1
|
Xu X, Yang A, Tian P, Zhang K, Liu Y, Wang Y, Wang Z, Wu Y, Zhao Z, Li Q, Shi B, Huang X, Hao GM. Expression profile analysis of LncRNAs and mRNAs in pre-receptive endometrium of women with polycystic ovary syndrome undergoing in vitro fertilization-embryo transfer. BMC Med Genomics 2024; 17:26. [PMID: 38243290 PMCID: PMC10799537 DOI: 10.1186/s12920-024-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND To compare the expression levels of long non-coding RNA (lncRNA) and messenger RNA (mRNA) in pre-receptive endometrium between patients with Polycystic Ovary Syndrome (PCOS)and normal ovulation undergoing in vitro fertilization-embryo transfer (IVF-ET). METHODS Endometrial tissues were collected with endometrial vacuum curette in pre-receptive phase (3 days after oocytes retrieval) from PCOS and control groups. LncRNAs and mRNAs of endometrium were identified via RNA sequencing and alignments. A subset of 9 differentially expressed lncRNAs and 11 mRNAs were validated by quantitative reverse transcription polymerase chain reaction(qRT-PCR)in 22 PCOS patients and 18 ovulation patients. The function of mRNAs with differential expression patterns were explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS We found out 687 up-regulated and 680 down-regulated mRNAs, as well as 345 up-regulated and 63 down-regulated lncRNAs in the PCOS patients in contrast to normal ovulation patients. qRT-PCR was used to detect the expression of 11 mRNAs, and validated that the expression of these 6 mRNAs CXCR4, RABL6, OPN3, SYBU, IDH1, NOP10 were significantly elevated among PCOS patients, and the expression of ZEB1 was significantly decreased. qRT-PCR was performed to detect the expression of 9 lncRNAs, and validated that the expression of these 7 lncRNAs IDH1-AS1, PCAT14, FTX, DANCR, PRKCQ-AS1, SNHG8, TPT1-AS1 were significantly enhanced among PCOS patients. Bioinformatics analysis showed that differentially expressed genes (DEGs) involved KEGG pathway were tyrosine metabolism, PI3K-Akt pathway, metabolic pathway, Jak-STAT pathway, pyruvate metabolism, protein processing in endoplasmic reticulum, oxidative phosphorylation and proteasome. The up-regulation of GO classification was involved in ATP metabolic process, oxidative phosphorylation, RNA catabolic process, and down-regulation of GO classification was response to corticosteroid, steroid hormone, and T cell activation. CONCLUSION Our results determined the characteristics and expression profile of endometrial lncRNAs and mRNAs in PCOS patients in pre-receptive phase, which is the day 3 after oocytes retrival. The possible pathways and related genes of endometrial receptivity disorders were found, and those lncRNAs may be developed as a predictive biomarker of endometrium in pre-receptive phase.
Collapse
Affiliation(s)
- Xiuhua Xu
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Cardiovascular platform, Institute of Health and Disease, Hebei Medical University, Shijiazhuang, 050000, China
| | - Aimin Yang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Gynecology and Obstetrics, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Pengxiang Tian
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Kun Zhang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yuanyuan Liu
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yizhuo Wang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ziwei Wang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanjing Wu
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhiming Zhao
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Qian Li
- Cardiovascular platform, Institute of Health and Disease, Hebei Medical University, Shijiazhuang, 050000, China
| | - Baojun Shi
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xianghua Huang
- Department of Gynecology and Obstetrics, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Gui-Min Hao
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
3
|
Abstract
The characteristics of fetal membrane cells and their phenotypic adaptations to support pregnancy or promote parturition are defined by global patterns of gene expression controlled by chromatin structure. Heritable epigenetic chromatin modifications that include DNA methylation and covalent histone modifications establish chromatin regions permissive or exclusive of regulatory interactions defining the cell-specific scope and potential of gene activity. Non-coding RNAs acting at the transcriptional and post-transcriptional levels complement the system by robustly stabilizing gene expression patterns and contributing to ordered phenotype transitions. Here we review currently available information about epigenetic gene regulation in the amnion and the chorion laeve. In addition, we provide an overview of epigenetic phenomena in the decidua, which is the maternal tissue fused to the chorion membrane forming the anatomical and functional unit called choriodecidua. The relationship of gene expression with DNA (CpG) methylation, histone acetylation and methylation, micro RNAs, long non-coding RNAs and chromatin accessibility is discussed in the context of normal pregnancy, parturition and pregnancy complications. Data generated using clinical samples and cell culture models strongly suggests that epigenetic events are associated with the phenotypic transitions of fetal membrane cells during the establishment, maintenance and termination of pregnancy potentially driving and consolidating the changes as pregnancy progresses. Disease conditions and environmental factors may produce epigenetic footprints that indicate exposures and mediate adverse pregnancy outcomes. Although knowledge is expanding rapidly, fetal membrane epigenetics is still in an early stage of development necessitating further research to realize its remarkable basic and translational potential.
Collapse
Affiliation(s)
- Tamas Zakar
- Department of Maternity & Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan W. Paul
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
4
|
Colón-Caraballo M, Torres-Reverón A, Soto-Vargas JL, Young SL, Lessey B, Mendoza A, Urrutia R, Flores I. Effects of histone methyltransferase inhibition in endometriosis. Biol Reprod 2019; 99:293-307. [PMID: 29408993 DOI: 10.1093/biolre/ioy030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Although the histone methyltransferase EZH2 and its product H3K27me3 are well studied in cancer, little is known about their role and potential as therapeutic targets in endometriosis. We have previously reported that endometriotic lesions are characterized by global enrichment of H3K27me3. Therefore, we aimed to (1) characterize the expression levels of EZH2 in endometriotic tissues; (2) assess H3K27me3 enrichment in candidate genes promoter regions; and (3) determine if pharmacological inhibition of EZH2 impacts migration, proliferation, and invasion of endometriotic cells. Immunohistochemistry of an endometriosis-focused tissue microarray was used to assess the EZH2 protein levels in tissues. Chromatin immunoprecipitation-qPCR was conducted to assess enrichment of H3K27me3 in candidate gene promoter regions in tissues. Immunofluorescence was performed to assess the effect of an EZH2-specific pharmacological inhibitor on H3K27me3 global enrichment in cell lines. To measure effects of the inhibitor in migration, proliferation, and invasion in vitro we used Scratch, BrdU, and Matrigel assays, respectively. Endometriotic lesions had significantly higher EZH2α nuclear immunostaining levels compared to eutopic endometrium from patients (glands, stroma) and controls (glands). H3K27me3 was enriched within promoter regions of candidate genes in some but not all of the endometriotic lesions. Inhibition of EZH2 reduced H3K27me3 levels in the endometriotic cells specifically, and also reduced migration, proliferation but not invasion of endometriotic epithelial cells (12Z). These findings support future preclinical studies to determine in vivo efficacy of EZH2 inhibitors as promising nonhormonal treatments for endometriosis, still an incurable gynecological disease.
Collapse
Affiliation(s)
- Mariano Colón-Caraballo
- Department of Basic Sciences-Microbiology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| | - Annelyn Torres-Reverón
- Department of Biomedical Sciences, Division of Neurosciences, University of Texas at Rio Grande Valley-School of Medicine, Texas, USA
| | - John Lee Soto-Vargas
- Department of Basic Sciences-Microbiology Division, Step-Up Summer Program, Ponce, Puerto Rico, USA
| | - Steven L Young
- Department of Ob/Gyn, University of North Carolina, Chapel Hill, USA
| | - Bruce Lessey
- Department of Ob/Gyn, University of North Carolina, Chapel Hill, USA
| | - Adalberto Mendoza
- Southern Pathology Inc., Ponce, Puerto Rico, USA.,Department of Basic Sciences-Pathology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| | - Raúl Urrutia
- Epigenetics and Chromatin Dynamics Research Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Idhaliz Flores
- Department of Basic Sciences-Microbiology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA.,Department of Ob/Gyn, Ponce, Puerto Rico, USA
| |
Collapse
|
5
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 2: histone modifications, chromatin remodeling and noncoding RNAs. Epigenomics 2017; 9:873-892. [PMID: 28523964 DOI: 10.2217/epi-2016-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. In a previous review, we assessed DNA methylation alterations. The present review examines the contribution of histone modifications, chromatin remodeling and noncoding RNA alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology & Immunology, University of Porto); I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Bartosch C, Monteiro-Reis S, Almeida-Rios D, Vieira R, Castro A, Moutinho M, Rodrigues M, Graça I, Lopes JM, Jerónimo C. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget 2016; 7:1144-54. [PMID: 26701732 PMCID: PMC4811449 DOI: 10.18632/oncotarget.6691] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Sirtuins participate in hormone imbalance, metabolism and aging, which are important processes for endometrial cancer (EC) development. Sirtuins mRNA expression (SIRT1 to 7) was determined in 76 ECs (63 Type I, 12 Type II and one mixed EC), and 30 non-neoplastic endometria (NNE) by quantitative real-time PCR. SIRT1 and SIRT7 protein expression was evaluated by immunohistochemistry using Allred score. Compared to NNE, ECs showed SIRT7 (p < 0.001) mRNA overexpression, whereas SIRT1 (p < 0.001), SIRT2 (p < 0.001), SIRT4 (p < 0.001) and SIRT5 (p < 0.001) were underexpressed. No significant differences were observed for SIRT3 and SIRT6. Type II ECs displayed lower SIRT1 (p = 0.032) and SIRT3 (p = 0.016) transcript levels than Type I ECs. Concerning protein expression, SIRT1 immunostaining median score was higher in ECs compared to NNE epithelium (EC = 5 vs. NNE = 2, p < 0.001), while SIRT7 was lower in ECs (EC = 6 vs. NNE = 7, p < 0.001). No significant associations were found between SIRT1/7 immunoexpression and histological subtype, grade, lymphovascular invasion or stage. Our data shows that sirtuins are deregulated in EC. The diversity of expression patterns observed suggests that sirtuins may have distinctive roles in endometrial cancer similarly to what has been described in other cancer models.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal.,Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal
| | - Sara Monteiro-Reis
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - Diogo Almeida-Rios
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal
| | - Armando Castro
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Manuel Moutinho
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Marta Rodrigues
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Inês Graça
- Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology and Immunology, University of Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Gargett CE, Gurung S. Endometrial Mesenchymal Stem/Stromal Cells, Their Fibroblast Progeny in Endometriosis, and More. Biol Reprod 2016; 94:129. [PMID: 27146030 DOI: 10.1095/biolreprod.116.141325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Barragan F, Irwin JC, Balayan S, Erikson DW, Chen JC, Houshdaran S, Piltonen TT, Spitzer TLB, George A, Rabban JT, Nezhat C, Giudice LC. Human Endometrial Fibroblasts Derived from Mesenchymal Progenitors Inherit Progesterone Resistance and Acquire an Inflammatory Phenotype in the Endometrial Niche in Endometriosis. Biol Reprod 2016; 94:118. [PMID: 27075616 PMCID: PMC4939744 DOI: 10.1095/biolreprod.115.136010] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
Human endometrium undergoes cyclic regeneration involving stem/progenitor cells, but the role of resident endometrial mesenchymal stem cells (eMSC) as progenitors of endometrial stromal fibroblasts (eSF) has not been definitively demonstrated. In endometriosis, eSF display progesterone (P4) resistance with impaired decidualization in vivo and in vitro. To investigate eMSC as precursors of eSF and whether endometriosis P4 resistance is inherited from eMSC, we analyzed transcriptomes of eutopic endometrium eMSC and eSF isolated by fluorescence-activated cell sorting (FACS) from endometriosis (eMSCendo, eSFendo) and controls (eMSCcontrol, eSFcontrol) and their derived primary cultures. Differentially expressed lineage-associated genes (LG) of FACS-isolated eMSC and eSF were largely conserved in endometriosis. In culture, eSFcontrol maintained in vitro expression of a subset of eSF LG and decidualized in vitro with P4 The eMSCcontrol cultures differentiated in vitro to eSF lineage, down-regulating eMSC LG and up-regulating eSF LG, showing minimal transcriptome differences versus eSFcontrol cultures and decidualizing in vitro. Cultured eSFendo displayed less in vitro LG stability and did not decidualize in vitro. In vitro, eMSCendo differentiated to eSF lineage but showed more differentially expressed genes versus eSFendo cultures, and did not decidualize in vitro, demonstrating P4 resistance inherited from eMSCendo Compared to controls, cultures from tissue-derived eSFendo uniquely had a pro-inflammatory phenotype not present in eMSCendo differentiated to eSF in vitro, suggesting divergent niche effects for in vivo versus in vitro lineage differentiation. These findings substantiate eMSC as progenitors of eSF and reveal eSF in endometriosis as having P4 resistance inherited from eMSC and a pro-inflammatory phenotype acquired within the endometrial niche.
Collapse
Affiliation(s)
- Fatima Barragan
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Juan C Irwin
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Shaina Balayan
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - David W Erikson
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Oregon National Primate Research Center/Oregon Health & Science University, Endocrine Technologies Support Core, Beaverton, Oregon
| | - Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Siemens Healthcare Diagnostics, Berkeley, California
| | - Sahar Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Terhi T Piltonen
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Department of Obstetrics and Gynecology and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Trimble L B Spitzer
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Reproductive Endocrinology and Infertility Division, Women's Health, Naval Medical Center, Portsmouth, Virginia
| | - Ashley George
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey
| | - Joseph T Rabban
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Camran Nezhat
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences and the Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| |
Collapse
|
9
|
Gao F, Das SK. Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomol Concepts 2015; 5:95-107. [PMID: 25372745 DOI: 10.1515/bmc-2013-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022] Open
Abstract
DNA methylation at cytosines is an important epigenetic modification that participates in gene expression regulation without changing the original DNA sequence. With the rapid progress of high-throughput sequencing techniques, whole-genome distribution of methylated cytosines and their regulatory mechanism have been revealed gradually. This has allowed the uncovering of the critical roles played by DNA methylation in the maintenance of cell pluripotency, determination of cell fate during development, and in diverse diseases. Recently, rediscovery of 5-hydroxymethylcytosine, and other types of modification on DNA, have uncovered more dynamic aspects of cell methylome regulation. The interaction of DNA methylation and other epigenetic changes remodel the chromatin structure and determine the state of gene transcription, not only permanently, but also transiently under certain stimuli. The uterus is a reproductive organ that experiences dramatic hormone stimulated changes during the estrous cycle and pregnancy, and thus provides us with a unique model for studying the dynamic regulation of epigenetic modifications. In this article, we review the current findings on the roles of genomic DNA methylation and hydroxymethylation in the regulation of gene expression, and discuss the progress of studies for these epigenetic changes in the uterus during implantation and decidualization.
Collapse
|
10
|
Dyson MT, Kakinuma T, Pavone ME, Monsivais D, Navarro A, Malpani SS, Ono M, Bulun SE. Aberrant expression and localization of deoxyribonucleic acid methyltransferase 3B in endometriotic stromal cells. Fertil Steril 2015; 104:953-963.e2. [PMID: 26239024 PMCID: PMC4603532 DOI: 10.1016/j.fertnstert.2015.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To define the expression and function of DNA methyltransferases (DNMTs) in response to decidualizing stimuli in endometriotic cells compared with healthy endometrial stroma. DESIGN Basic science. SETTING University research center. PATIENT(S) Premenopausal women with or without endometriosis. INTERVENTION(S) Primary cultures of stromal cells from healthy endometrium (E-IUM) or endometriomas (E-OSIS) were subjected to in vitro decidualization (IVD) using 1 μM medroxyprogesterone acetate, 35 nM 17β-estradiol, and 0.05 mM 8-Br-cAMP. MAIN OUTCOME MEASURE(S) Expression of DNMT1, DNMT3A, and DNMT3B in E-IUM and E-OSIS were assessed by quantitative real-time polymerase chain reaction and immunoblotting. Recruitment of DNMT3B to the promoters of steroidogenic factor 1 (SF-1) and estrogen receptor α (ESR1) was examined by chromatin immunoprecipitation. RESULT(S) IVD treatment reduced DNMT3B messenger RNA (74%) and protein levels (81%) only in E-IUM; DNMT1 and DNMT3A were unchanged in both cell types. Significantly more DNMT3B bound to the SF-1 promoter in E-IUM compared with E-OSIS, and IVD treatment reduced binding in E-IUM to levels similar to those in E-OSIS. Enrichment of DNMT3B across 3 ESR1 promoters was reduced in E-IUM after IVD, although the more-distal promoter showed increased DNMT3B enrichment in E-OSIS after IVD. CONCLUSION(S) The inability to downregulate DNMT3B expression in E-OSIS may contribute to an aberrant epigenetic fingerprint that misdirects gene expression in endometriosis and contributes to its altered response to steroid hormones.
Collapse
Affiliation(s)
- Matthew T Dyson
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Toshiyuki Kakinuma
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary Ellen Pavone
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Diana Monsivais
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Antonia Navarro
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Saurabh S Malpani
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Masanori Ono
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Serdar E Bulun
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
11
|
Abstract
Epigenetic mechanisms may play an important role in the etiology of endometriosis. The modification of histones by methylation of lysine residues has been shown to regulate gene expression by changing chromatin structure. We have previously shown that endometriotic lesions had aberrant levels of histone acetylation (lower) and methylation (higher) than control tissues. We aimed to determine the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3), a well-known repressive mark, by immunoassay of fresh tissues and immunohistochemistry (IHC) of an endometriosis-focused tissue microarray. Also, we aimed to determine levels of expression of enhancer of zeste homolog 2 (EZH2), the enzyme responsible for trimethylation of H3K27me3, in cell lines. Average levels of H3K27me3 measured by immunoassay were not significantly different in lesions compared to endometrium from patients and controls. However, there was a trend of higher levels of H3K27me3 in secretory versus proliferative endometrium. The results of IHC showed that lesions (ovarian, fallopian, and peritoneal) and secretory endometrium from controls have higher percentage of H3K27me3-positive nuclei than eutopic endometrium from patients. Endometriotic epithelial cells express high levels of EZH2, which is upregulated by progesterone. This study provides evidence in support of a role of H3K27me3 in the pathogenesis of endometriosis and for EZH2 as a potential therapeutic target for this disease, but more studies are necessary to understand the molecular mechanisms at play.
Collapse
Affiliation(s)
- Mariano Colón-Caraballo
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Janice B Monteiro
- Department of Biochemistry, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Idhaliz Flores
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA Department of Obstetrics and Gynaecology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| |
Collapse
|
12
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
13
|
Labruijere S, Stolk L, Verbiest M, de Vries R, Garrelds IM, Eilers PHC, Danser AHJ, Uitterlinden AG, MaassenVanDenBrink A. Methylation of migraine-related genes in different tissues of the rat. PLoS One 2014; 9:e87616. [PMID: 24609082 PMCID: PMC3946422 DOI: 10.1371/journal.pone.0087616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/20/2013] [Indexed: 11/26/2022] Open
Abstract
17ß-Estradiol, an epigenetic modulator, is involved in the increased prevalence of migraine in women. Together with the prophylactic efficacy of valproate, which influences DNA methylation and histone modification, this points to the involvement of epigenetic mechanisms. Epigenetic studies are often performed on leukocytes, but it is unclear to what extent methylation is similar in other tissues. Therefore, we investigated methylation of migraine-related genes that might be epigenetically regulated (CGRP-ergic pathway, estrogen receptors, endothelial NOS, as well as MTHFR) in different migraine-related tissues and compared this to methylation in rat as well as human leukocytes. Further, we studied whether 17ß-estradiol has a prominent role in methylation of these genes. Female rats (n = 35) were ovariectomized or sham-operated and treated with 17β-estradiol or placebo. DNA was isolated and methylation was assessed through bisulphite treatment and mass spectrometry. Human methylation data were obtained using the Illumina 450k genome-wide methylation array in 395 female subjects from a population-based cohort study. We showed that methylation of the Crcp, Calcrl, Esr1 and Nos3 genes is tissue-specific and that methylation in leukocytes was not correlated to that in other tissues. Interestingly, the interindividual variation in methylation differed considerably between genes and tissues. Furthermore we showed that methylation in human leukocytes was similar to that in rat leukocytes in our genes of interest, suggesting that rat may be a good model to study human DNA methylation in tissues that are difficult to obtain. In none of the genes a significant effect of estradiol treatment was observed.
Collapse
Affiliation(s)
- Sieneke Labruijere
- Dept. of Internal Medicine, Div. of Pharmacology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lisette Stolk
- Dept. of Internal Medicine, Genetics Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michael Verbiest
- Dept. of Internal Medicine, Genetics Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | - René de Vries
- Dept. of Internal Medicine, Div. of Pharmacology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid M. Garrelds
- Dept. of Internal Medicine, Div. of Pharmacology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul H. C. Eilers
- Dept. of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Dept. of Internal Medicine, Div. of Pharmacology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Dept. of Internal Medicine, Genetics Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
14
|
Li X, Liu X, Guo SW. Histone deacetylase inhibitors as therapeutics for endometriosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Altmäe S, Esteban FJ, Stavreus-Evers A, Simón C, Giudice L, Lessey BA, Horcajadas JA, Macklon NS, D'Hooghe T, Campoy C, Fauser BC, Salamonsen LA, Salumets A. Guidelines for the design, analysis and interpretation of 'omics' data: focus on human endometrium. Hum Reprod Update 2014; 20:12-28. [PMID: 24082038 PMCID: PMC3845681 DOI: 10.1093/humupd/dmt048] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/04/2013] [Accepted: 08/19/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND 'Omics' high-throughput analyses, including genomics, epigenomics, transcriptomics, proteomics and metabolomics, are widely applied in human endometrial studies. Analysis of endometrial transcriptome patterns in physiological and pathophysiological conditions has been to date the most commonly applied 'omics' technique in human endometrium. As the technologies improve, proteomics holds the next big promise for this field. The 'omics' technologies have undoubtedly advanced our knowledge of human endometrium in relation to fertility and different diseases. Nevertheless, the challenges arising from the vast amount of data generated and the broad variation of 'omics' profiling according to different environments and stimuli make it difficult to assess the validity, reproducibility and interpretation of such 'omics' data. With the expansion of 'omics' analyses in the study of the endometrium, there is a growing need to develop guidelines for the design of studies, and the analysis and interpretation of 'omics' data. METHODS Systematic review of the literature in PubMed, and references from relevant articles were investigated up to March 2013. RESULTS The current review aims to provide guidelines for future 'omics' studies on human endometrium, together with a summary of the status and trends, promise and shortcomings in the high-throughput technologies. In addition, the approaches presented here can be adapted to other areas of high-throughput 'omics' studies. CONCLUSION A highly rigorous approach to future studies, based on the guidelines provided here, is a prerequisite for obtaining data on biological systems which can be shared among researchers worldwide and will ultimately be of clinical benefit.
Collapse
Affiliation(s)
- Signe Altmäe
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- School of Medicine, Department of Paediatrics, University of Granada, 18012 Granada, Spain
| | | | - Anneli Stavreus-Evers
- Department of Women's and Children's Health, Uppsala University, Akademiska Sjukhuset, 75185 Uppsala, Sweden
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, 46021 Valencia, Spain
| | - Linda Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143-0132, USA
| | - Bruce A. Lessey
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University Medical Group, Greenville Hospital System, Greenville, South Carolina, SC 29605, USA
| | - Jose A. Horcajadas
- Araid-Hospital Miguel Servet, 50004 Zaragoza, Spain
- Department of Genetics, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Nick S. Macklon
- Department of Obstetrics and Gynaecology, Division of Developmental Origins of Adult Disease, University of Southampton, Princess Anne Hospital, SO16 5YA Southampton, UK
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Thomas D'Hooghe
- Leuven University Fertility Center, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven (Leuven University), 3000 Leuven, Belgium
| | - Cristina Campoy
- School of Medicine, Department of Paediatrics, University of Granada, 18012 Granada, Spain
| | - Bart C. Fauser
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lois A. Salamonsen
- Prince Henry's Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Andres Salumets
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Obstetrics and Gynaecology, University of Tartu, 51014 Tartu, Estonia
| |
Collapse
|
16
|
Oestrogen and progesterone action on endometrium: a translational approach to understanding endometrial receptivity. Reprod Biomed Online 2013; 27:497-505. [PMID: 23933037 DOI: 10.1016/j.rbmo.2013.06.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Embryo attachment and implantation is critical to successful reproduction of all eutherian mammals, including humans; a better understanding of these processes could lead to improved infertility treatments and novel contraceptive methods. Experience with assisted reproduction, especially oocyte donation cycles, has established that despite the diverse set of hormones produced by the ovary in a cycle-dependent fashion, the sequential actions of only two of them, oestrogen and progesterone, are sufficient to prepare a highly receptive endometrium in humans. Further investigation on the endometrial actions of these two hormones is currently providing significant insight into the implantation process in women, strongly suggesting that an abnormal response to progesterone underlies infertility in some patients.
Collapse
|
17
|
Logan PC, Ponnampalam AP, Steiner M, Mitchell MD. Effect of cyclic AMP and estrogen/progesterone on the transcription of DNA methyltransferases during the decidualization of human endometrial stromal cells. Mol Hum Reprod 2013; 19:302-12. [PMID: 23233487 DOI: 10.1093/molehr/gas062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Progesterone, estrogen and cyclic adenosine monophosphate (cAMP) together regulate the decidualization of human endometrial stromal cells in a time-dependent manner. The role of DNA methylation and the three active DNA methyltransferases (DNMTs) in the regulation of decidualization is gaining interest but the exact role of this epigenetic mechanism during decidualization is largely unknown. We aimed to understand the effect of the main regulators of decidualization on the expression of the DNMTs and in turn on the expression of steroid hormone receptors during the decidualization. We conducted a time-course analysis from 6 h to 10 days to examine the change in gene expression of the DNMTs and the steroid hormone receptors over time in response to estradiol, medroxy-progesterone acetate (MPA) and dibutyryl-cAMP (db-cAMP) in a human endometrial stromal cells (HESC) cell line. Only the combination treatment with MPA-mix (estradiol + MPA + db-cAMP) up-regulated ERα, PGR, progesterone receptor B (PRB) and androgen receptor at 24 h. Both decidualization pathways of db-cAMP and estradiol/MPA, independently and combined, consistently down-regulated DNMT3B mRNA expression from 6 h till 10 days, whereas DNMT1 and DNMT3A mRNA expression were down-regulated transiently. Forced expression of DNMT3B in HESC for 10 days attenuated IGFBP1 mRNA and protein expression; and forced expression of DNMT3B combined with MPA-mix treatment synergistically increased the expression of PRB at 24 h. The HESC morphology and proliferation remained unchanged in response to forced expression of DNMT3B. In conclusion, mRNA expression of the DNMTs during decidualization is dynamic, so that expression varies according to the cAMP or estradiol/MPA pathway treatments that regulate them in a time-dependent manner. Although forced expression of DNMT3B by itself is insufficient to inhibit decidualization, forced expression of DNMT3B in combination with MPA-mix synergistically up-regulated PRB, as well as attenuated the expression of IGFBP1, the decidualization marker.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1023, New Zealand.
| | | | | | | |
Collapse
|