1
|
Wang Y, Wu J, Gong Y, Wang H, Wu T, Liu R, Sui W, Zhang M. Peanut oil odor enhances the immunomodulatory effect on immunosuppressed mice by regulating the cAMP signaling pathway via the brain-spleen axis. Food Funct 2024; 15:1994-2007. [PMID: 38288526 DOI: 10.1039/d3fo03629d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The role of sniffing relative to immune function has attracted considerable attention. The present study investigated the immunomodulatory effects of peanut oil odor on cyclophosphamide (CTX)-induced immunosuppressed mice. The subset of mice subjected to prolonged (8 h) sniffing peanut oil odor (PL) demonstrated significantly elevated levels of agouti-related peptide, neuropeptide Y, and glutamate (p < 0.05), whereas it significantly down-regulated the level of γ-aminobutyric acid in the brain (p < 0.05). Furthermore, immunohistochemistry results indicated significantly increased expression of mGluR1/5 and decreased expression of GABABR in the hippocampus and hypothalamus (p < 0.05) of the PL group. Additionally, the PL group had significantly up-regulated expression levels of cAMP, Epac, Rap1, ERK1/2 and PKA (p < 0.05) and remarkably increased phosphorylation of CREB in the cAMP signaling pathway (p < 0.05), which influenced the central nervous system. Moreover, compared with CTX-induced mice, the percentages of peripheral blood T lymphocytes (CD3+CD4+ and CD3+CD8+) and the levels of splenic cytokines (IL-2, IL-4, and TNF-α) were significantly increased following PL treatment (p < 0.05). The PL group also showed significantly up-regulated expression levels of cAMP, p-p65, and p-IκBα in the spleen (p < 0.05) by western blot analysis. In summary, PL intervention significantly up-regulated the expression levels of cAMP in the brain (p < 0.05), with subsequent transfer of cAMP to the spleen which promoted phosphorylation of p65 and IκBα. This series of events enhanced the immunity of mice, which confirmed the regulatory effect of PL on the cAMP signaling pathway, thereby enhancing immune function via the brain-spleen axis.
Collapse
Affiliation(s)
- Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianfu Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ying Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Huiting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| |
Collapse
|
2
|
Di Muro G, Mangili F, Esposito E, Barbieri AM, Catalano R, Treppiedi D, Marra G, Nozza E, Lania AGA, Ferrante E, Locatelli M, Arosio M, Peverelli E, Mantovani G. A β-Arrestin 2-Biased Dopamine Receptor Type 2 (DRD2) Agonist Is More Efficacious Than Cabergoline in Reducing Cell Proliferation in PRL-Secreting but Not in Non-Functioning Pituitary Tumor Cells. Cancers (Basel) 2023; 15:3218. [PMID: 37370829 DOI: 10.3390/cancers15123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The molecular events underlying the variable effectiveness of dopamine receptor type 2 (DRD2) agonists in pituitary neuroendocrine tumors (PitNETs) are not known. Besides the canonical pathway induced by DRD2 coupling with Gi proteins, the β-arrestin 2 pathway contributes to DRD2's antimitotic effects in PRL- and NF-PitNETs. A promising pharmacological strategy is the use of DRD2-biased agonists that selectively activate only one of these two pathways. The aim of the present study was to compare the effects of two biased DRD2 ligands, selectively activating the G protein (MLS1547) or β-arrestin 2 (UNC9994) pathway, with unbiased DRD2 agonist cabergoline in PRL- and NF-PitNET cells. In rat tumoral pituitary PRL-secreting MMQ cells, UNC9994 reduced cell proliferation with a greater efficacy compared to cabergoline (-40.2 ± 20.4% vs. -21 ± 10.9%, p < 0.05), whereas the G-protein-biased agonist induced only a slight reduction. β-arrestin 2 silencing, but not pertussis toxin treatment, reverted UNC9994 and cabergoline's antiproliferative effects. In a cabergoline-resistant PRL-PitNET primary culture, UNC9994 inhibited cell proliferation and PRL release. In contrast, in NF-PitNET primary cultures (n = 23), biased agonists did not show better antiproliferative effects than cabergoline. In conclusion, the preferential activation of the β-arrestin 2 pathway by UNC9994 improves DRD2-mediated antiproliferative effects in PRL-PitNETs, suggesting a new pharmacological approach for resistant or poorly responsive tumors.
Collapse
Affiliation(s)
- Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Department of Experimental Medicine, University Sapienza of Rome, 00100 Rome, Italy
| | - Federica Mangili
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- PhD Program in Experimental Medicine, University of Milan, 20100 Milan, Italy
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Donatella Treppiedi
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- PhD Program in Experimental Medicine, University of Milan, 20100 Milan, Italy
| | - Andrea G A Lania
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
- Endocrinology and Diabetology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marco Locatelli
- Neurosurgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
3
|
Transcriptomic Classification of Pituitary Neuroendocrine Tumors Causing Acromegaly. Cells 2022; 11:cells11233846. [PMID: 36497102 PMCID: PMC9738119 DOI: 10.3390/cells11233846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Acromegaly results from growth hormone hypersecretion, predominantly caused by a somatotroph pituitary neuroendocrine tumor (PitNET). Acromegaly-causing tumors are histologically diverse. Our aim was to determine transcriptomic profiles of various somatotroph PitNETs and to evaluate clinical implication of differential gene expression. A total of 48 tumors were subjected to RNA sequencing, while expression of selected genes was assessed in 134 tumors with qRT-PCR. Whole-transcriptome analysis revealed three transcriptomic groups of somatotroph PitNETs. They differ in expression of numerous genes including those involved in growth hormone secretion and known prognostic genes. Transcriptomic subgroups can be distinguished by determining the expression of marker genes. Analysis of the entire cohort of patients confirmed differences between molecular subtypes of tumors. Transcriptomic group 1 includes ~20% of acromegaly patients with GNAS mutations-negative, mainly densely granulated tumors that co-express GIPR and NR5A1 (SF-1). SF-1 expression was verified with immunohistochemistry. Transcriptomic group 2 tumors are the most common (46%) and include mainly GNAS-mutated, densely granulated somatotroph and mixed PitNETs. They have a smaller size and express favorable prognosis-related genes. Transcriptomic group 3 includes predominantly sparsely granulated somatotroph PitNETs with low GNAS mutations frequency causing ~35% of acromegaly. Ghrelin signaling is implicated in their pathogenesis. They have an unfavorable gene expression profile and higher invasive growth rate.
Collapse
|
4
|
Zhao YY, Zhang LJ, Liang XY, Zhang XC, Chang JR, Shi M, Liu H, Zhou Y, Sun Z, Zhao YF. Pyruvate Upregulates Hepatic FGF21 Expression by Activating PDE and Inhibiting cAMP–Epac–CREB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23105490. [PMID: 35628302 PMCID: PMC9141208 DOI: 10.3390/ijms23105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) functions as a polypeptide hormone to regulate glucose and lipid metabolism, and its expression is regulated by cellular metabolic stress. Pyruvate is an important intermediate metabolite that acts as a key hub for cellular fuel metabolism. However, the effect of pyruvate on hepatic FGF21 expression and secretion remains unknown. Herein, we examined the gene expression and protein levels of FGF21 in human hepatoma HepG2 cells and mouse AML12 hepatocytes in vitro, as well as in mice in vivo. In HepG2 and AML12 cells, pyruvate at concentrations above 0.1 mM significantly increased FGF21 expression and secretion. The increase in cellular cAMP levels by adenylyl cyclase activation, phosphodiesterase (PDE) inhibition and 8-Bromo-cAMP administration significantly restrained pyruvate-stimulated FGF21 expression. Pyruvate significantly increased PDE activities, reduced cAMP levels and decreased CREB phosphorylation. The inhibition of exchange protein directed activated by cAMP (Epac) and cAMP response element binding protein (CREB) upregulated FGF21 expression, upon which pyruvate no longer increased FGF21 expression. The increase in plasma pyruvate levels in mice induced by the intraperitoneal injection of pyruvate significantly increased FGF21 gene expression and PDE activity with a reduction in cAMP levels and CREB phosphorylation in the mouse liver compared with the control. In conclusion, pyruvate activates PDEs to reduce cAMP and then inhibits the cAMP–Epac–CREB signaling pathway to upregulate FGF21 expression in hepatocytes.
Collapse
|
5
|
Spada A, Mantovani G, Lania AG, Treppiedi D, Mangili F, Catalano R, Carosi G, Sala E, Peverelli E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022; 112:15-33. [PMID: 33524974 DOI: 10.1159/000514862] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases, the presence of germline mutations in specific genes predisposes to PitNET formation, as part of syndromic diseases or familial isolated pituitary adenomas, and associates to more aggressive, invasive, and drug-resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the α subunit of the stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNET drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNET clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNET clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.
Collapse
Affiliation(s)
- Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea G Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Carosi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Sala
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
6
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
Peverelli E, Treppiedi D, Mangili F, Catalano R, Spada A, Mantovani G. Drug resistance in pituitary tumours: from cell membrane to intracellular signalling. Nat Rev Endocrinol 2021; 17:560-571. [PMID: 34194011 DOI: 10.1038/s41574-021-00514-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses. Although the expression of somatostatin and dopamine receptors in cancer cells is a prerequisite for these drugs to reach a biological effect, their presence does not guarantee the success of the therapy. Successful therapy also requires the proper functioning of the machinery of signal transduction and the finely tuned regulation of receptor desensitization, internalization and intracellular trafficking. The present Review provides an updated overview of the molecular factors underlying the pharmacological resistance of pituitary tumours. The Review discusses the experimental evidence that supports a role for receptors and intracellular proteins in the function of SSTs and DRD2 and their clinical importance.
Collapse
Affiliation(s)
- Erika Peverelli
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - Donatella Treppiedi
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Federica Mangili
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Rosa Catalano
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Spada
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Giovanna Mantovani
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
8
|
Tan Z, Lei Z, Yan Z, Ji X, Chang X, Cai Z, Lu L, Qi Y, Yin X, Han X, Lei T. Exploiting D 2 receptor β-arrestin2-biased signalling to suppress tumour growth of pituitary adenomas. Br J Pharmacol 2021; 178:3570-3586. [PMID: 33904172 DOI: 10.1111/bph.15504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine agonists targeting D2 receptor have been used for decades in treating pituitary adenomas. There has been little clear evidence implicating the canonical G protein signalling as the mechanism by which D2 receptor suppresses the growth of pituitary tumours. We hypothesize that β-arrestin2-dependent signalling is the molecular mechanism dictating D2 receptor inhibitory effects on pituitary tumour growth. EXPERIMENTAL APPROACH The involvement of G protein and β-arrestin2 in bromocriptine-mediated growth suppression in rat MMQ and GH3 tumour cells was assessed. The anti-growth effect of a β-arrestin2-biased agonist, UNC9994, was tested in cultured cells, tumour-bearing nude mice and primary cultured human pituitary adenomas. The effect of G protein signalling on tumour growth was also analysed by using a G protein-biased agonist, MLS1547, and a Gβγ inhibitor, gallein, in vitro. KEY RESULTS β-arrestin2 signalling but not G protein pathways mediated the suppressive effect of bromocriptine on pituitary tumour growth. UNC9994 inhibited pituitary tumour cell growth in vitro and in vivo. The suppressive function of UNC9994 was obtained by inducing intracellular reactive oxygen species generation through downregulating mitochondrial complex I subunit NDUFA1. The effects of Gαi/o signalling and Gβγ signalling via D2 receptor on pituitary tumour growth were cell-type-dependent. CONCLUSION AND IMPLICATIONS Given the very low expression of Gαi/o proteins in pituitary tumours and the complexity of the responses of pituitary tumours to G protein signalling pathways, our study reveals D2 receptor β-arrestin2-biased ligand may be a more promising choice to treat pituitary tumours with improved therapeutic selectivity.
Collapse
Affiliation(s)
- Zhoubin Tan
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuowei Lei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zisheng Yan
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuetao Ji
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhi Cai
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Lu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Qi
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiumei Yin
- Intensive Care Unit, Nanjing Jiangning Hospital of Jiangsu Province, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Ben-Shlomo A, Deng N, Ding E, Yamamoto M, Mamelak A, Chesnokova V, Labadzhyan A, Melmed S. DNA damage and growth hormone hypersecretion in pituitary somatotroph adenomas. J Clin Invest 2021; 130:5738-5755. [PMID: 32673291 DOI: 10.1172/jci138540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Drivers of sporadic benign pituitary adenoma growth are largely unknown. Whole-exome sequencing of 159 prospectively resected pituitary adenomas showed that somatic copy number alteration (SCNA) rather than mutation is a hallmark of hormone-secreting adenomas and that SCNAs correlate with adenoma phenotype. Using single-gene SCNA pathway analysis, we observed that both cAMP and Fanconi anemia DNA damage repair pathways were affected by SCNAs in growth hormone-secreting (GH-secreting) somatotroph adenomas. As somatotroph differentiation and GH secretion are dependent on cAMP activation and we previously showed DNA damage, aneuploidy, and senescence in somatotroph adenomas, we studied links between cAMP signaling and DNA damage. Stimulation of cAMP in C57BL/6 mouse primary pituitary cultures using forskolin or a long-acting GH-releasing hormone (GHRH) analog increased GH production and DNA damage measured by H2AX phosphorylation and a comet assay. Octreotide, a somatostatin receptor ligand that targets somatotroph adenoma GH secretion in patients with acromegaly, inhibited cAMP and GH and reversed DNA damage induction. In vivo long-acting GHRH treatment also induced pituitary DNA damage in mice. We conclude that cAMP, which induces somatotroph proliferation and GH secretion, may concomitantly induce DNA damage, potentially linking hormone hypersecretion to SCNA and genome instability. These results elucidating somatotroph adenoma pathophysiology identify pathways for targeted treatment.
Collapse
Affiliation(s)
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, and
| | | | | | - Adam Mamelak
- Pituitary Center, Department of Medicine.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | |
Collapse
|
10
|
Mangili F, Giardino E, Treppiedi D, Barbieri AM, Catalano R, Locatelli M, Lania AG, Spada A, Arosio M, Mantovani G, Peverelli E. Beta-Arrestin 2 Is Required for Dopamine Receptor Type 2 Inhibitory Effects on AKT Phosphorylation and Cell Proliferation in Pituitary Tumors. Neuroendocrinology 2021; 111:568-579. [PMID: 32512568 DOI: 10.1159/000509219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
Dopamine receptor type 2 (DRD2) agonists are the first-choice treatment for prolactin-secreting pituitary tumors but are poorly effective in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). DRD2 reduces AKT phosphorylation in lactotrophs, but no data are available in NF-PitNETs. DRD2 effects on AKT are mediated by a β-arrestin 2-dependent mechanism in mouse striatum. The aim of this study was to investigate DRD2 effects on AKT phosphorylation and cell proliferation in human primary cultured NF-PitNET cells and in rat tumoral lactotroph cells MMQ, and to test β-arrestin 2 involvement. We found that the DRD2 agonist BIM53097 induced a reduction of the p-AKT/total-AKT ratio in MMQ (-32.8 ± 17.6%, p < 0.001 vs. basal) and in a subset (n = 15/41, 36.6%) of NF-PitNETs (subgroup 1). In the remaining NF-PitNETs (subgroup 2), BIM53097 induced an increase in p-AKT. The ability of BIM53097 to reduce p-AKT correlated with its antimitotic effect, since the majority of subgroup 1 NF-PitNETs was responsive to BIM53097, and nearly all subgroup 2 NF-PitNETs were resistant. β-Arrestin 2 was expressed in MMQ and in 80% of subgroup 1 NF-PitNETs, whereas it was undetectable in 77% of subgroup 2 NF-PitNETs. In MMQ, β-arrestin 2 silencing prevented DRD2 inhibitory effects on p-AKT and cell proliferation. Accordingly, β-arrestin 2 transfection in subgroup 2 NF-PitNETs conferred to BIM53097 the ability to inhibit both p-AKT and cell growth. In conclusion, we demonstrated that β-arrestin 2 is required for DRD2 inhibitory effects on AKT phosphorylation and cell proliferation in MMQ and NF-PitNETs, paving the way for a potential role of β-arrestin 2 as a biomarker predicting NF-PitNETs' responsiveness to treatment with dopamine agonists.
Collapse
Affiliation(s)
- Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Science, Sapienza University of Rome, Rome, Italy
| | - Marco Locatelli
- Neurosurgery Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Andrea Gerardo Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, Humanitas University, Rozzano, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy,
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Lucia K, Wu Y, Garcia JM, Barlier A, Buchfelder M, Saeger W, Renner U, Stalla GK, Theodoropoulou M. Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene 2020; 39:3367-3380. [PMID: 32111982 PMCID: PMC7160059 DOI: 10.1038/s41388-020-1223-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors. Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted.
Collapse
Affiliation(s)
- Kristin Lucia
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany.,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin, Berlin, Germany.,Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Yonghe Wu
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Anne Barlier
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - Michael Buchfelder
- Department of Neurosurgery, Klinikum der Universität Erlangen, Erlangen, Germany
| | - Wolfgang Saeger
- Department of Neuropathology, Universität Hamburg, Hamburg, Germany
| | - Ulrich Renner
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Günter K Stalla
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany.,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany. .,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
12
|
Sinha S, Dwivedi N, Tao S, Jamadar A, Kakade VR, Neil MO, Weiss RH, Enders J, Calvet JP, Thomas SM, Rao R. Targeting the vasopressin type-2 receptor for renal cell carcinoma therapy. Oncogene 2020; 39:1231-1245. [PMID: 31616061 PMCID: PMC7007354 DOI: 10.1038/s41388-019-1059-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Arginine vasopressin (AVP) and its type-2 receptor (V2R) play an essential role in the regulation of salt and water homeostasis by the kidneys. V2R activation also stimulates proliferation of renal cell carcinoma (RCC) cell lines in vitro. The current studies investigated V2R expression and activity in human RCC tumors, and its role in RCC tumor growth. Examination of the cancer genome atlas (TCGA) database, and analysis of human RCC tumor tissue microarrays, cDNA arrays and tumor biopsy samples demonstrated V2R expression and activity in clear cell RCC (ccRCC). In vitro, V2R antagonists OPC31260 and Tolvaptan, or V2R gene silencing reduced wound closure and cell viability of 786-O and Caki-1 human ccRCC cell lines. Similarly in mouse xenograft models, Tolvaptan and OPC31260 decreased RCC tumor growth by reducing cell proliferation and angiogenesis, while increasing apoptosis. In contrast, the V2R agonist dDAVP significantly increased tumor growth. High intracellular cAMP levels and ERK1/2 activation were observed in human ccRCC tumors. In mouse tumors and Caki-1 cells, V2R agonists reduced cAMP and ERK1/2 activation, while dDAVP treatment had the reverse effect. V2R gene silencing in Caki-1 cells also reduced cAMP and ERK1/2 activation. These results provide novel evidence for a pathogenic role of V2R signaling in ccRCC, and suggest that inhibitors of the AVP-V2R pathway, including the FDA-approved drug Tolvaptan, could be utilized as novel ccRCC therapeutics.
Collapse
Affiliation(s)
- Sonali Sinha
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nidhi Dwivedi
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shixin Tao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abeda Jamadar
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Vijayakumar R Kakade
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Maura O' Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert H Weiss
- Division of Nephrology and Comprehensive Cancer Center, University of California, Davis, CA, USA
- Medical Service, VA Northern California Health Care System, Sacramento, CA, USA
| | - Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - James P Calvet
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Chaperones, somatotroph tumors and the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Mol Cell Endocrinol 2020; 499:110607. [PMID: 31586652 DOI: 10.1016/j.mce.2019.110607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
Abstract
The cAMP-PKA pathway plays an essential role in the pituitary gland, governing cell differentiation and survival, and maintenance of endocrine function. Somatotroph growth hormone transcription and release as well as cell proliferation are regulated by the cAMP-PKA pathway; cAMP-PKA pathway abnormalities are frequently detected in sporadic as well as in hereditary somatotroph tumors and more rarely in other pituitary tumors. Inactivating variants of the aryl hydrocarbon receptor-interacting protein (AIP)-coding gene are the genetic cause of a subset of familial isolated pituitary adenomas (FIPA). Multiple functional links between the co-chaperone AIP and the cAMP-PKA pathway have been described. This review explores the role of chaperones including AIP in normal pituitary function as well as in somatotroph tumors, and their interaction with the cAMP-PKA pathway.
Collapse
Affiliation(s)
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| |
Collapse
|
14
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Interaction of AIP with protein kinase A (cAMP-dependent protein kinase). Hum Mol Genet 2019; 27:2604-2613. [PMID: 29726992 DOI: 10.1093/hmg/ddy166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene cause mostly somatotropinomas and/or prolactinomas in a subset of familial isolated pituitary adenomas (FIPA). AIP has been shown to interact with phosphodiesterases (PDEs) and G proteins, suggesting a link to the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Upregulation of PKA is seen in sporadic somatotropinomas that carry GNAS mutations, and those in Carney complex that are due to PRKAR1A mutations. To elucidate the mechanism of AIP-dependent pituitary tumorigenesis, we studied potential functional and physical interactions of AIP with PKA's main subunits PRKAR1A (R1α) and PRKACA (Cα). We found that AIP physically interacts with both R1α and Cα; this interaction is enhanced when all three components are present, but maintained during Cα-R1α dissociation by PKA activation, indicating that AIP binds Cα/R1α both in complex and separately. The interaction between AIP and R1α/Cα is reduced when the frequent AIP pathogenic mutation p.R304* is present. AIP protein levels are regulated both by translation and the ubiquitin/proteasome pathway and Cα stabilizes both AIP and R1α protein levels. AIP reduction by siRNA leads to an increase of PKA activity, which is disproportionately enhanced during PDE4-inhibition. We show that AIP interacts with the PKA pathway on multiple levels, including a physical interaction with both the main regulatory (R1α) and catalytic (Cα) PKA subunits and a functional interaction with PDE4-dependent PKA activation. These findings provide novel insights on the mechanisms of AIP-dependent pituitary tumorigenesis.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
16
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
17
|
cAMP/PKA-induced filamin A (FLNA) phosphorylation inhibits SST2 signal transduction in GH-secreting pituitary tumor cells. Cancer Lett 2018; 435:101-109. [PMID: 30098401 DOI: 10.1016/j.canlet.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
An efficient intracellular response to somatostatin analogs (SSA) in pituitary tumors requires filamin A (FLNA). Since cAMP pathway plays an important role in GH-secreting pituitary tumors pathogenesis and FLNA is phosphorylated by PKA on S2152, aim of this study was to investigate in tumoral somatotrophs the impact of cAMP pathway activation and SSA stimulation on FLNA phosphorylation and the consequences on SST2 function. We found a PKA-mediated increase (2-fold) and SST2 agonist-induced decrease (-50%) of FLNA phosphorylation in GH3, GH4C1 and primary somatotroph tumor cells. This modification regulates FLNA function. Indeed, phosphomimetic S2152D FLNA mutant, but not phosphodeficient S2152A, abolished the known SSA antitumoral effects, namely: 1) inhibition of cell proliferation, reduction of cyclin D3 and increase of p27; 2) increase of cell apoptosis; 3) inhibition of cell migration via RhoA activation and cofilin phosphorylation. Coimmunoprecipitation and immunofluorescence assays showed that S2152A FLNA was recruited to activated SST2, whereas S2152D FLNA constitutively bound SST2 on the plasma membrane, but prevented Gαi proteins recruitment to SST2. In conclusion, we demonstrated that FLNA phosphorylation, promoted by cAMP pathway activation and inhibited by SSA, prevented SST2 signaling in GH-secreting tumoral pituitary cells.
Collapse
|
18
|
Faggi L, Giustina A, Tulipano G. Effects of metformin on cell growth and AMPK activity in pituitary adenoma cell cultures, focusing on the interaction with adenylyl cyclase activating signals. Mol Cell Endocrinol 2018; 470:60-74. [PMID: 28962892 DOI: 10.1016/j.mce.2017.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023]
Abstract
For a few years we have been investigating AMP-activated protein kinase (AMPK) as a target for drug therapy of GH-secreting pituitary adenomas. Aim of this study was to investigate the direct effects of metformin, which causes AMPK activation in different cell types, on rat pituitary adenoma cell growth and on related cell signalling pathways. Our results suggest that metformin can exert a growth-inhibitory activity in rat pituitary tumor cells mediated by AMPK activation, although multiple mechanisms are most likely involved. Membrane proteins, including growth factor receptors, are valuable targets of AMPK. The inhibition of the mTOR-p70S6 kinase signalling pathway plays a role in the suppressive effect of metformin on pituitary tumor cell growth. Metformin did not affect the MTT reduction activity in energetic stress conditions. Finally, metformin was still able to induce AMPK activation and to inhibit cell growth in cells treated with forskolin and in transfected cells overexpressing GHRH-receptor and treated with GHRH. Hence, adenylyl cyclase over-activation does not account for the lack of response of some human pituitary tumors to AMPK-activating compounds in vitro.
Collapse
Affiliation(s)
- Lara Faggi
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Andrea Giustina
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Italy; Endocrine Service, University of Brescia, Italy
| | - Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
19
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
20
|
Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, AbouAlaiwi WA. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics 2017; 50:1-9. [PMID: 29093194 DOI: 10.1152/physiolgenomics.00062.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscarinic acetylcholine receptors belong to the G protein-coupled receptor superfamily and are widely known to mediate numerous functions within the central and peripheral nervous system. Thus, they have become attractive therapeutic targets for various disorders. It has long been known that the parasympathetic system, governed by acetylcholine, plays an essential role in regulating cardiovascular function. Unfortunately, due to the lack of pharmacologic selectivity for any one muscarinic receptor, there was a minimal understanding of their distribution and function within this region. However, in recent years, advancements in research have led to the generation of knockout animal models, better antibodies, and more selective ligands enabling a more thorough understanding of the unique role muscarinic receptors play in the cardiovascular system. These advances have shown muscarinic receptor 2 is no longer the only functional subtype found within the heart and muscarinic receptors 1 and 3 mediate both dilation and constriction in the vasculature. Although muscarinic receptors 4 and 5 are still not well characterized in the cardiovascular system, the recent generation of knockout animal models will hopefully generate a better understanding of their function. This mini review aims to summarize recent findings and advances of muscarinic involvement in the cardiovascular system.
Collapse
Affiliation(s)
- Hannah C Saternos
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Hayley M Gibson
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Mahmood A Meqdad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Raymond B Antypas
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Ajay Lingireddy
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Wissam A AbouAlaiwi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| |
Collapse
|
21
|
Grassi ES, Dicitore A, Negri I, Borghi MO, Vitale G, Persani L. 8-Cl-cAMP and PKA I-selective cAMP analogs effectively inhibit undifferentiated thyroid cancer cell growth. Endocrine 2017; 56:388-398. [PMID: 27460006 DOI: 10.1007/s12020-016-1057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Abstract
The main purpose of our work was to evaluate the effects of different cyclic adenosine monophosphate analogs on thyroid cancer-derived cell lines. In particular we studied 8-chloroadenosine-3',5'-cyclic monophosphate, the most powerful cyclic adenosine monophosphate analog, and the protein kinase A I-selective combination of 8-hexylaminoadenosine-3',5'cyclic monophosphate and 8-piperidinoadenosine-3',5'-cyclic monophosphate. The cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells growth. Site-selective cyclic adenosine monophosphate analogs are a class of cyclic adenosine monophosphate-derivate molecules that has been synthesized to modulate protein kinase A activity. Although the cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells proliferation, there are currently no studies exploring the role of cyclic adenosine monophosphate analogs in thyroid cancer. We evaluated the effects on cell proliferation, apoptosis activation and alterations of different intracellular pathways using 3-(4,5-dimetylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytofluorimetry, western blotting, and kinase inhibitors. Our results show that both compounds have antiproliferative potential. Both treatments were able to modify protein kinase A RI/RII ratio, thus negatively influencing cancer cells growth. Moreover, the two treatments differentially modulated various signaling pathways that regulate cell proliferation and apoptosis. Both treatments demonstrated interesting characteristics that prompt further studies aiming to understand the intimate interaction between different intracellular pathways and possibly develop novel anticancer therapies for undifferentiated thyroid cancer.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Irene Negri
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
| |
Collapse
|
22
|
Sun W, Jiao W, Huang Y, Li R, Zhang Z, Wang J, Lei T. Exchange proteins directly activated by cAMP induce the proliferation of rat anterior pituitary GH3 cells via the activation of extracellular signal-regulated kinase. Biochem Biophys Res Commun 2017; 485:355-359. [PMID: 28216156 DOI: 10.1016/j.bbrc.2017.02.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 10/24/2022]
Abstract
Cyclic adenosine 3'-5'-monophosphate (cAMP) plays a crucial role in regulating pituitary cell proliferation and hormone synthesis. Recent evidence suggests that exchange proteins directly activated by cAMP (Epacs) may mediate the effects of cAMP. Here we used rat anterior pituitary GH3 cells as the experiment model to demonstrate that forskolin increased the proliferation of GH3 cells and the phosphorylation of ERK1/2, and these effects were inhibited by PKA or Epac inhibitors. Epac activator 8-pCPT-2'-O-Me-cAMP increased GH3 cell proliferation and this was blocked by ESI-09, an Epac inhibitor. In contrast, forskolin-induced phosphorylation of CREB was unaffected by Epac inhibition. Notably, increased phosphorylation of ERK1/2 was correlated with increased cyclin D3 expression in GH3 cells. Furthermore, knockdown of Epac as well as B-Raf and MEK inhibitors blocked 8-pCPT-2'-O-Me-cAMP induced proliferation of GH3 cells and the phosphorylation of ERK1/2. In conclusion, our study suggests that Epac mediates cAMP induced pituitary cell proliferation via B-Raf and MAPK dependent mechanism.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Jiao
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yimin Huang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ran Li
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhuo Zhang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Junwen Wang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ting Lei
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
23
|
Abstract
First-generation somatostatin receptors ligands (SRL) are the mainstay in the medical treatment of acromegaly, however the percentage of patients controlled with these drugs significantly varies in the different studies. Many factors are involved in the resistance to SRL. In this review, we update the physiology of somatostatin and its receptors (sst), the use of SRL in the treatment of acromegaly and the factors involved in the response to these drugs. The SRL act through interaction with the sst, which up to now have been characterized as five subtypes. The first-generation SRL, octreotide and lanreotide, are considered sst2 specific and have biochemical response rates varying from 20 to 70%. Tumor volume reduction can be found in 36-75% of patients. Several factors may determine the response to these drugs, such as sst, AIP, E-cadherin, ZAC1, filamin A and β-arrestin expression in the somatotropinomas. In patients resistant to first-generation SRL, alternative medical treatment options include: SRL high dose regimens, SRL in combination with cabergoline or pegvisomant, or the use of pasireotide. Pasireotide is a next-generation SRL with a broader pattern of interaction with sst. In the light of the recent increase of treatment options in acromegaly and the deeper knowledge of the determinants of response to the current first-line therapy, a shift from a trial-and-error treatment to a personalized one could be possible.
Collapse
Affiliation(s)
- Monica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 9th floor, Ilha do Fundão, Rio de Janeiro, 21941-913, Brazil.
- Neuroendocrinology Section and Molecular Genetics Laboratory, Secretaria Estadual de Saúde do Rio de Janeiro, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 9th floor, Ilha do Fundão, Rio de Janeiro, 21941-913, Brazil
- Neuroendocrinology Section and Molecular Genetics Laboratory, Secretaria Estadual de Saúde do Rio de Janeiro, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Federico Gatto
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST Genoa, Genoa, Italy
| |
Collapse
|
24
|
Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression. Sci Rep 2016; 6:32776. [PMID: 27612207 PMCID: PMC5017209 DOI: 10.1038/srep32776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023] Open
Abstract
Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor.
Collapse
|
25
|
Nascimento AR, Macheroni C, Lucas TFG, Porto CS, Lazari MFM. Crosstalk between FSH and relaxin at the end of the proliferative stage of rat Sertoli cells. Reproduction 2016; 152:613-628. [PMID: 27601715 DOI: 10.1530/rep-16-0330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022]
Abstract
Follicle-stimulating hormone (FSH) stimulates the proliferation of immature Sertoli cells through the activation of PI3K/AKT/mTORC1 and MEK/ERK1/2 pathways. Mature Sertoli cells stop proliferating and respond to FSH by stimulating cAMP production. To gain insight into possible mechanisms involved in this switch as well as the impact of paracrine factors that stimulate cell proliferation, we analyzed the effects of FSH and relaxin on intracellular signaling pathways involved with proliferation and differentiation in Sertoli cells from 15-day-old rats, which are close to the transition between the two stages. FSH stimulated 3H-thymidine incorporation and cyclin D1 expression, changes associated with proliferation. In contrast, FSH inhibited AKT and ERK1/2 phosphorylation, activated cAMP production and induced changes in several cell cycle genes that were compatible with differentiation. Relaxin also stimulated 3H-thymidine incorporation but increased phosphorylation of ERK1/2 and AKT. When both hormones were added simultaneously, relaxin attenuated FSH-mediated inhibition of ERK1/2 and AKT phosphorylation and FSH-mediated activation of cAMP production. FSH but not relaxin increased CREB phosphorylation, and relaxin but not FSH shifted NF-κB expression from the cytoplasm to the nucleus. Relaxin did not inhibit the effects of FSH on inhibin α and Bcl2 expression. We propose that at this time of Sertoli cell development, FSH starts to direct cells to differentiation through activation of cAMP/CREB and inhibition of ERK1/2 and AKT pathways. Relaxin counteracts FSH signaling through the inhibition of cAMP and activation of ERK1/2, AKT and NF-κB, but does not block the differentiation process triggered by FSH.
Collapse
Affiliation(s)
- Aline R Nascimento
- Section of Experimental EndocrinologyDepartment of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Carla Macheroni
- Section of Experimental EndocrinologyDepartment of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Thais F G Lucas
- Section of Experimental EndocrinologyDepartment of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Catarina S Porto
- Section of Experimental EndocrinologyDepartment of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Maria F M Lazari
- Section of Experimental EndocrinologyDepartment of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Ronchi CL, Peverelli E, Herterich S, Weigand I, Mantovani G, Schwarzmayr T, Sbiera S, Allolio B, Honegger J, Appenzeller S, Lania AG, Reincke M, Calebiro D, Spada A, Buchfelder M, Flitsch J, Strom TM, Fassnacht M. Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas. Eur J Endocrinol 2016; 174:363-72. [PMID: 26701869 DOI: 10.1530/eje-15-1064] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
CONTEXT Alterations in the cAMP signaling pathway are common in hormonally active endocrine tumors. Somatic mutations at GNAS are causative in 30-40% of GH-secreting adenomas. Recently, mutations affecting the USP8 and PRKACA gene have been reported in ACTH-secreting pituitary adenomas and cortisol-secreting adrenocortical adenomas respectively. However, the pathogenesis of many GH-secreting adenomas remains unclear. AIM Comprehensive genetic characterization of sporadic GH-secreting adenomas and identification of new driver mutations. DESIGN Screening for somatic mutations was performed in 67 GH-secreting adenomas by targeted sequencing for GNAS, PRKACA, and USP8 mutations (n=31) and next-generation exome sequencing (n=36). RESULTS By targeted sequencing, known activating mutations in GNAS were detected in five cases (16.1%), while no somatic mutations were observed in both PRKACA and USP8. Whole-exome sequencing identified 132 protein-altering somatic mutations in 31/36 tumors with a median of three mutations per sample (range: 1-13). The only recurrent mutations have been observed in GNAS (31.4% of cases). However, seven genes involved in cAMP signaling pathway were affected in 14 of 36 samples and eight samples harbored variants in genes involved in the calcium signaling or metabolism. At the enrichment analysis, several altered genes resulted to be associated with developmental processes. No significant correlation between genetic alterations and the clinical data was observed. CONCLUSION This study provides a comprehensive analysis of somatic mutations in a large series of GH-secreting adenomas. No novel recurrent genetic alterations have been observed, but the data suggest that beside cAMP pathway, calcium signaling might be involved in the pathogenesis of these tumors.
Collapse
Affiliation(s)
- Cristina L Ronchi
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Erika Peverelli
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Sabine Herterich
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Isabel Weigand
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Giovanna Mantovani
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Thomas Schwarzmayr
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Silviu Sbiera
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Bruno Allolio
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Jürgen Honegger
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Silke Appenzeller
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, W
| | - Andrea G Lania
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Martin Reincke
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Davide Calebiro
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Anna Spada
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Michael Buchfelder
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Joerg Flitsch
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Tim M Strom
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, W
| | - Martin Fassnacht
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, W
| |
Collapse
|
27
|
Vitali E, Cambiaghi V, Spada A, Tresoldi A, Zerbi A, Peverelli E, Carnaghi C, Mantovani G, Lania AG. cAMP effects in neuroendocrine tumors: The role of Epac and PKA in cell proliferation and adhesion. Exp Cell Res 2015; 339:241-51. [PMID: 26589262 DOI: 10.1016/j.yexcr.2015.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/18/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023]
Abstract
cAMP effects have been initially attributed to protein kinase A (PKA) activation. Subsequently, two exchange proteins directly activated by cAMP (Epac1/2) have been identified as cAMP targets. Aim of this study was to investigate cAMP effects in pancreatic-NET (P-NET) and bronchial carcinoids and in corresponding cell lines (QGP-1 and H727) on cell proliferation and adhesion and to determine PKA and Epac role in mediating these effects. We found that cAMP increased cyclin D1 expression in P-NET and QGP-1 cells, whereas it had opposite effects on bronchial carcinoids and H727 cells and it promoted cell adhesion in QGP-1 and H727 cells. These effects are mimicked by Epac and PKA specific analogs, activating the small GTPase Rap1. In conclusion, we demonstrated that cAMP exerted divergent effects on proliferation and promoted cell adhesion of different neuroendocrine cell types, these effects being mediated by both Epac and PKA and involving the same effector GTPase Rap1.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Rozzano, Italy
| | - V Cambiaghi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Rozzano, Italy
| | - A Spada
- Fondazione IRCCS Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - A Tresoldi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Rozzano, Italy
| | - A Zerbi
- Pancreas Surgery Unit, IRCCS Humanitas Clinical Institute, Rozzano, Italy
| | - E Peverelli
- Fondazione IRCCS Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - C Carnaghi
- Medical Oncology and Hematology Unit, Cancer Center, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
| | - G Mantovani
- Fondazione IRCCS Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - A G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Rozzano, Italy; Endocrinology Unit, Humanitas Research Hospital, Milan, Rozzano, Italy.
| |
Collapse
|
28
|
Gajewska A, Zielinska-Gorska M, Wolinska-Witort E, Siawrys G, Baran M, Kotarba G, Biernacka K. Intracellular mechanisms involved in copper-gonadotropin-releasing hormone (Cu-GnRH) complex-induced cAMP/PKA signaling in female rat anterior pituitary cells in vitro. Brain Res Bull 2015; 120:75-82. [PMID: 26551063 DOI: 10.1016/j.brainresbull.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023]
Abstract
The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu-GnRH molecule including specific pattern of intracellular activity induced by complex in anterior pituitary cells in vitro.
Collapse
Affiliation(s)
- Alina Gajewska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland.
| | - Marlena Zielinska-Gorska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Ewa Wolinska-Witort
- Neuroendocrinology Department, Medical Centre for Postgraduate Education, Marymoncka 99/103 st., 01-813 Warsaw, Poland
| | - Gabriela Siawrys
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A st. 10-719 Olsztyn, Poland
| | - Marta Baran
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Grzegorz Kotarba
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Katarzyna Biernacka
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| |
Collapse
|
29
|
Calejo AI, Taskén K. Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins. Front Pharmacol 2015; 6:192. [PMID: 26441649 PMCID: PMC4562273 DOI: 10.3389/fphar.2015.00192] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart.
Collapse
Affiliation(s)
- Ana I Calejo
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjetil Taskén
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Cushing syndrome caused by cortisol-producing adrenal adenomas is a rare condition, associated with high morbidity due to weight gain, diabetes mellitus, osteoporosis, hypertension, muscle weakness, mood disturbance and others. The first gene to be identified as causative of Cushing syndrome was PRKAR1A. We present an update on protein kinase A (PKA) defects and Cushing syndrome. RECENT FINDINGS The cyclic AMP-dependent PKA catalytic subunit alpha (PRKACA) hotspot point mutation (c.617A > C [p.Leu206Arg]), leading to an increase of basal PKA activity, and formation of cortisol-producing adenoma has been frequently shown to cause the most common form of adrenocorticotropic hormone-independent Cushing syndrome. SUMMARY Somatic PRKACA mutations have been found in up to 50% of patients with adrenal adenomas. Germline PRKACA amplification was also seen in bilateral adrenal hyperplasias. PRKACA activation was associated with higher cortisol levels, smaller tumor size and overt Cushing syndrome. This breakthrough is expected to improve our understanding of how PKA defects lead to Cushing syndrome and may spearhead the development of new, molecularly designed therapies.
Collapse
Affiliation(s)
- Mihail Zilbermint
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
31
|
Formosa R, Vassallo J. cAMP signalling in the normal and tumorigenic pituitary gland. Mol Cell Endocrinol 2014; 392:37-50. [PMID: 24845420 DOI: 10.1016/j.mce.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 01/06/2023]
Abstract
cAMP signalling plays a key role in the normal physiology of the pituitary gland, regulating cellular growth and proliferation, hormone production and release. Deregulation of the cAMP signalling pathway has been reported to be a common occurrence in pituitary tumorigenesis. Several mechanisms have been implicated including somatic mutations, gene-gene interactions and gene-environmental interactions. Somatic mutations in G-proteins and protein kinases directly alter cAMP signalling, while malfunctioning of other signalling pathways such as the Raf/MAPK/ERK, PI3K/Akt/mTOR and Wnt pathways which normally interact with the cAMP pathway may mediate indirect effects on cAMP and varying downstream effectors. The aryl hydrocarbon receptor signalling pathway has been implicated in pituitary tumorigenesis and we review its role in general and specifically in relation to cAMP de-regulation.
Collapse
Affiliation(s)
- R Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Level 0, Block A, Mater Dei Hospital, Msida MSD2080, Malta.
| | - J Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Level 0, Block A, Mater Dei Hospital, Msida MSD2080, Malta.
| |
Collapse
|