1
|
Germelli L, Angeloni E, Da Pozzo E, Tremolanti C, De Felice M, Giacomelli C, Marchetti L, Muscatello B, Barresi E, Taliani S, Da Settimo Passetti F, Trincavelli ML, Martini C, Costa B. 18 kDa TSPO targeting drives polarized human microglia towards a protective and restorative neurosteroidome profile. Cell Mol Life Sci 2025; 82:34. [PMID: 39757281 DOI: 10.1007/s00018-024-05544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity. Here, the role of neurosteroidogenesis in the modulation of microgliosis was explored in human microglia cells. In particular, CYP11A1 inhibition or TSPO pharmacological stimulation, crucial proteins involved in the rate limiting step of the neurosteroidogenic cascade, were employed. CYP11A1 inhibition led microglia to acquire a dysfunctional and hyperreactive phenotype, while selective TSPO ligands promoted the establishment of an anti-inflammatory one. Analysis of specific neurosteroid levels (neurosteroidome) identified allopregnanolone/pregnanolone as crucial metabolites allowing controlled activation of microglia. Importantly, the neurosteroid shift towards a greater androgenic/estrogenic profile supported the transition from pro-inflammatory to neuroprotective microglia, suggesting the therapeutic potential of de novo microglial neurosteroidogenesis stimulation for neuroinflammatory-related disorders.
Collapse
Affiliation(s)
- Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martina De Felice
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Beatrice Muscatello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Federico Da Settimo Passetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| |
Collapse
|
2
|
Xie Y, Chen X, Wang X, Liu S, Chen S, Yu Z, Wang W. Transforming growth factor-β1 protects against white matter injury and reactive astrogliosis via the p38 MAPK pathway in rodent demyelinating model. J Neurochem 2024; 168:83-99. [PMID: 38183677 DOI: 10.1111/jnc.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
In central nervous system (CNS), demyelination is a pathological process featured with a loss of myelin sheaths around axons, which is responsible for the diseases of multiple sclerosis, neuromyelitis optica, and so on. Transforming growth factor-beta1 (TGF-β1) is a multifunctional cytokine participating in abundant physiological and pathological processes in CNS. However, the effects of TGF-β1 on CNS demyelinating disease and its underlying mechanisms are controversial and not well understood. Herein, we evaluated the protective potential of TGF-β1 in a rodent demyelinating model established by lysophosphatidylcholine (LPC) injection. It was identified that supplement of TGF-β1 evidently rescued the cognitive deficit and motor dysfunction in LPC modeling mice assessed by novel object recognition and balance beam behavioral tests. Besides, quantified by luxol fast blue staining, immunofluorescence, and western blot, administration of TGF-β1 was found to significantly ameliorate the demyelinating lesion and reactive astrogliosis by suppressing p38 MAPK pathway. Mechanistically, the results of in vitro experiments indicated that treatment of TGF-β1 could directly promote the differentiation and migration of cultured oligodendrocytes. Our study revealed that modulating TGF-β1 activity might serve as a promising and innovative therapeutic strategy in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xuejiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
4
|
Kardalas E, Sakkas E, Ruchala M, Macut D, Mastorakos G. The role of transforming growth factor beta in thyroid autoimmunity: current knowledge and future perspectives. Rev Endocr Metab Disord 2022; 23:431-447. [PMID: 34529221 DOI: 10.1007/s11154-021-09685-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
The complex mechanisms, which are related to the pathophysiology and the development of autoimmune thyroid diseases, involve transforming growth factor beta (TGF-β) and its interplay with the immune system. The aim of this review is to examine the role of TGF-β regarding thyroid autoimmunity and explore the potent role of this molecule either as a diagnostic or prognostic marker or a therapeutic target regarding autoimmune thyroid diseases. TGF-β is clearly a master regulator of the immune response, exerting either inhibitory or facilitatory effects on cells of the immune system. Thus, this molecule is involved in the pathogenesis and development of autoimmune thyroid diseases. Recent research has revealed the involvement of TGF-β in the pathophysiology of autoimmune thyroid diseases. The role of TGF-β in the development of autoimmune thyroid diseases varies, depending on its concentrations, the type of the activated TGF-β signalling pathway, the genetic predisposition of the patient and the pathophysiologic stage of the disease. TGF-β could emerge as a useful diagnostic or prognostic marker for the evolution of thyroid autoimmunity. Promising perspectives for the effective therapeutic use of TGF-β regarding thyroid autoimmunity exist. The main treatment approaches incorporate either enhancement of the immunosuppressive role of TGF-β or inhibition of its facilitatory role in the autoimmune thyroid diseases. Further research towards deeper understanding of TGF-β physiology and clinical application of its possible therapeutic role regarding thyroid autoimmunity is needed.
Collapse
Affiliation(s)
- Efstratios Kardalas
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 'Aretaieion' Hospital, Medical School, National and Kapodistrian University of Athens, Vassilissis Sofias Str. 76, Athens, 11528, Greece
| | - Evangelos Sakkas
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 'Aretaieion' Hospital, Medical School, National and Kapodistrian University of Athens, Vassilissis Sofias Str. 76, Athens, 11528, Greece
- Obstetrics and Gynecology Private Practice, Michalakopoulou Str. 169, Athens, 11527, Greece
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznan, 60-355, Poland
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Univercity Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića Street 8, Belgrade, 11000, Serbia
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 'Aretaieion' Hospital, Medical School, National and Kapodistrian University of Athens, Vassilissis Sofias Str. 76, Athens, 11528, Greece.
| |
Collapse
|
5
|
Coelho de Faria C, Hecht Castro Medeiros F, Cazarin Menezes J, Ortenzi de Andrade Silva VH, Freitas Ferreira AC, Pires de Carvalho D, Soares Fortunato R. TGF-β1 Disrupts redox balance in PCCL3 thyroid cell and is sexually dimorphic expressed in rat thyroid gland. Mol Cell Endocrinol 2022; 546:111593. [PMID: 35139422 DOI: 10.1016/j.mce.2022.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
Thyroid diseases are more prevalent in women, and this difference seems to be associated with the oxidative stress found in the thyroid of females. Thyroid NADPH Oxidase 4 (NOX4) was shown to respond to estrogen, which can also modulate TGF-β1, a potent stimulator of NOX4. This study aimed to investigate the effects of TGF-β1 on redox homeostasis parameters in the rat thyroid cell PCCL3 and the interrelationship between estrogen and TGF-β1. TGF-β1 treatment increased both intra- and extracellular ROS generation along with NOX4 expression and reduced GPX and catalase activities, extracellular H2O2 scavenging capacity, and reduced thiol content. TGF-β1 mRNA and protein expression are higher in female thyroid glands of rats in comparison to males. Moreover, 17β-estradiol treatment enhanced TGF-β1 mRNA in PCCL3 cells, decreased extracellular bioavailability but did not activate Smad pathway. Our data suggest that higher levels of TGF-β1 in females are potentially related to higher ROS availability which may be associated with the sex disparity in thyroid disorders.
Collapse
Affiliation(s)
- Caroline Coelho de Faria
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G2-042, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Fabio Hecht Castro Medeiros
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Juliana Cazarin Menezes
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Victor Hugo Ortenzi de Andrade Silva
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G2-042, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil; NUMPEX, Pólo de Xerém, Universidade Federal do Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G2-042, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Kardalas E, Maraka S, Papagianni M, Paltoglou G, Siristatidis C, Mastorakos G. TGF-β Physiology as a Novel Therapeutic Target Regarding Autoimmune Thyroid Diseases: Where Do We Stand and What to Expect. ACTA ACUST UNITED AC 2021; 57:medicina57060621. [PMID: 34198624 PMCID: PMC8232149 DOI: 10.3390/medicina57060621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta (TGF-β), as a master regulator of immune response, is deeply implicated in the complex pathophysiology and development of autoimmune thyroid diseases. Based on the close interplay between thyroid autoimmunity and TGF-β, scientific interest was shifted to the understanding of the possible role of this molecule regarding the diagnosis, prognosis, and therapy of these diseases. The main aim of this review is to present research data about possible treatment options based on the role of TGF-β in thyroid autoimmunity. Suggested TGF-β-mediated therapeutic strategies regarding autoimmune thyroid diseases include either the enhancement of its immunosuppressive role or inhibition of its facilitatory role in thyroid autoimmunity. For example, the application of hr-TGF-β can be used to bolster the inhibitory role of TGF-β regarding the development of thyroid diseases, whereas anti-TGF-β antibodies and similar molecules could impede its immune-promoting effects by blocking different levels of TGF-β biosynthesis and activation pathways. In conclusion, TGF-β could evolve to a promising, novel therapeutic tool for thyroid autoimmunity.
Collapse
Affiliation(s)
- Efstratios Kardalas
- Endocrine Unit, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Vasilissis Sofias Str. 76, 11528 Athens, Greece; (E.K.); (G.P.)
| | - Spyridoula Maraka
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72501, USA;
| | - Maria Papagianni
- Unit of Endocrinology, Diabetes and Metabolism, 3rd Department of Pediatrics, Aristotle University School of Health Sciences, Hippokration Hospital of Thessaloniki, Konstantinoupoleos Str. 49, 54642 Thessaloniki, Greece;
| | - George Paltoglou
- Endocrine Unit, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Vasilissis Sofias Str. 76, 11528 Athens, Greece; (E.K.); (G.P.)
| | - Charalampos Siristatidis
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Vasilissis Sofias Str. 76, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Vasilissis Sofias Str. 76, 11528 Athens, Greece; (E.K.); (G.P.)
- Correspondence:
| |
Collapse
|
7
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|
8
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
9
|
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 2017; 55:3660-3675. [PMID: 28523566 DOI: 10.1007/s12035-017-0557-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.
Collapse
Affiliation(s)
- Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diego Gisbert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
10
|
Fernández-Martínez E. Cholestasis, Contraceptives, and Free Radicals. LIVER PATHOPHYSIOLOGY 2017:239-258. [DOI: 10.1016/b978-0-12-804274-8.00018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Zong W, Jiang Y, Zhao J, Zhang J, Gao JG. Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells. J Zhejiang Univ Sci B 2016; 16:857-64. [PMID: 26465133 DOI: 10.1631/jzus.b1500048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lysyl oxidase (LOX) family encodes the copper-dependent amine oxidases that play a key role in determining the tensile strength and structural integrity of connective tissues by catalyzing the crosslinking of elastin or collagen. Estrogen may upregulate the expression of LOX and lysyl oxidase-like 1 (LOXL1) in the vagina. The objective of this study was to determine the effect of estrogen on the expression of all LOX family genes in the urogenital tissues of accelerated ovarian aging mice and human Ishikawa cells. Mice and Ishikawa cells treated with estradiol (E2) showed increased expression of LOX family genes and transforming growth factor β1 (TGF-β1). Ishikawa cells treated with TGF-β1 also showed increased expression of LOX family genes. The Ishikawa cells were then treated with either E2 plus the TGF-β receptor (TGFBR) inhibitor SB431542 or E2 alone. The expression of LOX family genes induced by E2 was reduced in the Ishikawa cells treated with TGFBR inhibitor. Our results showed that E2 increased the expression of the LOX family genes, and suggest that this induction may be mediated by the TGF-β signal pathway. E2 may play a role in regulating the expression of LOX family genes.
Collapse
Affiliation(s)
- Wen Zong
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Yan Jiang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jian-gang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
12
|
Li S, Niu G, Wu Y, Du G, Huang C, Yin X, Liu Z, Song C, Leng H. Vitamin D prevents articular cartilage erosion by regulating collagen II turnover through TGF-β1 in ovariectomized rats. Osteoarthritis Cartilage 2016; 24:345-53. [PMID: 26343586 DOI: 10.1016/j.joca.2015.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the effect of vitamin D on turnover of articular cartilage with ovariectomy (OVX) induced OA, and to investigate transforming growth factor-β1 (TGF-β1) as a possible underlying mechanism mediated by 1α,25(OH)2D3. DESIGN Sixty-six rats were randomly allocated into seven groups: sham plus control diet (SHAM+CTL), OVX+CTL diet, sham plus vitamin D-deficient (VDD) diet, OVX+VDD diet, and three groups of ovariectomized rats treated with different doses of 1α,25(OH)2D3. The cartilage erosion and the levels of serum 17β-estradiol, 1α,25(OH)2D3 and C-telopeptide of type II collagen (CTX-II) were measured. TGF-β1, type II Collagen (CII), matrix metalloproteinases (MMP)-9,-13 in articular cartilage were assessed by immunohistochemistry. TGF-β1 and CTX-II expression were measured in articular cartilage chondrocytes treated with/without tumor necrosis factor (TNF-α), 1α,25(OH)2D3, and TGF-β receptor inhibitor (SB505124) in vitro. RESULTS Cartilage erosion due to OVX was significantly reduced in a dose-dependent manner by 1α,25(OH)2D3 supplementation, and exacerbated by VDD. The expressions of TGF-β1 and CII in articular cartilage were suppressed by OVX and VDD, and rescued by 1α,25(OH)2D3 supplementation. The expression of MMP-9,-13 in articular cartilage increased with OVX and VDD, and decreased with 1α,25(OH)2D3 supplementation. In vitro experiments showed that 1α,25(OH)2D3 increased the TGF-β1 expression of TNF-α stimulated chondrocytes in a dose-dependent manner. 1α,25(OH)2D3 significantly counteracted the increased CTX-II release due to TNF-α stimulation, and this effect was significantly suppressed by SB505124. CONCLUSION VDD aggravated cartilage erosion, and 1α,25(OH)2D3 supplementation showed protective effects in OVX-induced OA partly through the TGF-β1 pathway.
Collapse
Affiliation(s)
- S Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
| | - G Niu
- Beijing Key Lab of Spine Diseases, Beijing 100191, China.
| | - Y Wu
- 2nd Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
| | - G Du
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
| | - C Huang
- Medical Central Lab, Peking University Third Hospital, Beijing 100191, China.
| | - X Yin
- Beijing Key Lab of Spine Diseases, Beijing 100191, China.
| | - Z Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
| | - C Song
- Beijing Key Lab of Spine Diseases, Beijing 100191, China.
| | - H Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
13
|
Hima S, Sreeja S. Modulatory role of 17β-estradiol in the tumor microenvironment of thyroid cancer. IUBMB Life 2015; 68:85-96. [DOI: 10.1002/iub.1462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sithul Hima
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology; Thycaud Thiruvananthapuram Kerala India
| | - Sreeharshan Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology; Thycaud Thiruvananthapuram Kerala India
| |
Collapse
|
14
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
15
|
Wang K, Yang Y, Wu Y, Chen J, Zhang D, Liu C. The association of menstrual and reproductive factors with thyroid nodules in Chinese women older than 40 years of age. Endocrine 2015; 48:603-14. [PMID: 25012252 DOI: 10.1007/s12020-014-0342-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
The purpose of the study was to explore the association of menstrual and reproductive factors with thyroid nodules in Chinese women older than 40 years of age. A questionnaire was completed by 6,571 women aged 40 years or older in a community-based epidemiological investigation of thyroid nodules conducted from June to November 2011 in Nanjing City. Thyroid nodules were measured by ultrasound. The Thyroid Imaging Reporting and Data System score was used to differentiate between benign and possibly malignant nodules. Menopausal age (>55 vs. <50 years: RR = 1.17, 95 % CI 1.00-1.34) and number of reproductive years (>40 vs. <35 years: RR = 1.12, 95 % CI 1.01-1.24) increased the risk of thyroid nodules, but were not associated with suspected malignant nodules. Women who experienced more pregnancies (≥5 vs. ≤1: RR = 2.09, 95 % CI 1.79-2.40) and abortions (≥3 vs. 0: RR = 1.61, 95 % CI 1.41-1.81) were prone to development of thyroid nodules, and more likely to form suspected malignant nodules (pregnancies, RR = 3.59, 95 % CI 1.60-7.20; abortions, RR = 2.36, 95 % CI 1.31-4.06). Furthermore, higher risks of thyroid nodules (RR = 1.36, 95 % CI 1.14-1.59) and suspected malignant nodules (RR = 2.80, 95 % CI 1.08-6.53) were observed in women who had undergone artificial compared with natural abortion. Periods of elevated estrogen and progesterone levels in women, such as pregnancy, were the key occasions for occurrence of both benign and suspiciously malignant thyroid nodules, while longer lifetime length of exposure to female sex hormones might promote the growth of thyroid nodules.
Collapse
Affiliation(s)
- Kun Wang
- Department of Endocrinology, The First Clinical College, Nanjing University of Chinese Medicine, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, 138 Xianlin Dadao Road, Nanjing, 210023, China
| | | | | | | | | | | |
Collapse
|
16
|
Gao Y, Duran S, Lydon JP, DeMayo FJ, Burghardt RC, Bayless KJ, Bartholin L, Li Q. Constitutive activation of transforming growth factor Beta receptor 1 in the mouse uterus impairs uterine morphology and function. Biol Reprod 2014; 92:34. [PMID: 25505200 DOI: 10.1095/biolreprod.114.125146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Samantha Duran
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
17
|
A combination of Schwann-cell grafts and aerobic exercise enhances sciatic nerve regeneration. PLoS One 2014; 9:e110090. [PMID: 25333892 PMCID: PMC4198198 DOI: 10.1371/journal.pone.0110090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/15/2014] [Indexed: 01/28/2023] Open
Abstract
Background Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process. Objective Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury. Methods Sciatic nerve transection was performed in adult C57BL/6 mice; the proximal and distal stumps of the nerve were sutured into the conduit. Four groups were analyzed: acellular grafts (DMEM group), Schwann cell grafts (3×105/2 µL; SC group), treadmill training (TMT group), and treadmill training and Schwann cell grafts (TMT + SC group). Locomotor function was assessed weekly by Sciatic Function Index and Global Mobility Test. Animals were anesthetized after eight weeks and dissected for morphological analysis. Results Combined therapies improved nerve regeneration, and increased the number of myelinated fibers and myelin area compared to the DMEM group. Motor recovery was accelerated in the TMT + SC group, which showed significantly better values in sciatic function index and in global mobility test than in the other groups. The TMT + SC group showed increased levels of trophic-factor expression compared to DMEM, contributing to the better functional outcome observed in the former group. The number of neurons in L4 segments was significantly higher in the SC and TMT + SC groups when compared to DMEM group. Counts of dorsal root ganglion sensory neurons revealed that TMT group had a significant increased number of neurons compared to DMEM group, while the SC and TMT + SC groups had a slight but not significant increase in the total number of motor neurons. Conclusion These data provide evidence that this combination of therapeutic strategies can significantly improve functional and morphological recovery after sciatic injury.
Collapse
|
18
|
Immunomodulatory effects by oral contraceptives in normal and cholestatic female rats: Role of cytokines. Int Immunopharmacol 2014; 21:10-9. [DOI: 10.1016/j.intimp.2014.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/11/2014] [Accepted: 03/31/2014] [Indexed: 01/10/2023]
|
19
|
|
20
|
Fortunato RS, Ferreira ACF, Hecht F, Dupuy C, Carvalho DP. Sexual dimorphism and thyroid dysfunction: a matter of oxidative stress? J Endocrinol 2014; 221:R31-40. [PMID: 24578296 DOI: 10.1530/joe-13-0588] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thyroid diseases, such as autoimmune disease and benign and malignant nodules, are more prevalent in women than in men, but the mechanisms involved in this sex difference is still poorly defined. H₂O₂ is produced at high levels in the thyroid gland and regulates parameters such as cell proliferation, migration, survival, and death; an imbalance in the cellular oxidant-antioxidant system in the thyroid may contribute to the greater incidence of thyroid disease among women. Recently, we demonstrated the existence of a sexual dimorphism in the thyrocyte redox balance, characterized by higher H₂O₂ production, due to higher NOX4 and Poldip2 expression, and weakened enzymatic antioxidant defense in the thyroid of adult female rats compared with male rats. In addition, 17β-estradiol administration increased NOX4 mRNA expression and H₂O₂ production in thyroid PCCL3 cells. In this review, we discuss the possible involvement of oxidative stress in estrogen-related thyroid pathophysiology. Our current hypothesis suggests that a redox imbalance elicited by estrogen could be involved in the sex differences found in the prevalence of thyroid dysfunctions.
Collapse
Affiliation(s)
- Rodrigo S Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS - Bloco G - Subsolo - Sala G0-031, Cidade Universitária - Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil Laboratory of Endocrine Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil Mixed Unity of Research (UMR) 8200 - Genomes and Cancer, The Gustave Roussy Institute of Integrated Cancer Research, Villejuif F-94805, France
| | | | | | | | | |
Collapse
|
21
|
Park MA, Choi KC. Effects of 4-nonylphenol and bisphenol A on stimulation of cell growth via disruption of the transforming growth factor-β signaling pathway in ovarian cancer models. Chem Res Toxicol 2013; 27:119-28. [PMID: 24308608 DOI: 10.1021/tx400365z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor β (TGF-β) signaling pathway is a major pathway in cellular processes such as cell growth, apoptosis, and cellular homeostasis. The signaling pathway activated by 17β-estadiol (E2) appeared to inhibit the TGF-β signaling pathway by cross-talk with the TGF-β components in estrogen receptor (ER) positive cells. In this study, we examined the inhibitory effects of endocrine disrupting chemicals (EDCs), including 4-nonylphenol (NP), 4-otylphenol (OP), bisphenol A (BPA), and benzophenon-1 (BP-1), in the TGF-β signaling pathway in BG-1 ovarian cancer cells expressing estrogen receptors (ERs). The transcriptional and translational levels of TGF-β related genes were examined by reverse transcription-PCR (RT-PCR), Western blot analysis, and xenograft mouse models of ovarian cancer cells. As a result, treatment with NP, OP, and BPA induced the expressions of SnoN, a TGF-β pathway inhibitor, and c-Fos, a TGF-β target transcription factor. Treatment with NP, BPA, and BP-1 resulted in decreased phosphorylation of Smad3, a downstream target of TGF-β. These results indicate that NP and BPA may stimulate the proliferation of BG-1 cells via inhibition of the TGF-β signaling pathway. In a xenograft mouse model, transplanted BG-1 ovarian cancer cells showed significantly decreased phosphorylation of Smad3 and increased expression of SnoN in the ovarian tumor masses following treatment with E2, NP, or BPA. In parallel with an in vitro model, the expressions of these TGF-β signaling pathway were similarly regulated by NP or BPA in a xenograft mouse model. These results support the fact that the existence of an unproven relationship between EDCs/ER-α and TGF-β signaling pathway and a further study are required in order to verify more profound and distinct mechanism(s) for the disturbance of the TGF-β signaling pathway by diverse EDCs.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University , Cheongju, Chungbuk 361-763, Republic of Korea
| | | |
Collapse
|
22
|
Park MA, Hwang KA, Lee HR, Yi BR, Choi KC. Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc. Toxicol Res 2013; 27:253-9. [PMID: 24278580 PMCID: PMC3834391 DOI: 10.5487/tr.2011.27.4.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-β is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-β, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, ERα and ERβ, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/ERα and TGF-β pathway. Especially, based on the E2-mediated inhibition of TGF-β signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-β signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF- β receptor2 (TGF-β R2) in TGF-β signaling pathway. However, the expression level of TGF-β1 and TGF- β receptor1 (TGF-β R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-β signaling pathway. As a result of downregulation of TGF-β R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-β signaling via the downregulation of TGF-β R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-β signaling.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 361-763 Korea
| | | | | | | | | |
Collapse
|
23
|
Zou S, Sang Q, Wang H, Feng R, Li Q, Zhao X, Xing Q, Jin L, He L, Wang L. Common genetic variation in CYP1B1 is associated with concentrations of T₄, FT₃ and FT₄ in the sera of polycystic ovary syndrome patients. Mol Biol Rep 2013; 40:3315-20. [PMID: 23283740 DOI: 10.1007/s11033-012-2406-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/18/2012] [Indexed: 01/02/2023]
Abstract
CYP1B1 encodes an estrogen enzyme that oxidizes 17β-estradiol to 4-hydroxyestradiol. The evidence demonstrates there may be a relationship between CYP1B1 and thyroid function. To date, no study has evaluated if genetic polymorphisms that regulate concentrations of serum FT3 and FT4 contribute to Polycyctic Ovary Syndrome (PCOS). To identify polymorphisms in the CYP1B1 locus associated with PCOS, we genotyped three common polymorphisms across the CYP1B1 locus in 226 patients. A test for association of common variants with susceptibility to PCOS was conducted in a large cohort of 609 subjects. The functional polymorphism CYP1B1 L432V (rs1056836) is associated with serum T4 (P = 0.003), serum FT3 (P < 0.001) and serum FT4 concentrations (P < 0.001). Our study provides the first evidence that genetic variants in CYP1B1 can be associated with serum T4, FT4 and FT3 levels in PCOS. These findings imply novel pathophysiological links between the CYP1B1 locus and thyroid function in PCOS.
Collapse
Affiliation(s)
- Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|