1
|
Kumar R, Jayaraman M, Ramadas K, Chandrasekaran A. Computational identification and analysis of deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in the human POR gene: a structural and functional impact. J Biomol Struct Dyn 2024; 42:1518-1532. [PMID: 37173831 DOI: 10.1080/07391102.2023.2211674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) protein is essential for steroidogenesis, and POR gene mutations are frequently associated with P450 Oxidoreductase Deficiency (PORD), a disorder of hormone production. To our knowledge, no previous attempt has been made to identify and analyze the deleterious/pathogenic non-synonymous single nucleotide polymorphisms (nsSNPs) in the human POR gene through an extensive computational approach. Computational algorithms and tools were employed to identify, characterize, and validate the pathogenic SNPs associated with certain diseases. To begin with, all the high-confidence SNPs were collected, and their structural and functional impacts on the protein structures were explored. The results of various in silico analyses affirm that the A287P and R457H variants of POR could destabilize the interactions between the amino acids and the hydrogen bond networks, resulting in functional deviations of POR. The literature study further confirms that the pathogenic mutations (A287P and R457H) are associated with the onset of PORD. Molecular dynamics simulations (MDS) and essential dynamics (ED) studies characterized the structural consequences of prioritized deleterious mutations, representing the structural destabilization that might disrupt POR biological function. The identified deleterious mutations at the cofactor's binding domains might interfere with the essential interactions between the protein and cofactors, thus inhibiting POR catalytic activity. The consolidated insights from the computational analyses can be used to predict potential deleterious mutants and understand the disease's pathological basis and the molecular mechanism of drug metabolism for the application of personalized medication. HIGHLIGHTSNADPH cytochrome P450 oxidoreductase (POR) mutations are associated with a broad spectrum of human diseasesIdentified and analyzed the most deleterious nsSNPs of POR through the sequence and structure-based prediction toolsInvestigated the structural and functional impacts of the most significant mutations (A287P and R457H) associated with PORDMolecular dynamics and PCA-based FEL analysis were utilized to probe the mutation-induced structural alterations in PORCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajalakshmi Kumar
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Pillayarkuppam, Puducherry, India
| | - Manikandan Jayaraman
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Krishna Ramadas
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Adithan Chandrasekaran
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Pillayarkuppam, Puducherry, India
| |
Collapse
|
2
|
Rojas Velazquez MN, Therkelsen S, Pandey AV. Exploring Novel Variants of the Cytochrome P450 Reductase Gene ( POR) from the Genome Aggregation Database by Integrating Bioinformatic Tools and Functional Assays. Biomolecules 2023; 13:1728. [PMID: 38136599 PMCID: PMC10741880 DOI: 10.3390/biom13121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.
Collapse
Affiliation(s)
- Maria Natalia Rojas Velazquez
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Søren Therkelsen
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Drug Design and Pharmacology, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Amit V. Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
3
|
Ferroptosis-Related Flavoproteins: Their Function and Stability. Int J Mol Sci 2021; 22:ijms22010430. [PMID: 33406703 PMCID: PMC7796112 DOI: 10.3390/ijms22010430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis has been described recently as an iron-dependent cell death driven by peroxidation of membrane lipids. It is involved in the pathogenesis of a number of diverse diseases. From the other side, the induction of ferroptosis can be used to kill tumor cells as a novel therapeutic approach. Because of the broad clinical relevance, a comprehensive understanding of the ferroptosis-controlling protein network is necessary. Noteworthy, several proteins from this network are flavoenzymes. This review is an attempt to present the ferroptosis-related flavoproteins in light of their involvement in anti-ferroptotic and pro-ferroptotic roles. When available, the data on the structural stability of mutants and cofactor-free apoenzymes are discussed. The stability of the flavoproteins could be an important component of the cellular death processes.
Collapse
|
4
|
Esteves F, Urban P, Rueff J, Truan G, Kranendonk M. Interaction Modes of Microsomal Cytochrome P450s with Its Reductase and the Role of Substrate Binding. Int J Mol Sci 2020; 21:E6669. [PMID: 32933097 PMCID: PMC7555755 DOI: 10.3390/ijms21186669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of microsomal cytochromes P450 (CYP) is strictly dependent on the supply of electrons provided by NADPH cytochrome P450 oxidoreductase (CPR). The variant nature of the isoform-specific proximal interface of microsomal CYPs implies that the interacting interface between the two proteins is degenerated. Recently, we demonstrated that specific CPR mutations in the FMN-domain (FD) may induce a gain in activity for a specific CYP isoform. In the current report, we confirm the CYP isoform dependence of CPR's degenerated binding by demonstrating that the effect of four of the formerly studied FD mutants are indeed exclusive of a specific CYP isoform, as verified by cytochrome c inhibition studies. Moreover, the nature of CYP's substrate seems to have a modulating role in the CPR:CYP interaction. In silico molecular dynamics simulations of the FD evidence that mutations induces very subtle structural alterations, influencing the characteristics of residues formerly implicated in the CPR:CYP interaction or in positioning of the FMN moiety. CPR seems therefore to be able to form effective interaction complexes with its structural diverse partners via a combination of specific structural features of the FD, which are functional in a CYP isoform dependent manner, and dependent on the substrate bound.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - José Rueff
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| |
Collapse
|
5
|
Parween S, Fernández-Cancio M, Benito-Sanz S, Camats N, Rojas Velazquez MN, López-Siguero JP, Udhane SS, Kagawa N, Flück CE, Audí L, Pandey AV. Molecular Basis of CYP19A1 Deficiency in a 46,XX Patient With R550W Mutation in POR: Expanding the PORD Phenotype. J Clin Endocrinol Metab 2020; 105:5736381. [PMID: 32060549 DOI: 10.1210/clinem/dgaa076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
CONTEXT Mutations in cytochrome P450 oxidoreductase (POR) cause a form of congenital adrenal hyperplasia (CAH). We report a novel R550W mutation in POR identified in a 46,XX patient with signs of aromatase deficiency. OBJECTIVE Analysis of aromatase deficiency from the R550W mutation in POR. DESIGN, SETTING, AND PATIENT Both the child and the mother had signs of virilization. Ultrasound revealed the presence of uterus and ovaries. No defects in CYP19A1 were found, but further analysis with a targeted Disorders of Sexual Development NGS panel (DSDSeq.V1, 111 genes) on a NextSeq (Illumina) platform in Madrid and Barcelona, Spain, revealed compound heterozygous mutations c.73_74delCT/p.L25FfsTer93 and c.1648C > T/p.R550W in POR. Wild-type and R550W POR were produced as recombinant proteins and tested with multiple cytochrome P450 enzymes at University Children's Hospital, Bern, Switzerland. MAIN OUTCOME MEASURE AND RESULTS POR-R550W showed 41% of the WT activity in cytochrome c and 7.7% activity for reduction of MTT. Assays of CYP19A1 showed a severe loss of activity, and CYP17A1 as well as CYP21A2 activities were also lost by more than 95%. Loss of CYP2C9, CYP2C19, and CYP3A4 activities was observed for the R550W-POR. Predicted adverse effect on aromatase activity as well as a reduction in binding of NADPH was confirmed. CONCLUSIONS Pathological effects due to POR-R550W were identified, expanding the knowledge of molecular pathways associated with aromatase deficiency. Screening of the POR gene may provide a diagnosis in CAH without defects in genes for steroid metabolizing enzymes.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mónica Fernández-Cancio
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Sara Benito-Sanz
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, CIBERER, ISCIII, Madrid, Spain
| | - Núria Camats
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Maria Natalia Rojas Velazquez
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Laboratorio de Genética Molecular, Departamento de Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | | | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Norio Kagawa
- Faculty of Medicine, Nagoya University, Nagoya, Japan
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Laura Audí
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Parween S, DiNardo G, Baj F, Zhang C, Gilardi G, Pandey AV. Differential effects of variations in human P450 oxidoreductase on the aromatase activity of CYP19A1 polymorphisms R264C and R264H. J Steroid Biochem Mol Biol 2020; 196:105507. [PMID: 31669572 DOI: 10.1016/j.jsbmb.2019.105507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Aromatase (CYP19A1) converts androgens into estrogens and is required for female sexual development and growth and development in both sexes. CYP19A1 is a member of cytochrome P450 family of heme-thiolate monooxygenases located in the endoplasmic reticulum and depends on reducing equivalents from the reduced nicotinamide adenine dinucleotide phosphate via the cytochrome P450 oxidoreductase coded by POR. Both the CYP19A1 and POR genes are highly polymorphic, and mutations in both these genes are linked to disorders of steroid biosynthesis. We have previously shown that R264C and R264H mutations in CYP19A1, as well as mutations in POR, reduce CYP19A1 activity. The R264C is a common polymorphic variant of CYP19A1, with high frequency in Asian and African populations. Polymorphic alleles of POR are found in all populations studied so far and, therefore, may influence activities of CYP19A1 allelic variants. So far, the effects of variations in POR on enzymatic activities of allelic variants of CYP19A1 or any other steroid metabolizing cytochrome P450 proteins have not been studied. Here we are reporting the effects of three POR variants on the aromatase activities of two CYP19A1 variants, R264C, and R264H. We used bacterially expressed and purified preparations of WT and variant forms of CYP19A1 and POR and constructed liposomes with embedded CYP19A1 and POR proteins and assayed the CYP19A1 activities using radiolabeled androstenedione as a substrate. With the WT-POR as a redox partner, the R264C-CYP19A1 showed only 15% of aromatase activity, but the R264H had 87% of aromatase activity compared to WT-CYP19A1. With P284L-POR as a redox partner, R264C-CYP19A1 lost all activity but retained 6.7% of activity when P284T-POR was used as a redox partner. The R264H-CYP19A1 showed low activities with both the POR-P284 L as well as the POR-P284 T. When the POR-Y607C was used as a redox partner, the R264C-CYP19A1 retained approximately 5% of CYP19A1 activity. Remarkably, The R264H-CYP19A1 had more than three-fold higher activity compared to WT-CYP19A1 when the POR-Y607C was used as the redox partner, pointing toward a beneficial effect. The slight increase in activity of R264C-CYP19A1 with the P284T-POR and the three-fold increase in activity of the R264H-CYP19A1 with the Y607C-POR point toward a conformational effect and role of protein-protein interaction governed by the R264C and R264H substitutions in the CYP19A1 as well as P284 L, P284 T and Y607C variants of POR. These studies demonstrate that the allelic variants of P450 when present with a variant form of POR may show different activities, and combined effects of variations in the P450 enzymes as well as in the POR should be considered when genetic data are available. Recent trends in the whole-exome and whole-genome sequencing as diagnostic tools will permit combined evaluation of variations in multiple genes that are interdependent and may guide treatment options by adjusting therapeutic interventions based on laboratory analysis.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Giovanna DiNardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Francesca Baj
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland; Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
7
|
Balsamo A, Baronio F, Ortolano R, Menabo S, Baldazzi L, Di Natale V, Vissani S, Cassio A. Congenital Adrenal Hyperplasias Presenting in the Newborn and Young Infant. Front Pediatr 2020; 8:593315. [PMID: 33415088 PMCID: PMC7783414 DOI: 10.3389/fped.2020.593315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Congenital adrenal hyperplasia includes autosomal recessive conditions that affect the adrenal cortex steroidogenic enzymes (cholesterol side-chain cleavage enzyme; 3β-hydroxysteroid dehydrogenase; 17α-hydroxylase/17,20 lyase; P450 oxidoreductase; 21-hydroxylase; and 11β-hydroxylase) and proteins (steroidogenic acute regulatory protein). These are located within the three major pathways of the steroidogenic apparatus involved in the production of mineralocorticoids, glucocorticoids, and androgens. Many countries have introduced newborn screening program (NSP) based on 17-OH-progesterone (17-OHP) immunoassays on dried blood spots, which enable faster diagnosis and treatment of the most severe forms of 21-hydroxylase deficiency (21-OHD). However, in several others, the use of this diagnostic tool has not yet been implemented and clinical diagnosis remains challenging, especially for males. Furthermore, less severe classic forms of 21-OHD and other rarer types of CAHs are not identified by NSP. The aim of this mini review is to highlight both the main clinical characteristics and therapeutic options of these conditions, which may be useful for a differential diagnosis in the neonatal period, while contributing to the biochemical evolution taking place in the steroidogenic field. Currently, chromatographic techniques coupled with tandem mass spectrometry are gaining attention due to an increase in the reliability of the test results of NPS for detecting 21-OHD. Furthermore, the possibility of identifying CAH patients that are not affected by 21-OHD but presenting elevated levels of 17-OHP by NSP and the opportunity to include the recently investigated 11-oxygenated androgens in the steroid profiles are promising tools for a more precise diagnosis and monitoring of some of these conditions.
Collapse
Affiliation(s)
- Antonio Balsamo
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Federico Baronio
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Rita Ortolano
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Soara Menabo
- Genetic Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lilia Baldazzi
- Genetic Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valeria Di Natale
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Sofia Vissani
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Alessandra Cassio
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, Endo-ERN Centre IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
8
|
Parween S, Rojas Velazquez MN, Udhane SS, Kagawa N, Pandey AV. Variability in Loss of Multiple Enzyme Activities Due to the Human Genetic Variation P284T Located in the Flexible Hinge Region of NADPH Cytochrome P450 Oxidoreductase. Front Pharmacol 2019; 10:1187. [PMID: 31749697 PMCID: PMC6843080 DOI: 10.3389/fphar.2019.01187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022] Open
Abstract
Cytochromes P450 located in the endoplasmic reticulum require NADPH cytochrome P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause multiple disorders in humans related to the biosynthesis of steroid hormones and also affect drug-metabolizing cytochrome P450 activities. Electron transfer in POR occurs from NADH to FAD to FMN, and the flexible hinge region in POR is essential for domain movements to bring the FAD and FMN close together for electron transfer. We tested the effect of variations in the hinge region of POR to check if the effects would be similar across all redox partners or there will be differences in activities. Here we are reporting the effects of a POR genetic variant P284T located in the hinge region of POR that is necessary for the domain movements and internal electron transfer between co-factors. Human wild-type and P284T mutant of POR and cytochrome P450 proteins were expressed in bacteria, purified, and reconstituted for enzyme assays. We found that for the P284T variant of POR, the cytochrome c reduction activity was reduced to 47% of the WT and MTT reduction was reduced to only 15% of the WT. No impact on ferricyanide reduction activity was observed, indicating intact direct electron transfer from FAD to ferricyanide, but a severe loss of CYP19A1 (aromatase) activity was observed (9% of WT). In the assays of drug-metabolizing cytochrome P450 enzymes, the P284T variant of POR showed 26% activity for CYP2C9, 44% activity for CYP2C19, 23% activity for CYP3A4, and 44% activity in CYP3A5 assays compared to the WT POR. These results indicate a severe effect on several cytochrome P450 activities due to the P284T variation in POR, which suggests a negative impact on both the steroid as well as drug metabolism in the individuals carrying this variation. The negative impact of P284T mutation in the hinge region of POR seems to be due to disruption of FAD to FMN electron transfer. These results further emphasize the importance of hinge region in POR for protein flexibility and electron transfer within POR as well as the interaction of POR with different redox partners.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Norio Kagawa
- School of Medicine, Nagoya University, Nagoya, Japan
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Velazquez MNR, Parween S, Udhane SS, Pandey AV. Variability in human drug metabolizing cytochrome P450 CYP2C9, CYP2C19 and CYP3A5 activities caused by genetic variations in cytochrome P450 oxidoreductase. Biochem Biophys Res Commun 2019; 515:133-138. [DOI: 10.1016/j.bbrc.2019.05.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 01/14/2023]
|
10
|
Fernández-Cancio M, Camats N, Flück CE, Zalewski A, Dick B, Frey BM, Monné R, Torán N, Audí L, Pandey AV. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency. Pharmaceuticals (Basel) 2018; 11:ph11020037. [PMID: 29710837 PMCID: PMC6027421 DOI: 10.3390/ph11020037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA) was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD) simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy.
Collapse
Affiliation(s)
- Mónica Fernández-Cancio
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
| | - Núria Camats
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Christa E Flück
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Adam Zalewski
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Bernhard Dick
- Department of Nephrology and Hypertension, University of Bern, Bern 3010, Switzerland.
| | - Brigitte M Frey
- Department of Nephrology and Hypertension, University of Bern, Bern 3010, Switzerland.
| | - Raquel Monné
- Pediatric Service, Hospital Joan XXIII, Tarragona 43005, Spain.
| | - Núria Torán
- Pathology Department, Hospital Universitari Vall d'Hebron, CIBERER, Barcelona 08035, Spain.
| | - Laura Audí
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
| | - Amit V Pandey
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| |
Collapse
|
11
|
Udhane SS, Parween S, Kagawa N, Pandey AV. Altered CYP19A1 and CYP3A4 Activities Due to Mutations A115V, T142A, Q153R and P284L in the Human P450 Oxidoreductase. Front Pharmacol 2017; 8:580. [PMID: 28970799 PMCID: PMC5609582 DOI: 10.3389/fphar.2017.00580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
All cytochromes P450s in the endoplasmic reticulum rely on P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause metabolic disorders of steroid hormone biosynthesis and affect certain drug metabolizing P450 activities. We studied mutations A115V, T142A, Q153R identified in the flavin mononucleotide (FMN) binding domain of POR that interacts with partner proteins and P284L located in the hinge region that is required for flexibility and domain movements in POR. Human wild-type (WT) and mutant POR as well as CYP3A4 and CYP19A1 proteins in recombinant form were expressed in bacteria, and purified proteins were reconstituted in liposomes for enzyme kinetic assays. Quality of POR protein was checked by cytochrome c reduction assay as well as flavin content measurements. We found that proteins carrying mutations A115V, T142A located close to the FMN binding site had reduced flavin content compared to WT POR and lost almost all activity to metabolize androstenedione via CYP19A1 and showed reduced CYP3A4 activity. The variant P284L identified from apparently normal subjects also had severe loss of both CYP19A1 and CYP3A4 activities, indicating this to be a potentially disease causing mutation. The mutation Q153R initially identified in a patient with disordered steroidogenesis showed remarkably increased activities of both CYP19A1 and CYP3A4 without any significant change in flavin content, indicating improved protein–protein interactions between POR Q153R and some P450 proteins. These results indicate that effects of mutations on activities of individual cytochromes P450 can be variable and a detailed analysis of each variant with different partner proteins is necessary to accurately determine the genotype-phenotype correlations of POR variants.
Collapse
Affiliation(s)
- Sameer S Udhane
- Department of Pediatric Endocrinology, Diabetology and MetabolismUniversity Children's Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of BernBern, Switzerland
| | - Shaheena Parween
- Department of Pediatric Endocrinology, Diabetology and MetabolismUniversity Children's Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of BernBern, Switzerland
| | - Norio Kagawa
- School of Medicine, Nagoya UniversityNagoya, Japan
| | - Amit V Pandey
- Department of Pediatric Endocrinology, Diabetology and MetabolismUniversity Children's Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of BernBern, Switzerland
| |
Collapse
|
12
|
Flück CE, Pandey AV. Impact on CYP19A1 activity by mutations in NADPH cytochrome P450 oxidoreductase. J Steroid Biochem Mol Biol 2017; 165:64-70. [PMID: 27032764 DOI: 10.1016/j.jsbmb.2016.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 aromatase (CYP19A1), in human placenta metabolizes androgens to estrogens and uses reduced nicotinamide adenine dinucleotide phosphate through cytochrome P450 oxidoreductase (POR) for the energy requirements of its metabolic activities. Mutations in the human POR lead to congenital adrenal hyperplasia due to loss of activities of several steroid metabolizing enzymatic reactions conducted by the cytochrome P450 proteins located in the endoplasmic reticulum. Effect of POR mutations on different P450 activities depend on individual partner proteins. In this report we have studied the impact of mutations found in the POR on the enzymatic activity of CYP19A1. We expressed wild type as well mutant human POR proteins in bacteria and purified the recombinant proteins, which were then used in an in vitro reconstitution system in combination with CYP19A1 and lipids for enzymatic analysis. We found that several mutations as well as polymorphisms in human POR can cause reduction of CYP19A1 activity. This would affect metabolism of estrogens in people with variations of POR allele. The POR mutants Y181D and R616X were found to have no activity in supporting CYP19A1 reactions. The POR mutations Y607C and delF646 showed a loss of 60-90% activity and two polymorphic forms of POR, R316W and G413S showed similar to WT activity. One POR variant, Q153R had almost double the activity of WT. Loss of CYP19A1 activity may contribute to disordered steroidogenesis in female patients with POR mutations as well as in mothers with POR variants carrying a male child.
Collapse
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Burkhard FZ, Parween S, Udhane SS, Flück CE, Pandey AV. P450 Oxidoreductase deficiency: Analysis of mutations and polymorphisms. J Steroid Biochem Mol Biol 2017; 165:38-50. [PMID: 27068427 DOI: 10.1016/j.jsbmb.2016.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is required for metabolic reactions of steroid and drug metabolizing cytochrome P450 proteins located in endoplasmic reticulum. Mutations in POR cause a complex set of disorders resembling combined deficiencies of multiple steroid metabolizing enzymes. The P450 oxidoreductase deficiency (PORD) was first reported in patients with symptoms of defects in steroidogenic cytochrome P450 enzymes and ambiguous genitalia, and bone malformation features resembling Antley-Bixler syndrome. POR is now classified as a separate and rare form of congenital adrenal hyperplasia (CAH), which may cause disorder of sexual development (DSD). Since the initial description of PORD in 2004, a large number of POR mutations and polymorphisms have been described. In this report we have performed computational analysis of mutations and polymorphisms in POR linked to metabolism of steroids and xenobiotics and pathology of PORD from the reported cases. The mutations in POR that were identified in patients with disruption of steroidogenesis also have severe effects on cytochrome P450 proteins involved in metabolism of drugs. Different variations in POR show a range of diverse effects on different partner proteins that are often linked to the location of the particular variants. The variations in POR that cause defective binding of co-factors always have damaging effects on all partner proteins, while the mutations causing subtle structural changes may lead to altered interaction with partner proteins and the overall effect may be different for each individual partner. Computational analysis of available sequencing data and mutation analysis shows that Japanese (R457H), Caucasian (A287P) and Turkish (399-401) populations can be linked to unique founder mutations. Other mutations identified so far were identified as rare alleles or in single isolated reports. The common polymorphism of POR is the variant A503V which can be found in about 27% of alleles in general population but there are remarkable differences among different sub populations.
Collapse
Affiliation(s)
- Fabian Z Burkhard
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Shaheena Parween
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Sameer S Udhane
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland.
| |
Collapse
|
14
|
McCammon KM, Panda SP, Xia C, Kim JJP, Moutinho D, Kranendonk M, Auchus RJ, Lafer EM, Ghosh D, Martasek P, Kar R, Masters BS, Roman LJ. Instability of the Human Cytochrome P450 Reductase A287P Variant Is the Major Contributor to Its Antley-Bixler Syndrome-like Phenotype. J Biol Chem 2016; 291:20487-502. [PMID: 27496950 PMCID: PMC5034044 DOI: 10.1074/jbc.m116.716019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect.
Collapse
Affiliation(s)
- Karen M McCammon
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Satya P Panda
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Chuanwu Xia
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jung-Ja P Kim
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Daniela Moutinho
- the Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Michel Kranendonk
- the Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Richard J Auchus
- the Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Eileen M Lafer
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Debashis Ghosh
- the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Pavel Martasek
- the Department of Pediatrics, First Faculty of Medicine, Charles University in Prague and General University Hospital, 116 36 Prague 1, Czech Republic
| | - Rekha Kar
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Bettie Sue Masters
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229,
| | - Linda J Roman
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229,
| |
Collapse
|
15
|
Moses M, Hedegård P, Hatzakis N. Quantification of Functional Dynamics of Membrane Proteins Reconstituted in Nanodiscs Membranes by Single Turnover Functional Readout. Methods Enzymol 2016; 581:227-256. [DOI: 10.1016/bs.mie.2016.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Electron transfer by human wild-type and A287P mutant P450 oxidoreductase assessed by transient kinetics: functional basis of P450 oxidoreductase deficiency. Biochem J 2015; 468:25-31. [PMID: 25728647 DOI: 10.1042/bj20141410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is a 2-flavin protein that transfers electrons from NADPH via its FAD and FMN moieties to all microsomal cytochrome P450 enzymes, including steroidogenic and drug-metabolizing P450s. Defects in the POR gene can cause POR deficiency (PORD), manifested clinically by disordered steroidogenesis, genital anomalies and skeletal malformations. We examined the POR mutant A287P, which is the most frequent cause of PORD in patients of European ancestry and partially disrupts most P450 activities in vitro. Flavin content analysis showed that A287P is deficient in FAD and FMN binding, although the mutation site is distant from the binding sites of both flavins. Externally added flavin partially restored the cytochrome c reductase activity of A287P, suggesting that flavin therapy may be useful for this frequent form of PORD. Transient kinetic dissection of the reaction of POR with NADPH and the reduction in cytochrome c by POR using stopped-flow techniques revealed defects in individual electron transfer steps mediated by A287P. A287P had impaired ability to accept electrons from NADPH, but was capable of a fast FMN → cytochrome c electron donation reaction. Thus the reduced rates of P450 activities with A287P may be due to deficient flavin and impaired electron transfer from NADPH.
Collapse
|
17
|
Tomková M, Panda SP, Šeda O, Baxová A, Hůlková M, Siler Masters BS, Martásek P. Genetic variations in NADPH-CYP450 oxidoreductase in a Czech Slavic cohort. Pharmacogenomics 2015; 16:205-15. [PMID: 25712184 DOI: 10.2217/pgs.14.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Estimating polymorphic allele frequencies of the NADPH-CYP450 oxidoreductase (POR) gene in a Czech Slavic population. METHODS The POR gene was analyzed in 322 individuals from a control cohort by sequencing and high resolution melting analysis. RESULTS We identified seven unreported SNP genetic variations, including two SNPs in the 5' flanking region (g.4965C>T and g.4994G>T), one intronic variant (c.1899-20C>T), one synonymous SNP (p.20Ala=) and three nonsynonymous SNPs (p.Thr29Ser, p.Pro384Leu and p.Thr529Met). The p.Pro384Leu variant exhibited reduced enzymatic activities compared with wild-type. CONCLUSION New POR variant identification indicates the number of uncommon variants might be specific for each subpopulation being investigated, particularly germane to the singular role that POR plays in providing reducing equivalents to all CYP450s in the endoplasmic reticulum. Original submitted 15 September 2014; Revision submitted 17 November 2014.
Collapse
Affiliation(s)
- Mária Tomková
- Department of Pediatrics, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
18
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
19
|
Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol 2014; 5:103. [PMID: 24847272 PMCID: PMC4023047 DOI: 10.3389/fphar.2014.00103] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) supports reactions of microsomal cytochrome P450 which metabolize drugs and steroid hormones. Mutations in POR cause disorders of sexual development. P450 oxidoreductase deficiency (PORD) was initially identified in patients with Antley–Bixler syndrome (ABS) but now it has been established as a separate disorder of sexual development (DSD). Here we are summarizing the work on variations in POR related to metabolism of drugs and xenobiotics. We have compiled mutation data on reported cases of PORD from clinical studies. Mutations found in patients with defective steroid profiles impact metabolism of steroid hormones as well as drugs. Some trends are emerging that establish certain founder mutations in distinct populations, with Japanese (R457H), Caucasian (A287P), and Turkish (399–401) populations showing repeated findings of similar mutations. Most other mutations are found as single occurrences. A large number of different variants in POR gene with more than 130 amino acid changes are now listed in databases. Among the polymorphisms, the A503V is found in about 30% of all alleles but there are some differences across different population groups.
Collapse
Affiliation(s)
- Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern Bern, Switzerland ; Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| | - Patrick Sproll
- Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| |
Collapse
|
20
|
Sündermann A, Oostenbrink C. Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase. Protein Sci 2013; 22:1183-95. [PMID: 23832577 DOI: 10.1002/pro.2307] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 02/02/2023]
Abstract
Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies.
Collapse
Affiliation(s)
- Axel Sündermann
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | | |
Collapse
|
21
|
Pandey AV, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 2013; 138:229-54. [PMID: 23353702 DOI: 10.1016/j.pharmthera.2013.01.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/18/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.
Collapse
Affiliation(s)
- Amit V Pandey
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, 3004 Bern, Switzerland.
| | | |
Collapse
|
22
|
Riddick DS, Ding X, Wolf CR, Porter TD, Pandey AV, Zhang QY, Gu J, Finn RD, Ronseaux S, McLaughlin LA, Henderson CJ, Zou L, Flück CE. NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology. Drug Metab Dispos 2013; 41:12-23. [PMID: 23086197 PMCID: PMC3533425 DOI: 10.1124/dmd.112.048991] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/19/2012] [Indexed: 01/16/2023] Open
Abstract
This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH-cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b(5), squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b(5) are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b(5) on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell-culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tomková M, Marohnic CC, Gurwitz D, Seda O, Masters BSS, Martásek P. Identification of six novel P450 oxidoreductase missense variants in Ashkenazi and Moroccan Jewish populations. Pharmacogenomics 2012; 13:543-54. [PMID: 22462747 DOI: 10.2217/pgs.12.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The enzyme NADPH-P450 oxidoreductase (POR) is the main electron donor to all microsomal CYPs. The possible contribution of common POR variants to inter- and intra-individual variability in drug metabolism is of great pharmacogenetic interest. AIM To search for POR polymorphic alleles and estimate their frequencies in a Jewish population. MATERIALS & METHODS We analyzed the POR gene in 301 Ashkenazi and Moroccan Jews. RESULTS A total of 30 POR SNPs were identified, nine in the noncoding regions and 21 in the protein-coding regions (ten synonymous, 11 missense). Six of these missense variants are previously undescribed (S102P, V164M, V191M, D344N, E398A and D648N). CONCLUSION The data collected in this study on missense POR SNPs, interpreted in light of the crystallographic structure of human POR, indicate that some POR missense variants may be potential biomarkers for future POR pharmacogenetic screening.
Collapse
Affiliation(s)
- Mária Tomková
- Department of Pediatrics, 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
24
|
Iyanagi T, Xia C, Kim JJP. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 2012; 528:72-89. [PMID: 22982532 PMCID: PMC3606592 DOI: 10.1016/j.abb.2012.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022]
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) and nitric oxide synthase (NOS), two members of the diflavin oxidoreductase family, are multi-domain enzymes containing distinct FAD and FMN domains connected by a flexible hinge. FAD accepts a hydride ion from NADPH, and reduced FAD donates electrons to FMN, which in turn transfers electrons to the heme center of cytochrome P450 or NOS oxygenase domain. Structural analysis of CYPOR, the prototype of this enzyme family, has revealed the exact nature of the domain arrangement and the role of residues involved in cofactor binding. Recent structural and biophysical studies of CYPOR have shown that the two flavin domains undergo large domain movements during catalysis. NOS isoforms contain additional regulatory elements within the reductase domain that control electron transfer through Ca(2+)-dependent calmodulin (CaM) binding. The recent crystal structure of an iNOS Ca(2+)/CaM-FMN construct, containing the FMN domain in complex with Ca(2+)/CaM, provided structural information on the linkage between the reductase and oxgenase domains of NOS, making it possible to model the holo iNOS structure. This review summarizes recent advances in our understanding of the dynamics of domain movements during CYPOR catalysis and the role of the NOS diflavin reductase domain in the regulation of NOS isozyme activities.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Department of Biochemistry, Medical College of Wisconsin, USA
- Department of Life Science, The Himeji Institute of Technology, University of Hyogo, Japan
| | - Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Jung-Ja P. Kim
- Department of Biochemistry, Medical College of Wisconsin, USA
| |
Collapse
|
25
|
Effect of P450 oxidoreductase variants on the metabolism of model substrates mediated by CYP2C9.1, CYP2C9.2, and CYP2C9.3. Pharmacogenet Genomics 2012; 22:590-7. [DOI: 10.1097/fpc.0b013e3283544062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Flück CE. Congenital adrenal hyperplasia owing to 17α-hydroxylase/17,20 lyase and p450 oxidoreductase deficiencies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 707:3-5. [PMID: 21691943 DOI: 10.1007/978-1-4419-8002-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Bern, Switzerland.
| |
Collapse
|
27
|
Flück CE, Mallet D, Hofer G, Samara-Boustani D, Leger J, Polak M, Morel Y, Pandey AV. Deletion of P399_E401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency. Biochem Biophys Res Commun 2011; 412:572-7. [PMID: 21843508 DOI: 10.1016/j.bbrc.2011.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Collapse
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency. Proc Natl Acad Sci U S A 2011; 108:13486-91. [PMID: 21808038 DOI: 10.1073/pnas.1106632108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.
Collapse
|
29
|
Zhang X, Li L, Ding X, Kaminsky LS. Identification of cytochrome P450 oxidoreductase gene variants that are significantly associated with the interindividual variations in warfarin maintenance dose. Drug Metab Dispos 2011; 39:1433-9. [PMID: 21562147 PMCID: PMC3141882 DOI: 10.1124/dmd.111.038836] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/11/2011] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is required for drug metabolism by all microsomal cytochrome P450 enzymes. The aim of this study was to investigate whether any of the common single nucleotide polymorphisms (SNPs) in the POR gene and its flanking intergenic sequences correlate with interindividual variations in the warfarin maintenance dose (which is determined partly by rates of warfarin metabolism) in patients undergoing anticoagulation therapy. Warfarin dose and patients' demographic and clinical information were collected from 124 patients, who had attained a stable warfarin dose while receiving treatment at the Stratton VA Medical Center. Genomic DNAs were isolated from blood samples and were genotyped for 15 SNPs (including 10 SNPs on the POR gene). Association analysis was performed on 122 male patients by linear regression. Simple regression analysis revealed that vitamin K epoxide reductase complex subunit 1 (VKORC1) -1639A>G, CYP2C9*2, CYP2C9*3, age, and chronic aspirin therapy were significantly associated with warfarin dose. In contrast, multiple regression analysis revealed that, in addition to several known factors contributing to the variations in warfarin maintenance dose (VKORC1 -1639A>G, CYP2C9*2, CYP2C9*3, CYP4F2 rs2108622, and chronic aspirin therapy), three common POR SNPs (-173C>A, -208C>T, and rs2868177) were also significantly associated with variations in warfarin maintenance dose. These results indicate, for the first time, that three common SNPs in the POR gene may contribute to the interindividual variability in warfarin maintenance dose. Further studies on functional characterization of the POR SNPs identified, including their impact on the in vivo metabolism of additional drugs, are needed.
Collapse
Affiliation(s)
- Xiuling Zhang
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
30
|
Mutations of human cytochrome P450 reductase differentially modulate heme oxygenase-1 activity and oligomerization. Arch Biochem Biophys 2011; 513:42-50. [PMID: 21741353 DOI: 10.1016/j.abb.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 01/26/2023]
Abstract
Genetic variations in POR, encoding NADPH-cytochrome P450 oxidoreductase (CYPOR), can diminish the function of numerous cytochromes P450, and also have the potential to block degradation of heme by heme oxygenase-1 (HO-1). Purified full-length human CYPOR, HO-1, and biliverdin reductase were reconstituted in lipid vesicles and assayed for NADPH-dependent conversion of heme to bilirubin. Naturally-occurring human CYPOR variants queried were: WT, A115V, Y181D, P228L, M263V, A287P, R457H, Y459H, and V492E. All CYPOR variants exhibited decreased bilirubin production relative to WT, with a lower apparent affinity of the CYPOR-HO-1 complex than WT. Addition of FMN or FAD partially restored the activities of Y181D, Y459H, and V492E. When mixed with WT CYPOR, only the Y181D CYPOR variant inhibited heme degradation by sequestering HO-1, whereas Y459H and V492E were unable to inhibit HO-1 activity suggesting that CYPOR variants might have differential binding affinities with redox partners. Titrating the CYPOR-HO-1 complex revealed that the optimal CYPOR:HO-1 ratio for activity was 1:2, lending evidence in support of productive HO-1 oligomerization, with higher ratios of CYPOR:HO-1 showing decreased activity. In conclusion, human POR mutations, shown to impact P450 activities, also result in varying degrees of diminished HO-1 activity, which may further complicate CYPOR deficiency.
Collapse
|
31
|
Miller WL, Agrawal V, Sandee D, Tee MK, Huang N, Choi JH, Morrissey K, Giacomini KM. Consequences of POR mutations and polymorphisms. Mol Cell Endocrinol 2011; 336:174-9. [PMID: 21070833 PMCID: PMC4632974 DOI: 10.1016/j.mce.2010.10.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 01/23/2023]
Abstract
P450 oxidoreductase (POR) transports electrons from NADPH to all microsomal cytochrome P450 enzymes, including steroidogenic P450c17, P450c21 and P450aro. Severe POR mutations A287P (in Europeans) and R457H (in Japanese) cause the Antley-Bixler skeletal malformation syndrome (ABS) plus impaired steroidogenesis (causing genital anomalies), but the basis of ABS is unclear. We have characterized the activities of ∼40 POR variants, showing that assays based on P450c17 activities, but not cytochrome c assays, correlate with the clinical phenotype. The human POR gene is highly polymorphic: the A503V sequence variant, which decreases P450c17 activities to ∼60%, is found on ∼28% of human alleles. A promoter polymorphism (∼8% of Asians and ∼13% of Caucasians) at -152 reduces transcriptional activity by half. Screening of 35 POR variants showed that most mutants lacking activity with P450c17 or cytochrome c also lacked activity to support CYP1A2 and CYP2C19 metabolism of EOMCC (a fluorogenic non-drug substrate), although there were some remarkable differences: Q153R causes ABS and has ∼30% of wild-type activity with P450c17 but had 144% of WT activity with CYP1A2 and 284% with CYP2C19. The effects of POR variants on CYP3A4, which metabolizes nearly 50% of clinically used drugs, was examined with multiple, clinically relevant drug substrates, showing that A287P and R457H dramatically reduce drug metabolism, and that A503V variably impairs drug metabolism. The degree of activity can vary with the drug substrate assayed, as the drugs can influence the conformation of the P450. POR is probably an important contributor to genetic variation in both steroidogenesis and drug metabolism.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143-0978, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics 2011; 20:611-8. [PMID: 20697309 DOI: 10.1097/fpc.0b013e32833e0cb5] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES CYP3A4 receives electrons from P450 oxidoreductase (POR) to metabolize about 50% of clinically used drugs. There is substantial inter-individual variation in CYP3A4 catalytic activity that is not explained by CYP3A4 genetic variants. CYP3A4 is flexible and distensible, permitting it to accommodate substrates varying in shape and size. To elucidate the mechanisms of variability in CYP3A4 catalysis, we examined the effects of genetic variants of POR, and explored the possibility that substrate-induced conformational changes in CYP3A4 differentially affect the ability of POR variants to support catalysis. METHODS We expressed human CYP3A4 and four POR variants (Q153R, A287P, R457H, A503 V) in bacteria, reconstituted them in vitro and measured the Michaelis constant and maximum velocity with testosterone, midazolam, quinidine and erythromycin as substrates. RESULTS POR A287P and R457H had low activity with all substrates; Q153R had 76-94% of wild-type (WT) activity with midazolam and erythromycin, but 129-150% activity with testosterone and quinidine. The A503 V polymorphism reduced the CYP3A4 activity to 61-77% of WT with testosterone and midazolam, but had nearly WT activity with quinidine and erythromycin. CONCLUSION POR variants affect CYP3A4 activities. The impact of a POR variant on catalysis by CYP3A4 is substrate-specific, probably because of substrate-induced conformational changes in CYP3A4.
Collapse
|
33
|
Effects of genetic variants of human P450 oxidoreductase on catalysis by CYP2D6 in vitro. Pharmacogenet Genomics 2011; 20:677-86. [PMID: 20940534 DOI: 10.1097/fpc.0b013e32833f4f9b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Cytochrome P450 (P450) oxidoreductase (POR) donates electrons to all microsomal cytochrome P450s, including drug-metabolizing and steroidogenic enzymes. Severe POR mutations cause skeletal malformations and disordered steroidogenesis. The POR polymorphism A503V is found on approximately 28% of human alleles and decreases activities of CYP3A4 and steroidogenic CYP17, but not the activities of steroidogenic CYP21 or drug-metabolizing CYP1A2 and CYP2C19. CYP2D6 metabolizes about 25% of clinically used drugs; we assessed the capacity of POR variants to support the activities of human CYP2D6. METHODS N-27 forms of wildtype (WT), Q153R, A287P, R457H and A503V POR, and WT CYP2D6 were expressed in Escherichia coli. POR proteins in bacterial membranes were reconstituted with purified CYP2D6. Support of CYP2D6 was measured by metabolism of EOMCC (2H-1-benzopyran-3-carbonitrile,7-(ethoxy-methoxy)-2-oxo-(9Cl)), dextromethorphan and bufuralol. Michaelis constant (K(m)) and maximum velocity (V(max)) were determined in three triplicate experiments for each reaction; catalytic efficiency is expressed as V(max)/K(m). RESULTS Compared with WT POR, disease-causing POR mutants A287P and R457H supported no detectable CYP2D6 activity with EOMCC, but A287P supported approximately 25% activity with dextromethorphan and bufuralol. Q153R had increased function with CYP2D6 (128% with EOMCC, 198% with dextromethorphan, 153% with bufuralol). A503V supported decreased CYP2D6 activity: 85% with EOMCC, 62% with dextromethorphan and 53% with bufuralol. CONCLUSION POR variants have different effects depending on the substrate metabolized. Disease-causing POR mutations R457H and A287P had poor activities, suggesting that diminished drug metabolism should be considered in affected patients. The common A503V polymorphism impaired CYP2D6 activities with two commonly used drugs by 40-50%, potentially explaining some genetic variation in drug metabolism.
Collapse
|
34
|
Tomalik-Scharte D, Maiter D, Kirchheiner J, Ivison HE, Fuhr U, Arlt W. Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. Eur J Endocrinol 2010; 163:919-24. [PMID: 20844025 PMCID: PMC2977993 DOI: 10.1530/eje-10-0764] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug-metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. DESIGN We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. METHODS Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes. We also performed genotyping for variant CYP alleles known to affect drug metabolism. RESULTS Though CYP enzyme genotyping predicted normal or high enzymatic activities in both subjects, in vivo assessment showed subnormal activities of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in the patient and of CYP1A2 and CYP2C9 in her mother. CONCLUSIONS Our results provide in vivo evidence for an important role of POR in regulating drug metabolism and detoxification. In patients with ORD, in vivo assessment of drug-metabolizing activities with subsequent tailoring of drug therapy and steroid replacement should be considered.
Collapse
Affiliation(s)
- Dorota Tomalik-Scharte
- Department of PharmacologyUniversity Hospital, University of CologneCologne, 50931Germany
| | - Dominique Maiter
- Department of EndocrinologyUniversity Hospital Saint LucBrussels, 1200Belgium
| | - Julia Kirchheiner
- Department of Pharmacology of Natural Products and Clinical PharmacologyUniversity of UlmUlm, 89019Germany
| | | | - Uwe Fuhr
- Department of PharmacologyUniversity Hospital, University of CologneCologne, 50931Germany
| | - Wiebke Arlt
- (Correspondence should be addressed to W Arlt; )
| |
Collapse
|
35
|
Flück CE, Mullis PE, Pandey AV. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism. Biochem Biophys Res Commun 2010; 401:149-53. [DOI: 10.1016/j.bbrc.2010.09.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
36
|
Pandey AV, Flück CE, Mullis PE. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase. Biochem Biophys Res Commun 2010; 400:374-8. [PMID: 20732302 DOI: 10.1016/j.bbrc.2010.08.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.
Collapse
Affiliation(s)
- Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern, Switzerland.
| | | | | |
Collapse
|