1
|
Akhter N, Wilson A, Arefanian H, Thomas R, Kochumon S, Al-Rashed F, Abu-Farha M, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S. Endoplasmic Reticulum Stress Promotes the Expression of TNF-α in THP-1 Cells by Mechanisms Involving ROS/CHOP/HIF-1α and MAPK/NF-κB Pathways. Int J Mol Sci 2023; 24:15186. [PMID: 37894865 PMCID: PMC10606873 DOI: 10.3390/ijms242015186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.
Collapse
Affiliation(s)
- Nadeem Akhter
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Ajit Wilson
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Reeby Thomas
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Mohamed Abu-Farha
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Ashraf Al-Madhoun
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
2
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
3
|
Palomino OM, Giordani V, Chowen J, Alfonso SF, Goya L. Physiological Doses of Oleic and Palmitic Acids Protect Human Endothelial Cells from Oxidative Stress. Molecules 2022; 27:5217. [PMID: 36014457 PMCID: PMC9415781 DOI: 10.3390/molecules27165217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress has been proposed to be a pathogenic mechanism to induce endothelial dysfunction and the onset of cardiovascular disease. Elevated levels of free fatty acids can cause oxidative stress by increasing mitochondrial uncoupling but, at physiological concentrations, they are essential for cell and tissue function and olive oil free fatty acids have proved to exhibit beneficial effects on risk factors for cardiovascular disease. We hypothesize that realistic concentrations within the physiological range of oleic (OA) and palmitic (PA) acids could be beneficial in the prevention of oxidative stress in vascular endothelium. Hence, pre-treatment and co-treatment with realistic physiological doses of palmitic and oleic acids were tested on cultured endothelial cells submitted to a chemically induced oxidative stress to investigate their potential chemo-protective effect. Cell viability and markers of oxidative status: reactive oxygen species (ROS), reduced glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPx) and glutathione reductase (GR) were evaluated. As a conclusion, the increased ROS generation induced by stress was significantly prevented by a pre- and co-treatment with PA or OA. Moreover, pre- and co-treatment of cells with FFAs recovered the stress-induced MDA concentration to control values and significantly recovered depleted GSH and normalized GPx and GR activities. Finally, pre- and co-treatment of cells with physiological concentrations of PA or OA in the low micromolar range conferred a substantial protection of cell viability against an oxidative insult.
Collapse
Affiliation(s)
- Olga M. Palomino
- Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Julie Chowen
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Department of Endocrinology, Instituto de Investigación la Princesa, IMDEA Food Institute, CEI UAM + CSIC, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
| | | | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN—CSIC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Cho HR, Lee SO. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Res Int 2020; 133:109194. [PMID: 32466897 DOI: 10.1016/j.foodres.2020.109194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/03/2020] [Accepted: 03/21/2020] [Indexed: 12/21/2022]
Abstract
In the present study, we hypothesized that protein hydrolysates of mealworm (Tenebrio molitor) which is known to exert significant scavenging activity toward reactive oxygen species (ROS) might protect liver cells against ROS-induced cytotoxicity. Therefore, hepatoprotective effects of protein hydrolysates of mealworm and their underlying mechanisms were investigated in AML12 mouse liver cells and the responsible peptides were further identified. Pretreatment with the mealworm alcalase hydrolysate (MAH; <1 kDa) showed the highest protective effect against H2O2-induced cytotoxicity in AML12 cells among three mealworm hydrolysates produced by different proteases (alcalase, flavourzyme, and neutrase). Further mechanistic studies demonstrated that MAH reduces ROS levels through increasing NF-E2-related factor 2-mediated expression of catalase, heme oxygenase-1, and genes involved in glutathione synthesis. Moreover, two novel hepatoprotective peptides, Ala-Lys-Lys-His-Lys-Glu and Leu-Glu, which shared similar mechanisms of action with MAH were identified. These results suggest that MAH and the two peptides represent potential sources of natural hepatoprotective agents.
Collapse
Affiliation(s)
- Hye-Rin Cho
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
5
|
Liu X, Cao K, Lv W, Feng Z, Liu J, Gao J, Li H, Zang W, Liu J. Punicalagin attenuates endothelial dysfunction by activating FoxO1, a pivotal regulating switch of mitochondrial biogenesis. Free Radic Biol Med 2019; 135:251-260. [PMID: 30878647 DOI: 10.1016/j.freeradbiomed.2019.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/04/2023]
Abstract
Accumulating evidence has elucidated that hyperlipidemia is closely associated with an increasing prevalence of CVDs (cardiovascular diseases) because of endothelial dysfunction. In the present study, we investigated the effect and mechanism of PU (Punicalagin), a major ellagitannin in pomegranate, on endothelial dysfunction both in vivo and in vitro. In vivo, PU significantly ameliorated hyperlipidemia-induced accumulation of serum triglyceride and cholesterol as well as endothelial and mitochondrial dysfunction of thoracic aorta. Intriguingly, the FoxO1 (forkhead box O1) pathway was activated, which may account for prevention of vascular dysfunction and mitochondrial loss via upregulating mitochondrial biogenesis. In line, through in vitro cell cultures, our study demonstrated that PU not only increased the total FoxO1 protein, but also enhanced its nuclear translocation. In addition, silencing of FoxO1 remarkably abolished the ability of PU to augment the mitochondrial biogenesis, eNOS (endothelial NO synthase) expression, and oxidative stress, implying the irreplaceable role of FoxO1 in regulating endothelial function in the presence of PU. Conversely, suppression of excessive ROS (reactive oxygen species) secured the PA (palmitate)-induced decrease of FoxO1 expression, implying that there was a cross-talk between FoxO1 pathway and ROS. Concomitantly, the inflammatory response in current study was primarily mediated via p38 MAPK/NF-κB signaling pathway besides of FoxO1 pathway. Taken together, our findings suggest that PU ameliorates endothelial dysfunction by activating FoxO1 pathway, a pivotal regulating switch of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
6
|
Girona J, Rosales R, Saavedra P, Masana L, Vallvé JC. Palmitate decreases migration and proliferation and increases oxidative stress and inflammation in smooth muscle cells: role of the Nrf2 signaling pathway. Am J Physiol Cell Physiol 2019; 316:C888-C897. [PMID: 30865473 DOI: 10.1152/ajpcell.00293.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fatty acids are essential to cell functionality and may exert diverging vascular effects including migration, proliferation, oxidative stress, and inflammation. This study examined the effect of palmitate on human coronary artery smooth muscle cell (HCASMC) function. An in vitro wound-healing assay indicated that palmitate decreased HCASMC migration in dose- and time-dependent manners. Furthermore, bromodeoxyuridine incorporation assays indicated that palmitate decreased HCASMC proliferation in a dose-response manner. Palmitate also increased reactive oxygen species formation, malondialdehyde content, and intracellular lipid droplets accompanied with increased fatty acid binding protein 4 expression. Moreover, palmitate induced gene expression (monocyte chemoattractant protein 1, matrix metalloproteinase-2, IL-1β, IL-6, IL-8, and TNF-α) and intracellular protein content (plasminogen activator inhibitor-1 and urokinase plasminogen activator) of inflammatory mediators. Finally, we showed that palmitate activates the transcription factor Nrf2 and the upstream kinases ERK1/2 and Akt in HCASMCs. The inhibitor of Nrf2, trigonelline, significantly attenuated palmitate-induced HCASMC expression of the Nrf2 target gene NQO1. These findings indicate that palmitate might be critically related to HCASMC function by slowing cell migration and proliferation and inducing lipid-laden cells, oxidative stress, and inflammation in part by activation of the Nrf2 transcription factor. Palmitate's activation of proinflammatory Nrf2 signaling may represent a novel mechanism mediating the proatherogenic actions of saturated fatty acids.
Collapse
Affiliation(s)
- Josefa Girona
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Roser Rosales
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Paula Saavedra
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Lluís Masana
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Joan-Carles Vallvé
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| |
Collapse
|
7
|
Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G, Georgescu A. The Distinct Effects of Palmitic and Oleic Acid on Pancreatic Beta Cell Function: The Elucidation of Associated Mechanisms and Effector Molecules. Front Pharmacol 2019; 9:1554. [PMID: 30719005 PMCID: PMC6348268 DOI: 10.3389/fphar.2018.01554] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to identify the mechanisms underlying the different effects of palmitic acid and oleic acid on human pancreatic beta cell function. To address this problem, the oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis and their mediator molecules have been investigated in the insulin releasing beta cells exposed to palmitic and/or oleic acid. Herein, we have demonstrated that in cultured 1.1B4 beta cells oleic acid promotes neutral lipid accumulation and insulin secretion, whereas palmitic acid is poorly incorporated into triglyceride and it does not stimulate insulin secretion from human pancreatic islets at physiologically glucose concentrations. In addition, palmitic acid caused: (1) oxidative stress through a mechanism involving increases in ROS production and MMP-2 protein expression/gelatinolytic activity associated with down-regulation of SOD2 protein; (2) endoplasmic reticulum stress by up-regulation of chaperone BiP protein and unfolded protein response (UPR) transcription factors (eIF2α, ATF6, XBP1u proteins) and by PTP-1B down-regulation in both mRNA and protein levels; (3) inflammation through enhanced synthesis of proinflammatory cytokines (IL6, IL8 proteins); and (4) apoptosis by enforced proteic expression of CHOP multifunctional transcription factor. Oleic acid alone had opposite effects due to its different capacity of controlling these metabolic pathways, in particular by reduction of the ROS levels and MMP-2 activity, down-regulation of BiP, eIF2α, ATF6, XBP1u, CHOP, IL6, IL8 and by SOD2 and PTP-1B overexpression. The supplementation of saturated palmitic acid with the monounsaturated oleic acid reversed the negative effects of palmitic acid alone regulating insulin secretion from pancreatic beta cells through ROS, MMP-2, ATF6, XBP1u, IL8 reduction and SOD2, PTP-1B activation. Our findings have shown the protective action of oleic acid against palmitic acid on beta cell lipotoxicity through promotion of triglyceride accumulation and insulin secretion and regulation of some effector molecules involved in oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Madalina Dumitrescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| |
Collapse
|
8
|
Yan HQ, Zhang D, Shi YY, You X, Shi L, Li Q, Gao FG. Ataxia-telangiectasia mutated activation mediates tumor necrosis factor-alpha induced MMP-13 up-regulation and metastasis in lung cancer cells. Oncotarget 2018; 7:62070-62083. [PMID: 27556690 PMCID: PMC5308711 DOI: 10.18632/oncotarget.11386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/08/2016] [Indexed: 12/29/2022] Open
Abstract
Despite that ataxia-telangiectasia mutated (ATM) is involved in IL-6 promoted lung cancer chemotherapeutic resistance and metastasis, the exact role of ATM in tumor necrosis factor-alpha (TNF-α) increasing tumor migration is still elusive. In the present study, we demonstrated that TNF-α promoted lung cancer cell migration by up-regulation of matrix metalloproteinase-13 (MMP-13). Notably, by gene silencing or kinase inhibition, we proposed for the first time that ATM is a key up-stream regulator of TNF-α activated ERK/p38-NF-κB pathway. The existence of TNF-α secreted in autocrine or paracrine manner by components of tumor microenvironment highlights the significance of TNF-α in inflammation-associated tumor metastasis. Importantly, in vivo lung cancer metastasis test showed that ATM depletion actually reduce the number of metastatic nodules and cancer nests in lung tissues, verifying the critical role of ATM in metastasis. In conclusion, our findings demonstrate that ATM, which could be activated by lung cancer-associated TNF-α, up-regulate MMP-13 expression and thereby augment tumor metastasis. Therefore, ATM might be a promising target for prevention of inflammation-associated lung cancer metastasis.
Collapse
Affiliation(s)
- Hong Qiong Yan
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361102, People's Republic of China
| | - Di Zhang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yuan Yuan Shi
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiang You
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361102, People's Republic of China
| | - Lei Shi
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361102, People's Republic of China
| | - Qing Li
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361102, People's Republic of China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361102, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Shang Hai Jiao Tong University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
9
|
Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 2017; 49:e291. [PMID: 28154371 PMCID: PMC5336562 DOI: 10.1038/emm.2016.157] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca2+ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca2+ release and thereby deplete ER Ca2+ stores. The resulting ER Ca2+ deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca2+ release, cytosolic and mitochondrial matrix Ca2+ concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca2+ depletion mediate persistent Ca2+ influx, further impairing cytosolic and mitochondrial Ca2+ homeostasis. Mitochondrial Ca2+ overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.
Collapse
|
10
|
Helkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Dyslipidemia Part 1--Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovascular Surg 2016; 50:107-18. [PMID: 26983667 DOI: 10.1177/1538574416628654] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dyslipidemia, more specifically, high-serum low-density lipoproteins and low-serum high-density lipoproteins, are known risk factors for cardiovascular disease. The current clinical treatment of dyslipidemia represents the outcome of a large body of fundamental basic science research on lipids, lipid metabolism, and the effects of different lipids on cellular components of the artery, inflammatory cells, and platelets. In general, lower density lipids activate intracellular pathways to increase local and systemic inflammation, monocyte adhesion, endothelial cell dysfunction and apoptosis, and smooth muscle cell proliferation, resulting in foam cell formation and genesis of atherosclerotic plaque. In contrast, higher density lipids prevent or attenuate atherosclerosis. This article is part 1 of a 2-part review, with part 1 focusing on lipid metabolism and the downstream effects of lipids on the development of atherosclerosis, and part 2 on the clinical treatment of dyslipidemia and the role of these drugs for patients with arterial disease exclusive of the coronary arteries.
Collapse
Affiliation(s)
- Alex Helkin
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeffery J Stein
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stacey Lin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sufyan Siddiqui
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kristopher G Maier
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Vivian Gahtan
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
11
|
Qiu L, Xu R, Wang S, Li S, Sheng H, Wu J, Qu Y. Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IκB/NF-κB, in atherosclerotic cell model. Exp Mol Med 2015; 47:e171. [PMID: 26138903 PMCID: PMC4525296 DOI: 10.1038/emm.2015.37] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (PA)-induced dysfunction of human umbilical vein endothelial cells (HUVECs) and to elucidate potential regulatory mechanisms in this atherosclerotic cell model. Our results showed that PA significantly accelerated the expression of PTX3 in HUVECs through the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) pathway, reduced cell viability, induced cell apoptosis and triggered the inflammatory response. Knockdown of PTX3 supported cell growth and prevented apoptosis by blocking PA-inducted nitric oxide (NO) overproduction. Honokiol significantly suppressed the overexpression of PTX3 in PA-inducted HUVECs by inhibiting IκB phosphorylation and the expression of two NF-κB subunits (p50 and p65) in the IKK/IκB/NF-κB signaling pathway. Furthermore, honokiol reduced endothelial cell injury and apoptosis by regulating the expression of inducible NO synthase and endothelial NO synthase, as well as the generation of NO. Honokiol showed an anti-inflammatory effect in PA-inducted HUVECs by significantly inhibiting the generation of interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein-1. In summary, honokiol repaired endothelial dysfunction by suppressing PTX3 overexpression in an atherosclerotic cell model. PTX3 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Ling Qiu
- Geriatrics Department, Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai, China
| | - Rong Xu
- Geriatrics Department, Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai, China
| | - Siyang Wang
- Geriatrics Department, Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai, China
| | - Shuijun Li
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hongguang Sheng
- Endocrinology Department, Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai, China
| | - Jiaxi Wu
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yi Qu
- Geriatrics Department, Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
12
|
Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, Benito M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol 2015; 14:75. [PMID: 26055507 PMCID: PMC4475625 DOI: 10.1186/s12933-015-0237-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several translational studies have identified the differential role between saturated and unsaturated fatty acids at cardiovascular level. However, the molecular mechanisms that support the protective role of oleate in cardiovascular cells are poorly known. For these reasons, we studied the protective role of oleate in the insulin resistance and in the atherosclerotic process at cellular level such as in cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). METHODS The effect of oleate in the cardiovascular insulin resistance, vascular dysfunction, inflammation, proliferation and apoptosis of VSMCs were analyzed by Western blot, qRT-PCR, BrdU incorporation and cell cycle analysis. RESULTS Palmitate induced insulin resistance. However, oleate not only did not induce cardiovascular insulin resistance but also had a protective effect against insulin resistance induced by palmitate or TNFα. One mechanism involved might be the prevention by oleate of JNK-1/2 or NF-κB activation in response to TNF-α or palmitate. Oleate reduced MCP-1 and ICAM-1 and increased eNOS expression induced by proinflammatory cytokines in ECs. Furthermore, oleate impaired the proliferation induced by TNF-α, angiotensin II or palmitate and the apoptosis induced by TNF-α or thapsigargin in VSMCs. CONCLUSIONS Our data suggest a differential role between oleate and palmitate and support the concept of the cardioprotector role of oleate as the main lipid component of virgin olive oil. Thus, oleate protects against cardiovascular insulin resistance, improves endothelial dysfunction in response to proinflammatory signals and finally, reduces proliferation and apoptosis in VSMCs that may contribute to an ameliorated atherosclerotic process and plaque stability.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Blotting, Western
- Cell Line
- Cell Proliferation/drug effects
- Chemokine CCL2/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Inflammation
- Insulin Resistance
- Intercellular Adhesion Molecule-1/drug effects
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type III/drug effects
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oleic Acid/pharmacology
- Palmitates/pharmacology
- Palmitic Acid/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Necrosis Factor-alpha/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Liliana Perdomo
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Yolanda F Otero
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Sabela Díaz-Castroverde
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| |
Collapse
|
13
|
Yu XH, Zheng XL, Tang CK. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Adv Clin Chem 2015; 70:1-30. [PMID: 26231484 DOI: 10.1016/bs.acc.2015.03.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall with lipid-laden lesions, involving a complex interaction between multiple different cell types and cytokine networks. Inflammatory responses mark all stages of atherogenesis: from lipid accumulation in the intima to plaque formation and eventual rupture. One of the most important regulators of inflammation is the transcription factor nuclear factor-κB (NF-κB), which is activated through the canonical and noncanonical pathways in response to various stimuli. NF-κB has long been regarded as a proatherogenic factor, because it is implicated in multiple pathological processes during atherogenesis, including foam cell formation, vascular inflammation, proliferation of vascular smooth muscle cells, arterial calcification, and plaque progression. In contrast, inhibition of NF-κB signaling has been shown to protect against atherosclerosis. This chapter aims to discuss recent progress on the roles of NF-κB in lipid metabolism and atherosclerosis and also to highlight its potential therapeutic benefits.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Chao-Ke Tang
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China.
| |
Collapse
|
14
|
García-Prieto CF, Gil-Ortega M, Aránguez I, Ortiz-Besoain M, Somoza B, Fernández-Alfonso MS. Vascular AMPK as an attractive target in the treatment of vascular complications of obesity. Vascul Pharmacol 2015; 67-69:10-20. [PMID: 25869500 DOI: 10.1016/j.vph.2015.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/23/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
The key for the survival of all organisms is the regulation and control of energy metabolism. Thus, several strategies have evolved in each tissue in order to balance nutrient supply with energy demand. Adenosine monophosphate-activated protein kinase (AMPK) is now recognized as a key participant in energy metabolism. It ensures an appropriate energetic supply by promoting energy conserving pathways in detriment of anabolic processes not essential for cell survival. Vascular AMPK plays a critical role in the regulation of blood flow and vascular tone through several mechanisms, including vasodilation by stimulating nitric oxide release in endothelial cells. Since obesity leads to endothelial damage and AMPK dysregulation, AMPK activation might be an important strategy to restore vascular function in cardiometabolic alterations. In the present review we focus on the role of vascular AMPK in both endothelial and smooth muscle cells, paying special attention to its dysregulation in obesity- and high-fat diet-related complications, as well as to the mechanisms and benefits of vascular AMPK activation.
Collapse
Affiliation(s)
- C F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - M Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - I Aránguez
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - M Ortiz-Besoain
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio N3, Universidad Católica del Norte de Chile, Angamos, 0610 Antofagasta, Chile
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
15
|
Da Silva MS, Rudkowska I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res 2015; 59:1249-63. [DOI: 10.1002/mnfr.201400569] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Marine S. Da Silva
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| | - Iwona Rudkowska
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| |
Collapse
|
16
|
Schlich R, Lamers D, Eckel J, Sell H. Adipokines enhance oleic acid-induced proliferation of vascular smooth muscle cells by inducing CD36 expression. Arch Physiol Biochem 2015; 121:81-7. [PMID: 26135380 DOI: 10.3109/13813455.2015.1045520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adipose tissue is not only releasing lipids but also various adipokines that are both dysregulated in the obese state and may contribute to obesity-associated vascular dysfunction and cardiovascular risk. We have previously shown that the combination of adipocyte-conditioned medium (CM) and oleic acid (OA) increases proliferation of human vascular smooth muscle cells (VSMC) in a synergistic way. We identified vascular endothelial growth factor (VEGF) as a component within CM that is responsible for most of the observed effects. In this study, we investigate novel mechanisms that underlie the combined effects of adipokine and oleic acid-induced proliferation of VSMC. Oleic acid leads to significant lipid accumulation in VSMC that is further enhanced by the combined treatment with CM. Accordingly CM stimulates CD36 expression in VSMC while OA is not affecting CD36. Silencing of CD36 was established and prevents lipid accumulation in all tested conditions. CD36 silencing also abrogates CM- and OA-induced proliferation and considerably reduces proliferation induced by the combination of CM and OA. At the same time, VEGF secretion and VEGF-receptor 1 (VEGF-R1) by VSMC was not affected by CD36 silencing. However, VEGF was not able to induce any proliferation in VSMC after CD36 silencing that also blunted VEGF-induced extracellular signal-regulated kinase (ERK) activation. Finally, combined silencing of CD36 together with a blocking antibody against VEGF prevented most of CMOA-induced proliferation. In conclusion, our results demonstrate that CD36 is mediating CM-induced proliferation of VSMC. Induction of CD36 by adipokines enhances the response of VSMC towards VEGF and OA.
Collapse
MESH Headings
- Adipocytes/cytology
- Adipocytes/metabolism
- Adipokines/metabolism
- Adipokines/pharmacology
- Adipose Tissue/cytology
- Adipose Tissue/metabolism
- Adult
- Antibodies, Neutralizing/pharmacology
- CD36 Antigens/antagonists & inhibitors
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cell Proliferation/drug effects
- Coronary Vessels/cytology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/pharmacology
- Female
- Gene Expression Regulation
- Humans
- Male
- Middle Aged
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oleic Acid/pharmacology
- Primary Cell Culture
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
Collapse
Affiliation(s)
- Raphaela Schlich
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| | | | | | | |
Collapse
|
17
|
3T3-L1 preadipocytes exhibit heightened monocyte-chemoattractant protein-1 response to acute fatty acid exposure. PLoS One 2014; 9:e99382. [PMID: 24911931 PMCID: PMC4049800 DOI: 10.1371/journal.pone.0099382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 05/14/2014] [Indexed: 12/28/2022] Open
Abstract
Preadipocytes contribute to the inflammatory responses within adipose tissue. Whilst fatty acids are known to elicit an inflammatory response within adipose tissue, the relative contribution of preadipocytes and mature adipocytes to this is yet to be determined. We aimed to examine the actions of common dietary fatty acids on the acute inflammatory and adipokine response in 3T3-L1 preadipocytes and differentiated mature adipocytes. Gene expression levels of key adipokines in 3T3-L1 preadipocytes and adipocytes were determined following incubation with palmitic acid, myristic acid or oleic acid and positive inflammatory control, lipopolysaccharide for 2 and 4 h. Inflammatory kinase signalling was assessed by analysis of nuclear factor-κB, p38-mitogen-activated protein kinase and c-jun amino-terminal kinase phosphorylation. Under basal conditions, intracellular monocyte chemoattractant protein-1 and interleukin-6 gene expression levels were increased in preadipocytes, whereas mature adipocytes expressed increased gene expression levels of leptin and adiponectin. Fatty acid exposure at 2 and 4 h increased both monocyte chemoattractant protein-1 and interleukin-6 gene expression levels in preadipocytes to greater levels than in mature adipocytes. There was an accompanying increase of inhibitor of κB-α degradation and nuclear factor-κB (p65) (Ser536) phosphorylation with fatty acid exposure in the preadipocytes only. The current study points to preadipocytes rather than the adipocytes as the contributors to both immune cell recruitment and inflammatory adipokine secretion with acute increases in fatty acids.
Collapse
|
18
|
Wang Q, Zhao Y, Sun M, Liu S, Li B, Zhang L, Yang L. 2-Deoxy-d-glucose attenuates sevoflurane-induced neuroinflammation through nuclear factor-kappa B pathway in vitro. Toxicol In Vitro 2014; 28:1183-9. [PMID: 24907647 DOI: 10.1016/j.tiv.2014.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
OBJECT Sevoflurane, one of the most commonly used anesthetics in clinic, induced neuroinflammation and caused cognitive impairment. 2-deoxy-d-glucose (2-DG) is a synthetic analogue of glucose and is clinically used in medical imaging safely. METHODS We examined the effect of 2-DG on sevoflurane-induced neuroinflammation in the mouse primary microglia cells. Mouse microglia cells were treated with 4.1% sevoflurane for 6h to examine the expression of interleukin (IL)-6 and tumor necrosis factor (TNF-α) and activation of nuclear factor-kappa B (NF-κB). Pyrrolidine dithiocarbamate (PDTC) or 2-DG was used 1h before sevoflurane treatment. RESULTS In the present study, we found that sevoflurane increased level of IL-6 and TNF-α through activating NF-κB signaling, and that 2-DG reduced sevoflurane-induced increase in IL-6 and TNF-α and nuclear NF-κB in microglia cells. CONCLUSION Our data suggests that NF-κB signaling pathway could be a target for sevoflurane-induced neuroinflammation and 2-DG might be a potential therapy to prevent or treat sevoflurane-induced neuroinflammation.
Collapse
Affiliation(s)
- Qingxiu Wang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150#, Jimo Road, Shanghai 200120, PR China
| | - Yupeng Zhao
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150#, Jimo Road, Shanghai 200120, PR China
| | - Min Sun
- Medical College of Qingdao University, 16, Jiangsu Road, Shinan District, Qingdao 266071, PR China
| | - Sheng Liu
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150#, Jimo Road, Shanghai 200120, PR China
| | - Baolin Li
- Department of Anesthesiology, The First People 's Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, PR China
| | - Lei Zhang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150#, Jimo Road, Shanghai 200120, PR China.
| | - Longqiu Yang
- Department of Anesthesiology, The First People 's Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, PR China.
| |
Collapse
|
19
|
Doronzo G, Viretto M, Barale C, Russo I, Mattiello L, Anfossi G, Trovati M. Oleic acid increases synthesis and secretion of VEGF in rat vascular smooth muscle cells: role of oxidative stress and impairment in obesity. Int J Mol Sci 2013; 14:18861-80. [PMID: 24065093 PMCID: PMC3794811 DOI: 10.3390/ijms140918861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/05/2013] [Accepted: 09/05/2013] [Indexed: 12/30/2022] Open
Abstract
Obesity is characterized by poor collateral vessel formation, a process involving vascular endothelial growth factor (VEGF) action on vascular smooth muscle cells (VSMC). Free fatty acids are involved in the pathogenesis of obesity vascular complications, and we have aimed to clarify whether oleic acid (OA) enhances VEGF synthesis/secretion in VSMC, and whether this effect is impaired in obesity. In cultured aortic VSMC from lean and obese Zucker rats (LZR and OZR, respectively) we measured the influence of OA on VEGF-A synthesis/secretion, signaling molecules and reactive oxygen species (ROS). In VSMC from LZR we found the following: (a) OA increases VEGF-A synthesis/secretion by a mechanism blunted by inhibitors of Akt, mTOR, ERK-1/2, PKC-beta, NADPH-oxidase and mitochondrial electron transport chain complex; (b) OA activates the above mentioned signaling pathways and increases ROS; (c) OA-induced activation of PKC-beta enhances oxidative stress, which activates signaling pathways responsible for the increased VEGF synthesis/secretion. In VSMC from OZR, which present enhanced baseline oxidative stress, the above mentioned actions of OA on VEGF-A, signaling pathways and ROS are impaired: this impairment is reproduced in VSMC from LZR by incubation with hydrogen peroxide. Thus, in OZR chronically elevated oxidative stress causes a resistance to the action on VEGF that OA exerts in LZR by increasing ROS.
Collapse
Affiliation(s)
- Gabriella Doronzo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences of the University of Turin, San Luigi Gonzaga Hospital, Orbassano (Turin) 10043, Italy.
| | | | | | | | | | | | | |
Collapse
|