TBG and THR. The results of our study further revealed that all the compounds have the potential to interfere with thyroid transport and signaling. However, MBP showed higher binding affinity for both TBG and THR, suggesting higher thyroid disruptive potential as compared to 4-t-OP and 4-NP. Furthermore, our results also suggest that the reported disruptive effects of BPA could actually be exerted through its metabolite; MBP. SIGNIFICANCE This work implies that all the three compounds 4-NP, 4-t-OP and especially MBP have the potential to interfere with thyroid hormone transport and signaling. This potentially leads to disruption of thyroid hormone function.
Collapse
|
5
|
Oliveira KJ, Chiamolera MI, Giannocco G, Pazos-Moura CC, Ortiga-Carvalho TM. Thyroid Function Disruptors: from nature to chemicals. J Mol Endocrinol 2018; 62:JME-18-0081. [PMID: 30006341 DOI: 10.1530/jme-18-0081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
The modern concept of thyroid disruptors includes man-made chemicals and bioactive compounds from food that interfere with any aspect of the hypothalamus-pituitary-thyroid axis, thyroid hormone biosynthesis and secretion, blood and transmembrane transport, metabolism and local action of thyroid hormones. This review highlights relevant disruptors that effect populations through their diet: directly from food itself (fish oil and polyunsaturated fatty acids, pepper, coffee, cinnamon and resveratrol/grapes), through vegetable cultivation (pesticides) and from containers for food storage and cooking (bisphenol A, phthalates and polybrominated diphenyl ethers). Due to the vital role of thyroid hormones during every stage of life, we review effects from the gestational period through to adulthood, including evidence from in vitro studies, rodent models, human trials and epidemiological studies.
Collapse
Affiliation(s)
- Karen J Oliveira
- K Oliveira, Laboratório de Fisiologia Endócrina e Metabologia, Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | - Maria Izabel Chiamolera
- M Chiamolera, Endocrinology, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Gisele Giannocco
- G Giannocco, Laboratório de Endocrinologia Molecular e Translacional, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Carmen Cabanelas Pazos-Moura
- C Pazos-Moura, Laboratório de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- T Ortiga-Carvalho, Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Campos JLO, Doratioto TR, Videira NB, Ribeiro Filho HV, Batista FAH, Fattori J, Indolfo NDC, Nakahira M, Bajgelman MC, Cvoro A, Laurindo FRM, Webb P, Figueira ACM. Protein Disulfide Isomerase Modulates the Activation of Thyroid Hormone Receptors. Front Endocrinol (Lausanne) 2018; 9:784. [PMID: 30671024 PMCID: PMC6331412 DOI: 10.3389/fendo.2018.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are responsible for mediating thyroid hormone (T3 and T4) actions at a cellular level. They belong to the nuclear receptor (NR) superfamily and execute their main functions inside the cell nuclei as hormone-regulated transcription factors. These receptors also exhibit so-called "non-classic" actions, for which other cellular proteins, apart from coregulators inside nuclei, regulate their activity. Aiming to find alternative pathways of TR modulation, we searched for interacting proteins and found that PDIA1 interacts with TRβ in a yeast two-hybrid screening assay. The functional implications of PDIA1-TR interactions are still unclear; however, our co-immunoprecipitation (co-IP) and fluorescence assay results showed that PDI was able to bind both TR isoforms in vitro. Moreover, T3 appears to have no important role in these interactions in cellular assays, where PDIA1 was able to regulate transcription of TRα and TRβ-mediated genes in different ways depending on the promoter region and on the TR isoform involved. Although PDIA1 appears to act as a coregulator, it binds to a TR surface that does not interfere with coactivator binding. However, the TR:PDIA1 complex affinity and activation are different depending on the TR isoform. Such differences may reflect the structural organization of the PDIA1:TR complex, as shown by models depicting an interaction interface with exposed cysteines from both proteins, suggesting that PDIA1 might modulate TR by its thiol reductase/isomerase activity.
Collapse
Affiliation(s)
- Jessica L. O. Campos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Tabata R. Doratioto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Natalia B. Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Helder V. Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Fernanda A. H. Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Juliana Fattori
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Nathalia de C. Indolfo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcel Nakahira
- Institute of Chemistry (IQ), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcio C. Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Aleksandra Cvoro
- Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paul Webb
- California Institute for Regenerative Medicine, Oakland, CA, United States
| | - Ana Carolina M. Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- *Correspondence: Ana Carolina M. Figueira
| |
Collapse
|
7
|
Ahmed R. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem Toxicol 2016; 95:168-74. [DOI: 10.1016/j.fct.2016.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022]
|
8
|
Protein disulfide isomerase mediates glutathione depletion-induced cytotoxicity. Biochem Biophys Res Commun 2016; 477:495-502. [DOI: 10.1016/j.bbrc.2016.06.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022]
|
9
|
The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity. Autoimmune Dis 2014; 2014:743616. [PMID: 24804084 PMCID: PMC3997912 DOI: 10.1155/2014/743616] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 01/29/2023] Open
Abstract
Bisphenol A (BPA) is a monomer found in commonly used consumer plastic goods. Although much attention in recent years has been placed on BPA's impact as an endocrine disruptor, it also appears to activate many immune pathways involved in both autoimmune disease development and autoimmune reactivity provocation. The current scientific literature is void of research papers linking BPA directly to human or animal onset of autoimmunity. This paper explores the impact of BPA on immune reactivity and the potential roles these mechanisms may have on the development or provocation of autoimmune diseases. Potential mechanisms by which BPA may be a contributing risk factor to autoimmune disease development and progression include its impact on hyperprolactinemia, estrogenic immune signaling, cytochrome P450 enzyme disruption, immune signal transduction pathway alteration, cytokine polarization, aryl hydrocarbon activation of Th-17 receptors, molecular mimicry, macrophage activation, lipopolysaccharide activation, and immunoglobulin pathophysiology. In this paper a review of these known autoimmune triggering mechanisms will be correlated with BPA exposure, thereby suggesting that BPA has a role in the pathogenesis of autoimmunity.
Collapse
|
10
|
Miyake Y, Hashimoto S, Sasaki Y, Kudo T, Oguro A, Imaoka S. Endoplasmic reticulum protein (ERp) 29 binds as strongly as protein disulfide isomerase (PDI) to bisphenol A. Chem Res Toxicol 2014; 27:501-6. [PMID: 24512454 DOI: 10.1021/tx400357q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bisphenol A (BPA), which is used in polycarbonate and epoxy resins, affects the development or function of the central nervous system. Previously, we isolated a BPA-binding protein from rat brain, identified it as protein disulfide isomerase (PDI), and found that BPA binds to the b' domain of PDI and inhibits its activity. There are 20 kinds of PDI family proteins in mammalian endoplasmic reticulum. The member proteins each have a different length and domain arrangement. Here we investigated the binding of BPA and T3 to ERp29, ERp57, and ERp72, which each have the b or b' domain. BPA/T3 binding of ERp57 and that of ERp72 were lower than that of PDI, and BPA did not inhibit the oxidase or reductase activity of these proteins. On the other hand, BPA and T3 bound to ERp29 as strongly as to PDI. The CD spectrum of PDI was changed in the presence of BPA in a dose-dependent manner, while that of ERp29 was not, suggesting that BPA did not affect the conformation of ERp29. We found that PDI suppresses GH expression in rat GH3 cells stimulated by thyroid hormone (T3) overexpression of PDI and that ERp57 reduced the GH level, but overexpression of ERp29 did not change GH expression. These results suggested that affinity to T3 does not involve the reduction of the T3 response. In this study, ERp29 was first identified as a BPA-binding protein but is not involved in the T3 response of GH3 cells.
Collapse
Affiliation(s)
- Yuka Miyake
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University , 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Hashimoto S, Imaoka S. Protein-disulfide isomerase regulates the thyroid hormone receptor-mediated gene expression via redox factor-1 through thiol reduction-oxidation. J Biol Chem 2012; 288:1706-16. [PMID: 23148211 DOI: 10.1074/jbc.m112.365239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein-disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase that regulates the redox state of proteins. We previously found that overexpression of PDI in rat pituitary tumor (GH3) cells suppresses 3,3',5-triiodothyronine (T(3))-stimulated growth hormone (GH) expression, suggesting the contribution of PDI to the T(3)-mediated gene expression via thyroid hormone receptor (TR). In the present study, we have clarified the mechanism of regulation by which TR function is regulated by PDI. Overexpression of wild-type but not redox-inactive mutant PDI suppressed the T(3)-induced GH expression, suggesting that the redox activity of PDI contributes to the suppression of GH. We considered that PDI regulates the redox state of the TR and focused on redox factor-1 (Ref-1) as a mediator of the redox regulation of TR by PDI. Interaction between Ref-1 and TRβ1 was detected. Overexpression of wild-type but not C64S Ref-1 facilitated the GH expression, suggesting that redox activity of Cys-64 in Ref-1 is involved in the TR-mediated gene expression. Moreover, PDI interacted with Ref-1 and changed the redox state of Ref-1, suggesting that PDI controls the redox state of Ref-1. Our studies suggested that Ref-1 contributes to TR-mediated gene expression and that the redox state of Ref-1 is regulated by PDI. Redox regulation of PDI via Ref-1 is a new aspect of PDI function.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Hyogo, Sanda 669-1337, Japan
| | | |
Collapse
|
12
|
Hashimoto S, Ito L, Okumura M, Shibano T, Nawata M, Kumasaka T, Yamaguchi H, Imaoka S. Crystallization and preliminary crystallographic analysis of the complex between triiodothyronine and the bb' fragment of rat protein disulfide isomerase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:476-8. [PMID: 22505424 DOI: 10.1107/s1744309112007439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 02/19/2012] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerase (PDI) is a multifunctional protein that catalyzes the formation of a disulfide bond in nascent and misfolded proteins and is also known to bind to the thyroid hormone triiodothyronine (T3). When T3 is bound to PDI its catalytic activity is inhibited, but the biological function of this binding is not well understood. In previous studies, it was found that T3 binds to the bb' fragment of PDI. Therefore, to clarify the structure of the complex consisting of PDI bound to T3, a crystallographic analysis of the three-dimensional structure of the T3-rat PDI bb' complex was performed. Native bb' crystals and T3-bb' complex crystals were both obtained using the hanging-drop vapour-diffusion technique with 1.6 M trisodium citrate pH 6.2 as a precipitant. The space group of the native bb' crystals was found to be C222, with unit-cell parameters a = 94.8, b = 114.9, c = 182.9 Å, while the space group of the T3-bb' complex crystals was P2(1)2(1)2(1), with unit-cell parameters a = 99.9, b = 184.5, c = 232.2 Å. Diffraction data for the native and complex crystals were collected to resolutions of 3.06 and 3.00 Å, respectively.
Collapse
Affiliation(s)
- Shoko Hashimoto
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hashimoto S, Yoshimura H, Okada K, Uramaru N, Sugihara K, Kitamura S, Imaoka S. Effects of polybrominated diphenyl ethers (PBDEs) and their derivatives on protein disulfide isomerase activity and growth hormone release of GH3 cells. Chem Res Toxicol 2012; 25:656-63. [PMID: 22201216 DOI: 10.1021/tx200374s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used in a variety of consumer products such as flame retardants and recently have been known to be widespread environmental pollutants, which probably affect biological functions of mammalian cells. However, the risk posed by PBDE metabolites has not been clarified. Our previous study suggested that bisphenol A (BPA), an endocrine-disrupting chemical, binds to protein disulfide isomerase (PDI) and inhibits its activity. PDI is an isomerase enzyme in the endoplasmic reticulum and facilitates the formation or cleavage of disulfide bonds. PDI consists of a, b, b', and a' domains and the c region, with the a and a' domains having isomerase active sites. In the present study, we tested the effects of 10 kinds of PBDE compounds and their metabolites on PDI. OH-PBDEs specifically inhibited the isomerase activity of PDI, with 4'-OH-PBDE more effective than 2' (or 2)-OH-PBDEs. 4'-OH-PBDE inhibited the isomerase activity of the b'a'c fragment but not that of ab and a'c, suggesting that the b' domain of PDI is essential for the inhibition by 4'-OH-PBDE. We also investigated the effects of these chemicals on the production of growth hormone (GH) in GH3 cells. In GH3 cells, levels of mRNA and protein of GH stimulated by T(3) were reduced by 4'-OH-PBDE and 4'-MeO-PBDE. The reduction in GH expression caused by these compounds was not changed by the overexpression or knockdown of PDI in GH3 cells, while these manipulations of PDI levels significantly suppressed the expression of GH. These results suggest that the biological effects of PBDEs differed depending on their brominated and hydroxylated positions.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen HB, Huang HQ. Proteomic analysis of methyl parathion-responsive proteins in Sparus latus liver. FISH & SHELLFISH IMMUNOLOGY 2011; 30:800-806. [PMID: 21232608 DOI: 10.1016/j.fsi.2011.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
The contamination of marine ecosystems by organophosphate pesticides is of great concern. The use of protein expression profiles may provide a good method to help us understand the methyl parathion (MP) toxicity to aquatic organisms. In this study, Sparus latus, was selected as the target organism. The toxicological effects of MP were investigated after 24 h exposure using proteomics to analyze their liver tissues. Certain enzyme activity parameters of the liver extracts were also examined, including CAT. After analyzing the proteomic profile of the liver using 2D gel electrophoresis, we found that the protein expression levels of 25 spots increased or decreased significantly in the exposed groups. Sixteen of the 25 protein spots were successfully identified using MALDI-TOF MS/MS. These proteins were roughly categorized into diverse functional classes such as cell redox homeostasis, metabolic processes and cytoskeleton system. These data demonstrated that proteomics was a powerful tool to provide valuable insights into the possible mechanisms of toxicity of MP contaminants in aquatic species. Additionally, these data may provide novel biomarkers for evaluation of MP contamination in the environment.
Collapse
Affiliation(s)
- Hai-bin Chen
- Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen, China
| | | |
Collapse
|
15
|
Hashida T, Kotake Y, Ohta S. Protein disulfide isomerase knockdown-induced cell death is cell-line-dependent and involves apoptosis in MCF-7 cells. J Toxicol Sci 2011; 36:1-7. [DOI: 10.2131/jts.36.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tomoyo Hashida
- Graduate School of Biomedical Sciences, Hiroshima University
| | - Yaichiro Kotake
- Graduate School of Biomedical Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
16
|
Chemical stress on protein disulfide isomerases and inhibition of their functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:121-66. [PMID: 21875564 DOI: 10.1016/b978-0-12-386037-8.00003-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein disulfide isomerase (PDI) is a folding assistant in the endoplasmic reticulum (ER) of eukaryotic cells. PDI has multiple roles, acting as a chaperone, a binding partner of other proteins, and a hormone reservoir as well as a disulfide isomerase in the formation of disulfide bonds. PDI only interacts covalently with the cysteines of its substrates, but also binds a variety of peptides/proteins and small chemical ligands such as thyroid hormone. Oxidative stress and nitrosative stress can cause damage to chaperones, protein misfolding, and neurodegenerative disease, by affecting the functional integrity of PDI. There are 20 putative PDI-family members in the ER of human cells, but their functional differentiation is far from complete. This review discusses recent advances in our understanding of the mammalian PDI family of enzymes and focuses on their functional properties and interaction with substrates and small chemical ligands.
Collapse
|
17
|
Scientific Opinion on Bisphenol A: evaluation of a study investigating its neurodevelopmental toxicity, review of recent scientific literature on its toxicity and advice on the Danish risk assessment of Bisphenol A. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1829] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Okada K, Hashimoto S, Imaoka S. Biological Functions of Protein Disulfide Isomerase as a Target of Phenolic Endocrine-disrupting Chemicals. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazushi Okada
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Shoko Hashimoto
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
19
|
Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, Aubert ML, Hüppi PS. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1549-55. [PMID: 20019905 PMCID: PMC2790509 DOI: 10.1289/ehp.11342] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 06/29/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND The causes of the current obesity pandemic have not been fully elucidated. Implication of environmental endocrine disruptors such as bisphenol A (BPA) on adipose tissue development has been poorly investigated. OBJECTIVES The aim of the present study was to evaluate the effects of perinatal exposure to BPA on early adipose storage at weaning. METHODS Pregnant Sprague-Dawley rats had access to drinking water containing 1 mg/L BPA from day 6 of gestation through the end of lactation. Pups were weaned on postnatal day (PND) 21. At that time, we investigated perigonadal adipose tissue of pups (weight, histology, gene expression). For the remaining animals, we recorded body weight and food intake for animals on either standard chow or a high-fat diet. RESULTS Gestational exposure to BPA did not alter the sex ratio or litter size at birth. On PND1, the weight of male and female BPA-exposed pups was increased. On PND21, body weight was increased only in females, in which parametrial white adipose tissue (pWAT) weight was increased about 3-fold. This excess of pWAT was associated with adipocyte hypertrophy and overexpression of lipogenic genes such as C/EBP-alpha (CAAT enhancer binding protein alpha), PPAR-gamma (peroxisome proliferator-activated receptor gamma), SREBP-1C (sterol regulatory element binding protein-1C), LPL (lipoprotein lipase), FAS (fatty acid synthase), and SCD-1 (stearoyl-CoA desaturase 1). In addition, gene expression of SREBP-1C, FAS, and ACC (acetyl-CoA carboxylase) was also increased in liver from BPA-exposed females at PND21, without a change in circulating lipids and glucose. After weaning, perinatal BPA exposure predisposed to overweight in a sex- and diet-dependent manner. We observed no change in food intake due to perinatal BPA exposure in rats on either standard chow or a high-fat diet. CONCLUSIONS Perinatal exposure to a low dose of BPA increased adipogenesis in females at weaning. Adult body weight may be programmed during early life, leading to changes dependent on the sex and the nutritional status. Although further studies are required to understand the mechanisms of BPA action in early life, these results are particularly important with regard to the increasing prevalence of childhood obesity and the context-dependent action of endocrine disruptors.
Collapse
Affiliation(s)
- Emmanuel Somm
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Okada K, Hashimoto S, Funae Y, Imaoka S. Hydroxylated Polychlorinated Biphenyls (PCBs) Interact with Protein Disulfide Isomerase and Inhibit Its Activity. Chem Res Toxicol 2009; 22:899-904. [DOI: 10.1021/tx800476j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kazushi Okada
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Shoko Hashimoto
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yoshihiko Funae
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
21
|
Hashimoto S, Okada K, Imaoka S. Interaction between bisphenol derivatives and protein disulphide isomerase (PDI) and inhibition of PDI functions: requirement of chemical structure for binding to PDI. J Biochem 2008; 144:335-42. [PMID: 18515855 DOI: 10.1093/jb/mvn075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical and several biological effects have been reported. Previously, protein disulphide isomerase (PDI) was isolated as a target molecule of bisphenol A. In this study, to clarify the effects of BPA on PDI functions, we investigated the relationship between the chemical structure of BPA derivatives and the effects on PDI-mediated isomerase and chaperone activity. We also investigated the effects of changes in the isomerase domain of PDI on the binding of chemicals, using PDI mutants and oxidized or reduced PDI. Among six chemicals, only chemicals, which have a phenol group, can bind to PDI and these chemicals also have an inhibitory effect on PDI-mediated isomerase activity. Changes in the structure of the PDI isomerase domain did not affect chemical-binding activity. On the other hand, the chemicals used in this study have low effects on chaperone activity of PDI. Substitutions in Cys residues (Cys398 and Cys401) of the isomerase active site changed chaperone activity. The present study indicates that phenolic compounds specifically bind to PDI and inhibit isomerase activity. This study provides useful information to predict the biological effects of chemicals and structural studies of PDI containing the function of chemical binding.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Department of Bioscience, Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | | | | |
Collapse
|