1
|
Wu H, Li D, Zhang CY, Huang LL, Zeng YJ, Chen TG, Yu K, Meng JW, Lin YX, Guo R, Zhou Y, Gao G. Restoration of ARA metabolic disorders in vascular smooth muscle cells alleviates intimal hyperplasia. Eur J Pharmacol 2024; 983:176824. [PMID: 39265882 DOI: 10.1016/j.ejphar.2024.176824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/14/2024]
Abstract
Intimal hyperplasia (IH) is an innegligible issue for patients undergoing interventional therapy. The proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF-BB) are critical events in the development of IH. While the exact mechanism and effective target for IH needs further investigation. Metabolic disorders of arachidonic acid (ARA) are involved in the occurrence and progression of various diseases. In this study, we found that the expressions of soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) were significantly increased in the VSMCs during balloon injury-induced IH. Then, we employed a COX-2/sEH dual inhibitor PTUPB to increase the concentration of epoxyeicosatrienoic acids (EETs) while prevent the release of pro-inflammatory prostaglandins. Results showed that PTUPB treatment significantly reduced neointimal thickening induced by balloon injury in rats in vivo and inhibited PDGF-BB-induced proliferation and migration of VSMCs in vitro. Our results showed that PTUPB may reverse the phenotypic transition of VSMCs by inhibiting Pttg1 expression. In conclusion, we found that the dysfunction of ARA metabolism in VSMCs contributes to IH, and the COX-2/sEH dual inhibitor PTUPB attenuates IH progression by reversing the phenotypic switch in VSMC through the Sirt1/Pttg1 pathway.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Hyperplasia
- Male
- Rats
- Cyclooxygenase 2/metabolism
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats, Sprague-Dawley
- Cell Movement/drug effects
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/metabolism
- Tunica Intima/pathology
- Tunica Intima/metabolism
- Tunica Intima/drug effects
- Becaplermin/pharmacology
- Neointima/pathology
- Neointima/metabolism
- Neointima/drug therapy
- Metabolic Diseases/metabolism
- Metabolic Diseases/drug therapy
- Metabolic Diseases/pathology
Collapse
Affiliation(s)
- Hui Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Dai Li
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, 410005, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Ling-Li Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - You-Jie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tian-Ge Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Ke Yu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jia-Wei Meng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu-Xin Lin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Peng Z, Ahsan N, Yang Z. Proteomics Analysis of Interactions between Drug-Resistant and Drug-Sensitive Cancer Cells: Comparative Studies of Monoculture and Coculture Cell Systems. J Proteome Res 2024; 23:2608-2618. [PMID: 38907724 PMCID: PMC11425778 DOI: 10.1021/acs.jproteome.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Cell-cell interactions, which allow cells to communicate with each other through molecules in their microenvironment, are critical for the growth, health, and functions of cells. Previous studies show that drug-resistant cells can interact with drug-sensitive cells to elevate their drug resistance level, which is partially responsible for cancer recurrence. Studying protein targets and pathways involved in cell-cell communication provides essential information for fundamental cell biology studies and therapeutics of human diseases. In the current studies, we performed direct coculture and indirect coculture of drug-resistant and drug-sensitive cell lines, aiming to investigate intracellular proteins responsible for cell communication. Comparative studies were carried out using monoculture cells. Shotgun bottom-up proteomics results indicate that the P53 signaling pathway has a strong association with drug resistance mechanisms, and multiple TP53-related proteins were upregulated in both direct and indirect coculture systems. In addition, cell-cell communication pathways, including the phagosome and the HIF-signaling pathway, contribute to both direct and indirect coculture systems. Consequently, AK3 and H3-3A proteins were identified as potential targets for cell-cell interactions that are relevant to drug resistance mechanisms. We propose that the P53 signaling pathway, in which mitochondrial proteins play an important role, is responsible for inducing drug resistance through communication between drug-resistant and drug-sensitive cancer cells.
Collapse
Affiliation(s)
- Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Robertson IJ, Gregory TA, Waguespack SG, Penas-Prado M, Majd NK. Recent Therapeutic Advances in Pituitary Carcinoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:74-83. [PMID: 37214211 PMCID: PMC10195013 DOI: 10.36401/jipo-22-25] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 05/24/2023]
Abstract
Pituitary carcinoma (PC) is a rare, aggressive malignancy that comprises 0.1-0.2% of all pituitary tumors. PC is defined anatomically as a pituitary tumor that metastasizes outside the primary intrasellar location as noncontiguous lesions in the central nervous system or as metastases to other organs. Similar to pituitary adenoma, PC originates from various cell types of the pituitary gland and can be functioning or nonfunctioning, with the former constituting the majority of the cases. Compression of intricate skull-based structures, excessive hormonal secretion, impaired pituitary function from therapy, and systemic metastases lead to debilitating symptoms and a poor survival outcome in most cases. PC frequently recurs despite multimodality treatments, including surgical resection, radiotherapy, and biochemical and cytotoxic treatments. There is an unmet need to better understand the pathogenesis and molecular characterization of PC to improve therapeutic strategies. As our understanding of the role of signaling pathways in the tumorigenesis of and malignant transformation of PC evolves, efforts have focused on targeted therapy. In addition, recent advances in the use of immune checkpoint inhibitors to treat various solid cancers have led to an interest in exploring the role of immunotherapy for the treatment of aggressive refractory pituitary tumors. Here, we review our current understanding of the pathogenesis, molecular characterization, and treatment of PC. Particular attention is given to emerging treatment options, including targeted therapy, immunotherapy, and peptide receptor radionuclide therapy.
Collapse
Affiliation(s)
- Ian J. Robertson
- Department of Internal Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Timothy A. Gregory
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven G. Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nazanin K. Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Marrero-Rodríguez D, Taniguchi-Ponciano K, Kerbel J, Cano-Zaragoza A, Remba-Shapiro I, Silva-Román G, Vela-Patiño S, Andonegui-Elguera S, Valenzuela-Perez A, Mercado M. The hallmarks of cancer… in pituitary tumors? Rev Endocr Metab Disord 2023; 24:177-190. [PMID: 36586070 DOI: 10.1007/s11154-022-09777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/01/2023]
Abstract
Over 20 years ago, Hanahan and Weinberg published a seminal review that addressed the biological processes that underly malignant transformation. This classical review, along with two revisions published in 2011 and 2022, has remain a classic of the oncology literature. Since many of the addressed biological processes may apply to non-malignant tumorigenesis, we evaluated to what extent these hallmarks pertain to the development of pituitary adenomas.Some of the biological processes analyzed in this review include genome instability generated by somatic USP8 and GNAS mutations in Cushing's diseases and acromegaly respectively; non-mutational epigenetic reprograming through changes in methylation; induction of angiogenesis through alterations of VEGF gene expression; promotion of proliferative signals mediated by EGFR; evasion of growth suppression by disrupting cyclin dependent kinase inhibitors; avoidance of immune destruction; and the promotion of inflammation mediated by alteration of gene expression of immune check points. We also elaborate further on the existence of oncogene induced senescence in pituitary tumors. We conclude that a better understanding of these processes can help us dilucidated why pituitary tumors are so resistant to malignant transformation and can potentially contribute to the development of novel anticancer treatments.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico.
| | - Jacobo Kerbel
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Amayrani Cano-Zaragoza
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Ilan Remba-Shapiro
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Gloria Silva-Román
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Sandra Vela-Patiño
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Sergio Andonegui-Elguera
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Alejandra Valenzuela-Perez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico
| | - Moisés Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México, D.F., 06720, Mexico City, Mexico.
| |
Collapse
|
5
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
6
|
Delfin L, Mete O, Asa SL. Follicular cells in pituitary neuroendocrine tumors. Hum Pathol 2021; 114:1-8. [PMID: 33991528 DOI: 10.1016/j.humpath.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Follicular cells (FCs) are thought to be agranular, non-hormone-producing stellate cells distributed throughout the adenohypophysis, occasionally arranged around colloid-filled follicles, and thought to be more prominent in the vicinity of necrosis and apoptotic cells. A distinct but similar cell type, the folliculostellate cell (FSC), is a sustentacular cell that is negative for keratins and stains for S100, GFAP, and SOX10. While several studies have examined FSCs in pituitary neuroendocrine tumors (PitNETs), the distribution and derivation of FCs in these lesions is unclear. We examined the presence and distribution of FCs in 104 PitNETs obtained by trans-sphenoidal surgery, using immunohistochemistry for keratins as well as the full complement of immunohistochemical stains for tumor characterization. The tumors included 9 somatotroph, 5 mammosomatotroph, 7 lactotroph, 7 immature PIT1-lineage, 2 acidophil stem cell, 17 corticotroph, 53 gonadotroph, 2 null cell, and 2 unusual plurihormonal tumors. CK-positive FCs were only identified in gonadotroph PitNETs and were found in 12 (23%) of those tumors; all other tumor types were negative for FCs. FCs express keratins identified by CAM5.2, AE1/AE3, CK18, and CK19 antibodies. FCs were identified scattered singly among hormone-producing neuroendocrine cells, in small clusters of 3-5 cells and surrounding colloid-filled follicles, as well as linearly along intratumoral blood vessels. Sequential stains showed that FCs express nuclear SF1 and GATA3, transcription factors of gonadotrophs, and multiplex immunohistochemistry confirmed colocalization of SF1 in the nucleus of keratin-positive FCs. In this series, FCs were exclusively found in gonadotroph PitNETs and occurred in 23% of those tumors. Co-expression of gonadotroph transcription factors in FCs supports the concept of cellular plasticity and transformation of neoplastic hormone-producing neuroendocrine cells to FCs. Further studies are required to determine if and why gonadotrophs alone undergo this transformation, the function of these cells and whether they have prognostic value.
Collapse
Affiliation(s)
- Luvy Delfin
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ozgur Mete
- Department of Pathology, University Health Network, University of Toronto, Toronto, M5G 2C4, Canada
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Xiong Z, Li X, Yang Q. PTTG has a Dual Role of Promotion-Inhibition in the Development of Pituitary Adenomas. Protein Pept Lett 2019; 26:800-818. [PMID: 37020362 DOI: 10.2174/0929866526666190722145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/22/2022]
Abstract
Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
8
|
Yang Q, Li X. Molecular Network Basis of Invasive Pituitary Adenoma: A Review. Front Endocrinol (Lausanne) 2019; 10:7. [PMID: 30733705 PMCID: PMC6353782 DOI: 10.3389/fendo.2019.00007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cases with pituitary adenoma comprise 10-25% of intracranial neoplasm, being the third most common intracranial tumor, most of the adenomas are considered to be benign. About 35% of pituitary adenomas are invasive. This review summarized the known molecular basis of the invasiveness of pituitary adenomas. The study pointed out that hypoxia-inducible factor-1α, pituitary tumor transforming gene, vascular endothelial growth factor, fibroblast growth factor-2, and matrix metalloproteinases (MMPs, mainly MMP-2, and MMP-9) are core molecules responsible for the invasiveness of pituitary adenomas. The reason is that these molecules have the ability to directly or indirectly induce cell proliferation, epithelial-to-mesenchymal transition, angiogenesis, degradation, and remodeling of extracellular matrix. HIF-1α induced by hypoxia or apoplexy inside the adenoma might be the initiating factor of invasive transformation, followed with angiogenesis for overexpressed VEGF, EMT for overexpressed PTTG, degradation of ECM for overexpressed MMPs, creating a suitable microenvironment within the tumor. Together, they form a complex interactive network. More investigations are required to further elucidate the mechanisms underlying the invasiveness of pituitary adenomas.
Collapse
|
9
|
Sabatino ME, Grondona E, Sosa LDV, Mongi Bragato B, Carreño L, Juarez V, da Silva RA, Remor A, de Bortoli L, de Paula Martins R, Pérez PA, Petiti JP, Gutiérrez S, Torres AI, Latini A, De Paul AL. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth. Free Radic Biol Med 2018; 120:41-55. [PMID: 29548793 DOI: 10.1016/j.freeradbiomed.2018.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Liliana D V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Bethania Mongi Bragato
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Lucia Carreño
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Virginia Juarez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Rodrigo A da Silva
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Remor
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucila de Bortoli
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pablo A Pérez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Juan Pablo Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvina Gutiérrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana L De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
10
|
Xu Q, Liu M, Zhang J, Xue L, Zhang G, Hu C, Wang Z, He S, Chen L, Ma K, Liu X, Zhao Y, Lv N, Liang S, Zhu H, Xu N. Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway. Oncotarget 2018; 7:60290-60302. [PMID: 27531889 PMCID: PMC5312384 DOI: 10.18632/oncotarget.11200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/26/2016] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor and functions as a tumor suppressor or tumor promoter in different cancer types. KLF4 regulates many gene expression, thus affects the process of cell proliferation, differentiation, and apoptosis. Recently, KLF4 was reported to induce senescence during the generation of induced pluripotent stem (iPS) cells, but the exact mechanism is still unclear. In this study, we constructed two doxycycline-inducing KLF4 cell models, and demonstrated overexpression of KLF4 could promote cell senescence, detected by senescence-associated β-galactosidase activity assay. Then we confirmed that p21, a key effector of senescence, was directly induced by KLF4. KLF4 could also inhibit survivin, which could indirectly induce p21. By miRNA microarray, we found a series of miRNAs regulated by KLF4 and involved in senescence. We demonstrated that KLF4 could upregulate miR-203, and miR-203 contributed to senescence through miR-203-survivin-p21 pathway. Our results suggest that KLF4 could promote cell senescence through a complex network: miR-203, survivin, and p21, which were all regulated by overexpression of KLF4 and contributed to cell senescence.
Collapse
Affiliation(s)
- Qing Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ju Zhang
- Division of Proteomics, Beijing Institute of Genomics, Chinese Academy of Science, Beijing, China
| | - Liyan Xue
- Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Zhang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zaozao Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun He
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Lv
- Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Hou Z, Yang J, Wang G, Wang C, Zhang H. Bioinformatic analysis of gene expression profiles of pituitary gonadotroph adenomas. Oncol Lett 2017; 15:1655-1663. [PMID: 29434861 PMCID: PMC5776930 DOI: 10.3892/ol.2017.7505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/13/2017] [Indexed: 01/15/2023] Open
Abstract
The aim of the present study was to identify genes, microRNAs (miRNAs/miRs) or pathways associated with the development of pituitary gonadotroph adenomas. The array data of GSE23207, which included 16 samples of multiple endocrine neoplasia-associated rat pituitary homozygous mutations and 5 pituitary tissue samples from healthy rats, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed prior to functional enrichment analysis and protein-protein interaction (PPI) network construction. miRNAs associated with DEGs were predicted, and an miRNA-target regulatory network was constructed. A total of 187 upregulated and 370 downregulated DEGs were identified in the pituitary gonadotroph adenoma group compared with the healthy (control) group. Cyclin-dependent kinase (Cdk) 1 exhibited the highest degree in the PPI network. The upregulated DEGs were predominately enriched in ‘neuroactive ligand-receptor interaction’ pathway, and downregulated DEGs were mainly enriched in ‘cell cycle’. The DEGs in module were predominately enriched in the ‘cell cycle’, whereas DEGs in module b and c were enriched in ‘neuroactive ligand-receptor interaction’. miR-374, −153, −145 and −33 were identified as important miRNAs in the regulation of the DEGs. Cdk1, cyclin (Ccn) A2, Ccnb1, ‘cell cycle’ and ‘neuroactive ligand-receptor interaction’ pathways may serve important roles in the development of pituitary gonadotroph adenomas; Ccna2 and Ccnb1 may contribute to this development via an effect on the ‘cell cycle’ pathway. Furthermore, miR-374 and −145 may contribute to the development of pituitary gonadotroph adenomas via regulation of the expression of target genes.
Collapse
Affiliation(s)
- Ziming Hou
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Jun Yang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Gang Wang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Changjiang Wang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Hongbing Zhang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
12
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
13
|
Abstract
Aggressive GH-secreting pituitary adenomas (GHPAs) represent an important clinical problem in patients with acromegaly. Surgical therapy, although often the mainstay of treatment for GHPAs, is less effective in aggressive GHPAs due to their invasive and destructive growth patterns, and their proclivity for infrasellar invasion. Medical therapies for GHPAs, including somatostatin analogues and GH receptor antagonists, are becoming increasingly important adjuncts to surgical intervention. Stereotactic radiosurgery serves as an important fallback therapy for tumors that cannot be cured with surgery and medications. Data suggests that patients with aggressive and refractory GHPAs are best treated at dedicated tertiary pituitary centers with multidisciplinary teams of neuroendocrinologists, neurosurgeons, radiation oncologists and other specialists who routinely provide advanced care to GHPA patients. Future research will help clarify the defining features of "aggressive" and "atypical" PAs, likely based on tumor behavior, preoperative imaging characteristics, histopathological characteristics, and molecular markers.
Collapse
Affiliation(s)
- Daniel A Donoho
- Department of Neurological Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Namrata Bose
- Division of Endocrinology, Department of Medicine, Keck School of Medicine of the University of Southern California, USC Pituitary Center, 1520 San Pablo Street #3800, Los Angeles, CA, 90033, USA
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - John D Carmichael
- Division of Endocrinology, Department of Medicine, Keck School of Medicine of the University of Southern California, USC Pituitary Center, 1520 San Pablo Street #3800, Los Angeles, CA, 90033, USA.
| |
Collapse
|
14
|
Ritvonen E, Pitkänen E, Karppinen A, Vehkavaara S, Demir H, Paetau A, Schalin-Jäntti C, Karhu A. Impact of AIP and inhibitory G protein alpha 2 proteins on clinical features of sporadic GH-secreting pituitary adenomas. Eur J Endocrinol 2017; 176:243-252. [PMID: 27998919 DOI: 10.1530/eje-16-0620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION In sporadic acromegaly, downregulation of AIP protein of the adenomas associates with invasive tumor features and reduced responsiveness to somatostatin analogues. AIP is a regulator of Gai signaling, but it is not known how the biological function of the Gai pathway is controlled. AIM To study GNAS and AIP mutation status, AIP and Gai-2 protein expressions, Ki-67 proliferation indices and clinical parameters in patients having primary surgery because of acromegaly at a single center between years 2000 and 2010. RESULTS Sixty patients (F/M, 31/29), mean age 49 (median 50), mean follow-up 7.7 years (range 0.6-14.0) underwent primary surgery. Four adenoma specimens (6.8%) harbored an AIP and 21 (35.6%) an activating GNAS (Gsp+) mutation. Altogether 13/56 (23%) adenomas had low AIP protein levels, and 14/56 (25%) low Gai-2 staining. In regression modeling, AIP expression associated with Gai-2 (P = 2.33 × 10-9) and lower Ki-67 (P = 0.04). In pairwise comparison, low AIP protein predicted high GH at last follow-up (mean 7.7 years after surgery, q = 0.045). Extent of treatments given for acromegaly associated with higher preoperative GH (P = 7.94 × 10-4), KNOSP (P = 0.003) and preoperative hypopituitarism (P = 0.03) and remission at last follow-up with change in 3-month postoperative IGF1 (P = 2.07 × 10-7). CONCLUSIONS We demonstrate, for the first time, that AIP protein expression associates with Gai-2 protein intensities in sporadic somatotropinomas, suggesting a joint regulation on somatostatin signaling. Low AIP level associates with higher proliferative activity and predicts high GH concentrations after long-term follow-up. The AIP mutation rate of 6.8% is fairly high, reflecting the genetic composition of the Finnish population.
Collapse
Affiliation(s)
- Elina Ritvonen
- EndocrinologyAbdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esa Pitkänen
- Department of Medical and Clinical Genetics & Genome-Scale BiologyResearch Programs Unit, University of Helsinki, Helsinki, Finland
| | - Atte Karppinen
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Vehkavaara
- EndocrinologyAbdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hande Demir
- Department of Medical and Clinical Genetics & Genome-Scale BiologyResearch Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anders Paetau
- Department of PathologyHUSLAB and University of Helsinki, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- EndocrinologyAbdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics & Genome-Scale BiologyResearch Programs Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Vankelecom H, Roose H. The Stem Cell Connection of Pituitary Tumors. Front Endocrinol (Lausanne) 2017; 8:339. [PMID: 29255445 PMCID: PMC5722833 DOI: 10.3389/fendo.2017.00339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors in the pituitary gland are typically benign but cause serious morbidity due to compression of neighboring structures and hormonal disruptions. Overall, therapy efficiency remains suboptimal with negative impact on health and comfort of life, including considerable risk of therapy resistance and tumor recurrence. To date, little is known on the pathogenesis of pituitary tumors. Stem cells may represent important forces in this process. The pituitary tumors may contain a driving tumor stem cell population while the resident tissue stem cells may be directly or indirectly linked to tumor development and growth. Here, we will briefly summarize recent studies that afforded a glance behind the scenes of this stem cell connection. A better knowledge of the mechanisms underlying pituitary tumorigenesis is essential to identify more efficacious treatment modalities and improve clinical management.
Collapse
Affiliation(s)
- Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
- *Correspondence: Hugo Vankelecom,
| | - Heleen Roose
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
16
|
Caimari F, Korbonits M. Novel Genetic Causes of Pituitary Adenomas. Clin Cancer Res 2016; 22:5030-5042. [DOI: 10.1158/1078-0432.ccr-16-0452] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
|
17
|
PTTG regulates the metabolic switch of ovarian cancer cells via the c-myc pathway. Oncotarget 2016; 6:40959-69. [PMID: 26516926 PMCID: PMC4747382 DOI: 10.18632/oncotarget.5726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/20/2015] [Indexed: 12/02/2022] Open
Abstract
Human pituitary tumor-transforming gene (PTTG) is a proto-oncogene involved in the development, invasion, and metastasis of many types of cancer, including ovarian cancer. However, little is known about the role of PTTG in the metabolic shift of ovarian cancer cells. In our study, we show that PTTG expression was positively correlated with the differentiation degree of ovarian cancer tissue. In addition, PTTG suppression by specific shRNA could inhibit the proliferation of ovarian cancer cells A2780 and SKOV-3. Furthermore, aerobic glycolysis was suppressed and oxidative phosphorylation was increased in ovarian cancer cells after PTTG suppression. We further found that the expression of c-myc and several crucial enzymes involved in aerobic glycolysis (e.g., PKM2, LDHA, and glucose transporter 1 (GLUT-1)) were downregulated by PTTG knockwown. Overexpression of c-myc could prevent the metabolic shift induced by PTTG knockwown. Together, our findings suggest that the oncogene PTTG promotes the progression of ovarian cancer cells, and its loss resists tumor development, in part, by regulating cellular metabolic reprogramming that supports cell growth and proliferation via c-myc pathway.
Collapse
|
18
|
Manojlovic-Gacic E, Skender-Gazibara M, Popovic V, Soldatovic I, Boricic N, Raicevic S, Pekic S, Doknic M, Miljic D, Alafuzoff I, Pontén F, Casar-Borota O. Oncogene-Induced Senescence in Pituitary Adenomas--an Immunohistochemical Study. Endocr Pathol 2016; 27:1-11. [PMID: 26573928 DOI: 10.1007/s12022-015-9405-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an initial barrier to cancer development, being proposed as a possible explanation for the usually benign behavior of the pituitary adenomas. We aimed to explore the immunohistochemical expression of the OIS markers, senescence-associated lysosomal β-galactosidase (SA-β-GAL), p16, and p21 in different types of 345 pituitary adenomas and compared it with the expression in the normal pituitary and in the specimens from the repeated surgeries. SA-β-GAL was overexpressed in the pituitary adenomas, compared to the normal pituitaries. Growth hormone (GH) producing adenomas showed the strongest SA-β-GAL, with densely granulated (DG)-GH adenomas more reactive than the sparsely granulated (SG). Nuclear p21 was decreased in the adenomas, except for the SG-GH adenomas that had higher p21 than the normal pituitaries and the other adenomas. p16 was significantly lower in the adenomas, without type-related differences. SA-β-GAL was slightly lower and p16 slightly higher in the recurrences. Our findings indicate alterations of the senescence program in the different types of pituitary adenomas. Activation of senescence in the pituitary adenomas presents one possible explanation for their usually benign behavior, at least in the GH adenomas that show a synchronous increase of two OIS markers. However, subdivision into GH adenoma subtypes reveals differences that reflect complex regulatory mechanisms influenced by the interplay between the granularity pattern and the hormonal factors, with possible impact on the different clinical behavior of the SG- and DG-GH adenoma subtypes. p16 seems to have a more prominent role in the pituitary tumorigenesis than in the senescence. Recurrent growth in a subset of the pituitary adenomas is not associated with consistent changes in the senescence pattern.
Collapse
Affiliation(s)
- Emilija Manojlovic-Gacic
- Institute of Pathology, Medical Faculty, University of Belgrade, Dr Subotica 1, Belgrade, Serbia.
| | - Milica Skender-Gazibara
- Institute of Pathology, Medical Faculty, University of Belgrade, Dr Subotica 1, Belgrade, Serbia
| | - Vera Popovic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Ivan Soldatovic
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Novica Boricic
- Institute of Pathology, Medical Faculty, University of Belgrade, Dr Subotica 1, Belgrade, Serbia
| | - Savo Raicevic
- Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovica 4, Belgrade, Serbia
| | - Sandra Pekic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Mirjana Doknic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Dragana Miljic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
- Department of Clinical Pathology and Cytology, Uppsala University Hospital, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
- Department of Clinical Pathology and Cytology, Uppsala University Hospital, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
| |
Collapse
|
19
|
Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly. Sci Rep 2015; 5:16298. [PMID: 26549306 PMCID: PMC4637865 DOI: 10.1038/srep16298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/08/2015] [Indexed: 12/14/2022] Open
Abstract
Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors.
Collapse
|
20
|
Syro LV, Rotondo F, Ramirez A, Di Ieva A, Sav MA, Restrepo LM, Serna CA, Kovacs K. Progress in the Diagnosis and Classification of Pituitary Adenomas. Front Endocrinol (Lausanne) 2015; 6:97. [PMID: 26124750 PMCID: PMC4464221 DOI: 10.3389/fendo.2015.00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
Pituitary adenomas are common neoplasms. Their classification is based upon size, invasion of adjacent structures, sporadic or familial cases, biochemical activity, clinical manifestations, morphological characteristics, response to treatment and recurrence. Although they are considered benign tumors, some of them are difficult to treat due to their tendency to recur despite standardized treatment. Functional tumors present other challenges for normalizing their biochemical activity. Novel approaches for early diagnosis, as well as different perspectives on classification, may help to identify subgroups of patients with similar characteristics, creating opportunities to match each patient with the best personalized treatment option. In this paper, we present the progress in the diagnosis and classification of different subgroups of patients with pituitary tumors that may be managed with specific considerations according to their tumor subtype.
Collapse
Affiliation(s)
- Luis V. Syro
- Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia
| | - Fabio Rotondo
- Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Alex Ramirez
- Department of Endocrinology, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Antonio Di Ieva
- Department of Neurosurgery, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | | | | | - Carlos A. Serna
- Laboratorio de Patologia y Citologia Rodrigo Restrepo, Department of Pathology, Clinica Medellin, Medellin, Colombia
| | - Kalman Kovacs
- Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Sabatino ME, Petiti JP, Sosa LDV, Pérez PA, Gutiérrez S, Leimgruber C, Latini A, Torres AI, De Paul AL. Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocr Relat Cancer 2015; 22:299-317. [PMID: 25792544 DOI: 10.1530/erc-14-0333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
Although pituitary adenomas represent 25% of intracranial tumors, they are usually benign, with the mechanisms by which these tumors usually avoid an invasive profile and metastatic growth development still remaining unclear. In this context, cellular senescence might constitute a plausible explanation for the benign nature of pituitary adenomas. In this study, we investigated the emergence of cellular senescence as a growth control mechanism during the progression of estrogen-induced pituitary tumors. The quantification of Ki67-immunopositive cells in the pituitaries of estrogenized male rats after 10, 20, 40, and 60 days revealed that the mitogenic potential rate was not sustained for the whole period analyzed and successively decreased after 10 days of estrogen exposure. In addition, the expression of cellular senescence features, such as the progressive rise in the enzymatic senescence-associated b-galactosidase (SA-b-gal) activity, IL6, IL1b, and TGFb expression, was observed throughout pituitary tumor development. Furthermore, tumoral pituitary cells also displayed nuclear pATM expression, indicating activated DNA damage signaling, with a significant increase in p21 expression also being detected. The associations among DNA damage signaling activation, SA-b-gal expression, and p21 may provide a reliable combination of senescence-associated markers for in vivo pituitary senescence detection. These results suggest a role for this cellular process in the regulation of pituitary cell growth. Thus, cellular senescence should be conceived as a contributing component to the benign nature of pituitary adenomas, thereby influencing the capability of the pituitary gland to avoid unregulated cell proliferation.
Collapse
|
22
|
Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K. Aggressive pituitary adenomas--diagnosis and emerging treatments. Nat Rev Endocrinol 2014; 10:423-35. [PMID: 24821329 DOI: 10.1038/nrendo.2014.64] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The WHO categorizes pituitary tumours as typical adenomas, atypical adenomas and pituitary carcinomas, with typical adenomas constituting the major class. However, the WHO classification does not provide an accurate correlation between histopathological findings and clinical behaviour. Tumours lacking typical histological features are classified as atypical, but not all are clinically atypical or exhibit aggressive behaviour. Pituitary carcinomas, by definition, have craniospinal or systemic metastases, although not all display classical cytological features of malignancy. Aggressive pituitary adenomas, defined from a clinical perspective, have earlier and more frequent recurrences and can be resistant to conventional treatments. Specific biomarkers have not yet been identified that can distinguish between clinically aggressive and nonaggressive pituitary adenomas, although the antigen Ki-67 proliferation index might be of value. This Review highlights the need to develop new biomarkers to facilitate the early detection of clinically aggressive pituitary adenomas and discusses emerging markers that hold promise for their identification. Defining aggressiveness is of crucial importance for improving the management of patients by enhancing prognostic predictions and effectiveness of treatment. New drugs, such as temozolomide, have potential use in the management of these patients; anti-VEGF therapy, mTOR and tyrosine kinase inhibitors are also potentially useful in managing selected patients.
Collapse
Affiliation(s)
- Antonio Di Ieva
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Fabio Rotondo
- Department of Laboratory Medicine, Division of Pathology, St Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Luis V Syro
- Department of Neurosurgery, Hospital Pablo Tobón Uribe and Clínica Medellín, Calle 54 #46-27, Cons 501, Medellín, Colombia
| | - Michael D Cusimano
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Kalman Kovacs
- Department of Laboratory Medicine, Division of Pathology, St Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
23
|
Zhang E, Liu S, Xu Z, Huang S, Tan X, Sun C, Lu L. Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in oral squamous cell carcinoma (OSCC) and promotes migration, invasion and epithelial-mesenchymal transition (EMT) in SCC15 cells. Tumour Biol 2014; 35:8801-11. [PMID: 24879625 DOI: 10.1007/s13277-014-2143-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is an important oncogenic transcription factor implicated in various malignancies, including oral squamous cell carcinoma (OSCC), a common malignancy of head and neck. Although PTTG1 is reportedly overexpressed in OSCC tissues, its role in human OSCC remains elusive. Thus, this study was conducted to explore the correlation between PTTG1 expression and tumorigenesis of OSCC. We first examined PTTG1 mRNA and protein expression in 28 pairs of OSCC tissues and adjacent non-tumor tissues. PTTG1 protein levels in 98 OSCC specimens were also evaluated by using immunohistochemistry. Our data showed that both mRNA and protein expression levels of PTTG1 in OSCC tissue specimens were markedly higher than that in the corresponding non-tumor tissue samples. A high level of PTTG1 protein expression was found in 74 out of 98 cases (75.51 %) and it was correlated with lymph node metastasis (P = 0.002) and tumor-node-metastasis (TNM) stage (P = 0.007) of patients with OSCC. Moreover, forced overexpression of PTTG1 enhanced SCC15 cell migration and invasion, whereas knockdown of PTTG1 resulted in reverse phenomena. In addition, elevated PTTG1 also increased the activities and expressions of matrix metalloproteinase (MMP)-2, and enhanced epithelial-mesenchymal-transition (EMT) process in SCC15 cells. The EMT changes were accompanied by downregulation of epithelial cadherin (E-cadherin) protein expression and upregulation of snail and vimentin. In summary, our results illustrate that PTTG1 may contribute to the development and progression of human OSCC.
Collapse
Affiliation(s)
- Enjiao Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Zhou LP, Ma P, Sui CG, Meng FD, Tian X, Fu LY, Jiang YH. Relationship of PTTG Expression with Tumor Invasiveness and Microvessel Density of Pituitary Adenomas: A Meta-Analysis. Genet Test Mol Biomarkers 2014; 18:279-85. [PMID: 24611443 DOI: 10.1089/gtmb.2013.0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yan Li
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li-Ping Zhou
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ping Ma
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Cheng-Guang Sui
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Fan-Dong Meng
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Tian
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li-Ye Fu
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - You-Hong Jiang
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
25
|
Cámara Gómez R. Tumores hipofisarios no funcionantes: actualización 2012. ACTA ACUST UNITED AC 2014; 61:160-70. [DOI: 10.1016/j.endonu.2013.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 01/10/2023]
|
26
|
Abstract
Acromegaly is predominantly caused by a pituitary adenoma, which secretes an excess of GH resulting in increased IGF1 levels. Most of the GH assays used currently measure only the levels of the 22 kDa form of GH. In theory, the diagnostic sensitivity may be lower compared with the previous assays, which have used polyclonal antibodies. Many GH-secreting adenomas are plurihormonal and may co-secrete prolactin, TSH and α-subunit. Hyperprolactinaemia is found in 30-40% of patients with acromegaly, and hyperprolactinaemia may occasionally be diagnosed before acromegaly is apparent. Although trans-sphenoidal surgery of a GH-secreting adenoma remains the first treatment at most centres, the role of somatostatin analogues, octreotide long-acting repeatable and lanreotide Autogel as primary therapy is still the subject of some debate. Although the normalisation of GH and IGF1 levels is the main objective in all patients with acromegaly, GH and IGF1 levels may be discordant, especially during somatostatin analogue therapy. This discordance usually takes the form of high GH levels and an IGF1 level towards the upper limit of the normal range. Pasireotide, a new somatostatin analogue, may be more efficacious in some patients, but the drug has not yet been registered for acromegaly. Papers published on pasireotide have reported an increased risk of diabetes mellitus due to a reduction in insulin levels. Pegvisomant, the GH receptor antagonist, is indicated - alone or in combination with a somatostatin analogue - in most patients who fail to enter remission on a somatostatin analogue. Dopamine-D2-agonists may be effective as monotherapy in a few patients, but it may prove necessary to apply combination therapy involving a somatostatin analogue and/or pegvisomant.
Collapse
Affiliation(s)
- Marianne Andersen
- Department of Endocrinology, Odense University Hospital, Sønder Boulevard 29, 5000 Odense C, Denmark and Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
27
|
McCormack A, Kaplan W, Gill AJ, Little N, Cook R, Robinson B, Clifton-Bligh R. MGMT expression and pituitary tumours: relationship to tumour biology. Pituitary 2013; 16:208-19. [PMID: 22797801 DOI: 10.1007/s11102-012-0406-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past half decade, temozolomide, an oral akylating chemotherapeutic agent, has been shown to have significant activity in the management of aggressive pituitary tumours. The expression of 06-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, is an important predictor of response to therapy. Low MGMT expression has been reported with a higher frequency amongst more aggressive pituitary tumours, suggesting MGMT may play a role in pituitary tumour progression. In this study, we performed a microarray analysis to determine whether there was a distinct gene expression profile between tumours with low MGMT and high MGMT expression. Overall, 1,403 differentially expressed genes were identified with raw p values less than 0.05. Gene set enrichment analysis (GSEA) revealed significant differences in the gene expression profile between high and low MGMT expressing pituitary tumours. High MGMT expressing pituitary tumours were found to have upregulation of components of the FGFR family and downstream signaling cascades such as PI3 K/Akt and MAPK pathways. Activation of genes involved in the DNA damage response and DNA repair pathways, as well as genes involved in transcription, were identified in pituitary tumours with low MGMT expression. These results form the basis of our proposed model to describe the role of MGMT in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Ann McCormack
- Cancer Genetics Unit, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mezzomo LC, Gonzales PH, Pesce FG, Kretzmann Filho N, Ferreira NP, Oliveira MC, Kohek MBF. Expression of cell growth negative regulators MEG3 and GADD45γ is lost in most sporadic human pituitary adenomas. Pituitary 2012; 15:420-7. [PMID: 21850407 DOI: 10.1007/s11102-011-0340-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We aimed at the evaluation of MEG3 and GADD45γ expression in sporadic functioning and clinically non-functioning human pituitary adenomas, morphologically characterized by immunohistochemistry analysis and their association with clinical features. Thirty eight patients who had undergone hypophysectomy at São José Hospital of Irmandade Santa Casa de Misericórdia in Porto Alegre, Brazil, were included in this study. We evaluated tumor-type specific MEG3 and GADD45γ expression by qRT-PCR in the pituitary adenomas, and its association with clinical features, as age, gender and tumor size, obtained from medical records. The patients consisted of 21 males and 17 females and the mean age was 47 ± 14 (mean ± SD), ranging from 18 to 73 years-old. Of these 14 were clinically non-functioning, 10 GH-secreting, 9 PRL-secreting, and 5 ACTH-secreting pituitary adenomas. All samples were macroadenomas, except four ACTH-secreting tumors, which were microadenomas. In summary, MEG3 and GADD45γ expression was significantly lost in most clinically non-functioning adenomas (78 and 92%, respectively). Other assessed pituitary tumor phenotypes expressed both genes at significantly different levels, and, in some cases, with overexpression. There was no significant association between gene expression and the analyzed clinical features. Our results confirm the previous report, which indicated that MEG3 and GADD45γ expression is lost in the majority of human pituitary tumors, mainly in clinically-nonfunctioning adenomas. Functioning tumors had differences of relative expression levels. The two groups of tumors are probably genetically different and may have a different natural history.
Collapse
Affiliation(s)
- Lisiane Cervieri Mezzomo
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, CEP 90050-170, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Ruan JW, Liao YC, Lua I, Li MH, Hsu CY, Chen JH. Human pituitary tumor-transforming gene 1 overexpression reinforces oncogene-induced senescence through CXCR2/p21 signaling in breast cancer cells. Breast Cancer Res 2012; 14:R106. [PMID: 22789011 PMCID: PMC3680924 DOI: 10.1186/bcr3226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/12/2012] [Indexed: 02/08/2023] Open
Abstract
Introduction hPTTG1 (human pituitary tumor-transforming gene 1) is an oncogene overexpressed in breast cancer and several other types of cancer. Increased hPTTG1 expression has been shown to be associated with poor patient outcomes in breast cancer. Although hPTTG1 overexpression plays important roles in promoting the proliferation, invasion, and metastasis of cancer cells, it also has been suggested to induce cellular senescence. Deciphering the mechanism by which hPTTG1 overexpression induces these contradictory actions in breast cancer cells is critical to our understanding of the role of hPTTG1 in breast cancer development. Methods MCF-10A and MCF-7 cells were used to identify the mechanism of hPTTG1-induced senescence. The interplay between hPTTG1 overexpression and chemokine C-X-C motif receptor 2 (CXCR2)/p21-dependent senescence in tumor growth and metastasis of MCF-7 cells was investigated by orthotopic transplantation of severe combined immunodeficiency (SCID) mice. Additionally, human invasive ductal carcinoma (IDC) tissue arrays were used to confirm the hPTTG1/CXCR2/p21 axis established in vitro. Results In this study, we investigated the mechanism of hPTTG1-induced senescence as well as its role in breast cancer progression and metastasis. Herein, we showed that hPTTG1 overexpression reinforced senescence through the CXCR2/p21 signaling. Furthermore, hPTTG1 overexpression activated NF-κB signaling to transactivate the expression of interleukin (IL)-8 and growth-regulated oncogene alpha (GROα) to execute CXCR2 signaling in MCF-7 cells. When CXCR2 expression was knocked down in hPTTG1-overexpressing MCF-7 cells, hPTTG1-induced senescence was abrogated by alleviating CXCR2-induced p21 expression. In a mouse model, CXCR2-mediated senescence limited hPTTG1-induced tumor growth and metastasis. Moreover, CXCR2 knockdown in hPTTG1-overexpressing MCF-7 tumors dramatically accelerated tumor growth and metastasis. Our in vitro and in vivo results demonstrated that hPTTG1 overexpression reinforces senescence through CXCR2 signaling, and the evasion of CXCR2/p21-dependent senescence was critical to hPTTG1 exerting its oncogenic potential. Interestingly, although CXCR2-dependent senescence restrained hPTTG1-induced tumor progression, when MCF-7 cells and hPTTG1-overexpressing MCF-7 cells were co-transplanted into the mammary fat pads of SCID mice, hPTTG1-overexpressing senescent cells created a metastasis-promoting microenvironment that promoted lung metastasis of the MCF-7 cells. Immunohistochemical analysis of human breast tumor samples also confirmed the importance of the hPTTG1/CXCR2 axis in promoting breast cancer metastasis. Conclusions Our findings provide novel molecular insights into hPTTG1-induced senescence and identify a novel mechanism by which hPTTG1 promotes metastasis by regulating the senescence-associated microenvironment.
Collapse
|
30
|
[Neuroendocrinology in 2011]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2012; 59:311-25. [PMID: 22425316 DOI: 10.1016/j.endonu.2012.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 01/04/2023]
|
31
|
Liao YC, Ruan JW, Lua I, Li MH, Chen WL, Wang JRY, Kao RH, Chen JH. Overexpressed hPTTG1 promotes breast cancer cell invasion and metastasis by regulating GEF-H1/RhoA signalling. Oncogene 2011; 31:3086-97. [PMID: 22002306 PMCID: PMC3381367 DOI: 10.1038/onc.2011.476] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human pituitary tumour-transforming gene 1 (hPTTG1) is an oncogenic transcription factor that is overexpressed in many tumour types, especially tumours with metastatic abilities. However, how hPTTG1 overexpression drives metastasis is not yet clear. As a transcription factor, hPTTG1 may promote metastasis by activating target genes that are involved in the metastatic process. Here, we showed that Rho guanine nucleotide exchange factor-H1 (GEF-H1) was transcriptionally activated by hPTTG1, thereby promoting breast cancer metastasis. Luciferase reporter analyses and chromatin immunoprecipitation (ChIP) assays showed that hPTTG1 directly bound and activated the GEF-H1 gene promoter. In this study, RNA interference-mediated knockdown of hPTTG1 in highly metastatic breast tumour cells decreased GEF-H1 expression and RhoA activation, thereby reducing cell motility and invasion, and interfering with cytoskeletal remodelling in vitro, and impairing the tumour metastasis in vivo. The restoration of GEF-H1 expression in hPTTG1-knockdown cells rescued the hPTTG1-knockdown effects on cytoskeletal changes in vitro and tumour metastasis in vivo. Conversely, ectopic expression of hPTTG1 in non-metastatic breast tumour cells induced cytoskeletal rearrangements, and allowed these cells to metastasise in a mouse model by orthotopic implantation. In human tumour samples, hPTTG1 expression was also correlated to GEF-H1 expression in aggressive breast carcinoma. Altogether, these findings definitively establish a role for hPTTG1 in activating the GEF-H1/RhoA pathway as a newly identified mechanism in breast cancer metastasis.
Collapse
Affiliation(s)
- Y C Liao
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lubka-Pathak M, Shah AA, Gallozzi M, Müller M, Zimmermann U, Löwenheim H, Pfister M, Knipper M, Blin N, Schimmang T. Altered expression of securin (Pttg1) and serpina3n in the auditory system of hearing-impaired Tff3-deficient mice. Cell Mol Life Sci 2011; 68:2739-49. [PMID: 21076990 PMCID: PMC11114927 DOI: 10.1007/s00018-010-0586-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Tff3 peptide exerts important functions in cytoprotection and restitution of the gastrointestinal (GI) tract epithelia. Moreover, its presence in the rodent inner ear and involvement in the hearing process was demonstrated recently. However, its role in the auditory system still remains elusive. Our previous results showed a deterioration of hearing with age in Tff3-deficient animals. RESULTS Present detailed analysis of auditory brain stem response (ABR) measurements and immunohistochemical study of selected functional proteins indicated a normal function and phenotype of the cochlea in Tff3 mutants. However, a microarray-based screening of tissue derived from the auditory central nervous system revealed an alteration of securin (Pttg1) and serpina3n expression between wild-type and Tff3 knock-out animals. This was confirmed by qRT-PCR, immunostaining and western blots. CONCLUSIONS We found highly down-regulated Pttg1 and up-regulated serpina3n expression as a consequence of genetically deleting Tff3 in mice, indicating a potential role of these factors during the development of presbyacusis.
Collapse
Affiliation(s)
- M. Lubka-Pathak
- Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - A. A. Shah
- Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - M. Gallozzi
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, 47003 Valladolid, Spain
| | - M. Müller
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - U. Zimmermann
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - H. Löwenheim
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M. Pfister
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M. Knipper
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - N. Blin
- Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - T. Schimmang
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, 47003 Valladolid, Spain
| |
Collapse
|