1
|
Huang C, Zhao Y, Hu J. Endocrine-Disruptive Effects of Adenylate Cyclase Activator Forskolin: In Vitro and In Vivo Evidence. TOXICS 2024; 12:701. [PMID: 39453121 PMCID: PMC11510926 DOI: 10.3390/toxics12100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Forskolin (FSK) is a potent adenylate cyclase activator and may display endocrine-disruptive effects via the disruption of steroidogenesis. Here, we tested this hypothesis by use of the in vitro H295R steroidogenesis assay and the in vivo long-term medaka (Oryzias latipes) exposure assay. The results from the H295R assay demonstrated that the transcriptional levels of a series of genes involved in steroidogenesis, including HSD3B2, CYP11A, CYP11B2, CYP17, CYP19, and CYP21, were remarkably up-regulated. Meanwhile, the productions of estrogens (17β-estradiol (17β-E2) and estrone (E1)) and progestins (progesterone (PGT) and 17-hydroxyprogesterone (17-HPT)) were significantly increased, and those of androgens (androstenedione (ADD) and testosterone (TTR)) were significantly inhibited. After waterborne exposure of medaka to FSK for 100 days, the gene expressions of HMGR, HSD17B1, CYP17B, CYP19A, and CYP21A were significantly enhanced in the gonads of male medaka. 17β-E2 was remarkably induced, although without statistical significance. In addition, the biomarker genes for estrogenicity, including VTG-I, VTG-II, CHG-H, and CHG-L, were significantly induced in male medaka livers. Pathological damage to their gonads was further identified. Therefore, the results demonstrated that FSK modulates the transcriptions of steroidogenesis genes and alters hormone levels in vitro and in vivo, which is a mark of endocrine disruption in organisms.
Collapse
Affiliation(s)
- Chong Huang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (C.H.); (J.H.)
| | - Yanbin Zhao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (C.H.); (J.H.)
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (C.H.); (J.H.)
| |
Collapse
|
2
|
Liu B, Liang YY, Guo HY, Liu BS, Yang JW, Zhang N, Xian L, Zhu KC, Zhang DC. Genomic structures of insulin-like growth factor from golden pompano (Trachinotus ovatus) and their expression responses to the feed types. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1791-1809. [PMID: 38904727 DOI: 10.1007/s10695-024-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Golden pompano is an important aquaculture product in the coastal regions of southern China, which is highly dependent on insulin-like growth factor (IGF) for various biological processes. The cDNAs of ToIGF1, ToIGF2, and ToIGF3 are 1718 bp, 1658 bp, and 2272 bp in length, respectively, with corresponding amino acid sequences of 185 aa, 215 aa, and 194 aa. These sequences consist of 5 parts, including the signal peptide, the B domain, the C domain, the A domain, the D domain, and the E domain, which are also found in other species. While ToIGF1 has no SSR polymorphism, ToIGF2 and ToIGF3 have 3 and 1 SSR polymorphism sites, respectively. In terms of tissue expression, ToIGF1 is predominantly expressed in the liver, ToIGF2 shows its highest expression in the gills, and ToIGF3 also shows its highest expression in the gills, but no expression in the liver and spleen. These tissue distribution results suggest that ToIGFs are not only present in growth-related tissues such as the brain, muscle, and liver, but also in reproductive tissues, tissues that regulate osmotic pressure, and tissues related to food intake. This observation is consistent with other bony fish species and highlights the extensive biological functions of ToIGFs that need to be further explored and exploited. In addition, the expression levels of ToIGFs were found to be different in the different dietary groups, including the pelleted food group, the frozen squid group, and the frozen fish group. In the pelleted diet group, ToIGF1 and ToIGF2 were highly expressed in the liver and intestinal tissues, followed by the frozen fish group. These results suggest that the type of diet can affect the body's energy metabolism by influencing tissue expression of growth-related genes, which in turn affects individual growth.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China
| | | | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China.
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| |
Collapse
|
3
|
Ghosh S, Biswas S, Mukherjee U, Karmakar S, Maitra S. Participation of follicular superoxides, inflammatory modulators, and endocrine factors in zebrafish (Danio rerio) ovulation: Cross-talk between PKA and MAPK signaling in Pgr regulation of ovulatory markers. Mol Cell Endocrinol 2024; 585:112180. [PMID: 38342135 DOI: 10.1016/j.mce.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1β, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.
Collapse
Affiliation(s)
- Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
4
|
Mukherjee U, Das S, Ghosh S, Maitra S. Reproductive toxicity of bisphenol A, at environmentally relevant concentrations, on ovarian redox balance, maturational response, and intra-oocyte signalling events in Labeo bata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167415. [PMID: 37777122 DOI: 10.1016/j.scitotenv.2023.167415] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Bisphenol A (BPA) is a widely used plastic monomer that potentially interferes with ovarian neuroendocrine, endocrine, and autocrine/paracrine factors, causing reproductive dysfunction. However, the influence of BPA on redox balance, estrogen receptor (ER) expression vis-à-vis meiotic cell cycle progression, and intra-oocyte signalling events has not been extensively investigated. The present study examines the impact of BPA on reproductive toxicity in female Labeo bata (Order Cypriniformes, Family Cyprinidae), a freshwater teleost preferred as a food fish in the Indian subcontinent. Our results show that while ovarian weight (gonadosomatic index, GSI) and dynamics of follicular growth undergo pronounced changes during the annual reproductive cycle, chronic BPA exposure at environmentally relevant concentrations promotes follicular atresia concomitant with reduced GSI during the spawning phase, the highest response being observed due to low-dose (0.1 μg/L, 0.438 nM) BPA exposure in vivo. Furthermore, BPA perturbation of ovarian StAR expression and ERα/ERβ homeostasis corroborates with elevated oxidative stress in BPA-treated ovary, FG follicles, and follicular cells. A sharp increase in ROS accumulation and nitric oxide (NO) levels in BPA-treated full-grown (FG) follicles coupled with loss of redox balance, elevated follicular cell death, and activation of apoptotic markers (caspase -8, -9, -3, Bax) indicate poor oocyte health and reproductive toxicity. Importantly, maturational steroid (MIS, 17,20β-P)-induced cyclin B-p34cdc2 activation and elevated GVBD (germinal vesicle breakdown) response require protein kinase A (PKA) inhibition and participation of Mos/MAPK- and cdc25-mediated signalling events. While the adenylate cyclase activator forskolin (FK) abrogates, priming with a PKA inhibitor (H89) promotes the meiotic G2-M1 transition, confirming the role of PKA in meiotic cell cycle progression in this species. Furthermore, the negative influence of BPA priming on 17,20β-P-induced oocyte maturation involves elevated PKAc phosphorylation (activation) and significant alteration in Mos/MAPK signalling, indicating derailed meiotic maturational competence and disrupted oocyte quality.
Collapse
Affiliation(s)
- Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sriparna Das
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
5
|
Gupta P, Mahapatra A, Suman A, Ray SS, Malafaia G, Singh RK. Polystyrene microplastics disrupt female reproductive health and fertility via sirt1 modulation in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132359. [PMID: 37639793 DOI: 10.1016/j.jhazmat.2023.132359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) pollution poses an emerging threat to aquatic biota, which could hinder their physiological processes. Recently various evidence has demonstrated the toxic impacts of MPs on cellular and organismal levels, but still, the underlying molecular mechanism behind their toxicity remains ambiguous. The hypothalamic-pituitary-gonadal (HPG) axis regulates the synthesis and release of sex steroid hormones, and SIRT1 plays a vital role in this process. The current study aimed to elucidate the harmful effects of MPs on female reproduction via SIRT1 modulation. Healthy female zebrafish were exposed to different concentrations (50 and 500 µg/L) of polystyrene microplastics (PS-MPs). The results revealed a significant change in the gonadosomatic index (GSI) after exposure to PS-MPs. In addition, the decreased fecundity rate displayed an evident dosage effect, indicating that exposure to PS-MPs causes deleterious effects on fertilization. Furthermore, significantly enhanced levels of reactive oxygen species (ROS) and apoptotic signals through the TUNEL assay were evaluated in different treated groups. Moreover, morphological alterations in the gonads of zebrafish exposed to MPs were also observed through H&E staining. The subsequent change in plasma steroid hormone levels (E2/T ratio) showed an imbalance in hormonal homeostasis. Meanwhile, to follow PS-MPs' effects on the HPG axis via SIRT1 modulation and gene expression related to steroidogenesis, SIRT1/p53 pathway was evaluated through qPCR. The altered transcription levels of genes indicated the plausible interference of PS-MPs on the HPG axis function. Our in-silico molecular docking study proves that PS-MPs efficiently bind and inhibit endocrine receptors and SIRT1. Thus, these findings add to our understanding of the probable molecular mechanisms of reproductive impairment caused by PS-MPs in zebrafish.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil; Post-Graduation Programa in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO 74605-050, Brazil.
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
6
|
Biswas S, Ghosh S, Maitra S. Role of insulin-like growth factor 1 (IGF1) in the regulation of mitochondrial bioenergetics in zebrafish oocytes: lessons from in vivo and in vitro investigations. Front Cell Dev Biol 2023; 11:1202693. [PMID: 37457295 PMCID: PMC10347385 DOI: 10.3389/fcell.2023.1202693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Optimal mitochondrial functioning is indispensable for acquiring oocyte competence and meiotic maturation, whilst mitochondrial dysfunction may lead to diminished reproductive potential and impaired fertility. The role of the intra-ovarian IGF system in ovarian follicular dynamics has been implicated earlier. Although several studies have demonstrated the role of the IGF axis in facilitating mitochondrial function over a multitude of cell lines, its role in oocyte energy metabolism remains largely unexplored. Here using zebrafish, the relative importance of IGF1 in modulating oocyte mitochondrial bioenergetics has been investigated. A dramatic increase in ovarian lhcgr and igf1 expression accompanied heightened ATP levels and mitochondrial polarization in full-grown (FG) oocytes resuming meiotic maturation and ovulation in vivo. Concomitant with elevated igf1 expression and IGF1R phosphorylation, hCG (LH analog) stimulation of FG follicles in vitro prompted a sharp increase in NRF-1 and ATP levels, suggesting a positive influence of gonadotropin action on igf1 expression vis-à-vis oocyte bioenergetics. While recombinant IGF1 administration enhanced mitochondrial function, IGF1R immunodepletion or priming with PI3K inhibitor wortmannin could abrogate NRF-1 immunoreactivity, expression of respiratory chain subunits, ΔΨM, and ATP content. Mechanistically, activation of PI3K/Akt signaling in IGF1-treated follicles corroborated well with the rapid phosphorylation of GSK3β at Ser9 (inactive) followed by PGC-1β accumulation. While selective inhibition of GSK3β promoted PGC-1β, Akt inhibition could abrogate IGF1-induced p-GSK3β (Ser9) and PGC-1β immunoreactive protein indicating Akt-mediated GSK3β inactivation and PGC-1β stabilization. The IGF1-depleted follicles showed elevated superoxide anions, subdued steroidogenic potential, and attenuated G2-M1 transition. In summary, this study highlights the importance of IGF1 signaling in oocyte bioenergetics prior to resumption of meiosis.
Collapse
|
7
|
The Expression Pattern of Insulin-Like Growth Factor Subtype 3 (igf3) in the Orange-Spotted Grouper Epinephelus coioides and Its Function on Ovary Maturation. Int J Mol Sci 2023; 24:ijms24032868. [PMID: 36769198 PMCID: PMC9918221 DOI: 10.3390/ijms24032868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
A new insulin-like growth factor (Igf) subtype 3 (igf3) has recently been found in the bony fish orange-spotted grouper (Epinephelus coioides). However, the role of igf3 in the maturation of the ovary and sex differentiation in E. coioides is currently unknown. We examined the ovarian localization and receptor binding of the novel ortholog Igf3 using qRT-PCR, and Western blotting, combined with in situ hybridization and immunohistochemistry methods. Results demonstrated the presence of igf3 mRNA and protein in mature oocytes. Furthermore, Igf3 protein expression was not detected in testis, brain, kidney and liver homogenates. The calculated molecular weight of Igf3 was 22 kDa, which was consistent with the deduced amino acid sequence from the full-length open reading frame. The immunoreactivity showed that Igf3 was strongly present in the follicle staining fully-grown stage. The igf3 mRNA expression level was significantly positively correlated with ovarian follicular maturation. Meanwhile, Igf3 increased germinal-vesicle breakdown in a time- and dose-dependent manner. In vitro, treatment of primary ovarian cells with Igf3 up-regulated significantly the mRNA expression level of genes related to sex determination and reproduction such as forkhead boxl2 (foxl2), dosage-sensitive sex reversal adrenal hypoplasia critical region on chromosome x gene 1 (dax1), cytochrome P450 family 19 subfamily member 1 a (cyp19a1a), cytochrome P450 family 11 subfamily a member 1 a (cyp11a1a) and luteinizing hormone receptor 1 (lhr1). Overall, our results demonstrated that igf3 promotes the maturation of the ovary and plays an important role in sex differentiation in E. coioides.
Collapse
|
8
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
9
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Miller JGP, Van Essen D, Brinkmann M, Raza Y, Dubiel J, Fujita KK, Doering JA, Wiseman SB. Inhibition of Oocyte Maturation by Malathion and Structurally Related Chemicals in Zebrafish (Danio rerio) After In Vitro and In Vivo Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1381-1389. [PMID: 35188285 DOI: 10.1002/etc.5316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Oogenesis is the process by which a primary oocyte develops into a fertilizable oocyte, making it critical to successful reproduction in fish. In zebrafish (Danio rerio), there are five stages of oogenesis. During the final step (oocyte maturation), the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (MIH) activates the membrane progestin receptor, inducing germinal vesicle breakdown. Using in vitro assays, it has been shown that anthropogenic stressors can dysregulate MIH-induced oocyte maturation. However, it is unknown whether the in vitro assay is predictive of reproductive performance after in vivo exposure. We demonstrate that a known inhibitor of oocyte maturation, malathion, and a structurally related chemical, dimethoate, inhibit oocyte maturation. However, malaoxon and omethoate, which are metabolites of malathion and dimethoate, did not inhibit oocyte maturation. Malathion and dimethoate inhibited maturation to a similar magnitude when oocytes were exposed for 4 h in vitro or 10 days in vivo, suggesting that the in vitro zebrafish oocyte maturation assay might be predictive of alterations to reproductive performance. However, when adult zebrafish were exposed to malathion for 21 days, there was no alteration in fecundity or fertility in comparison with control fish. Our study supports the oocyte maturation assay as being predictive of the success of in vitro oocyte maturation after in vivo exposure, but it remains unclear whether inhibition of MIH-induced oocyte maturation in vitro correlates to decreases in reproductive performance. Environ Toxicol Chem 2022;41:1381-1389. © 2022 SETAC.
Collapse
Affiliation(s)
- Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Darren Van Essen
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Yamin Raza
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Kaden K Fujita
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Intersectoral Centre for Endocrine Disruptor Analysis, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec City, Québec, Canada
| | - Steve B Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Intersectoral Centre for Endocrine Disruptor Analysis, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec City, Québec, Canada
- Water Institute for Sustainable Environments, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
11
|
Bhattacharya D, Sarkar S, Nath P. In vitro induction of catfish, Clarias batrachus, oocyte maturation by conspecific vitellogenin 1 (CFVg1). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:227-239. [PMID: 35066792 DOI: 10.1007/s10695-022-01050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Present study demonstrates that conspecific vitellogenin1 (CFVg1) induces oocyte maturation in the catfish, Clarias batrachus. CFVg1 is able to develop fertilizable eggs in the Clarias batrachus. Therefore, different in vitro oocyte culture experiments were designed to see whether CFVg1 has efficacy of oocyte maturation and its pathway. In in vitro oocyte culture experiment, CFVg1 showed a dose- and time-dependent response and 64% maturation was obtained at the dose level of 10 µg/ml or more. CFVg1 induction of oocyte maturation was confirmed by co-incubating CFVg1 with CFVg1-antiserum (a-CFVg1), which inhibited the CFVg1-induced oocyte maturation. To answer issues lead to the understanding of the mechanism of vitellogenin (Vg) on oocyte maturation, trypsin digested CFVg1 and Indian major carp Cirhinus mrigala Vg HAI (Hydroxy appetite peak I) also showed significant level of maturation. Actinomycin-D and cycloheximide blocked the effect of CFVg1, indicating that CFVg1 acts through transcription and translation. Theophylline, the phosphodiesterase inhibitor, and cAMP also inhibited the stimulatory effect of CFVg1 on oocyte maturation, indicating indirectly that CFVg1-induced oocyte maturation by decreasing the intracellular cAMP possibly by activating the phosphodiesterase enzyme. Trilostane, the 3β-HSD-blocker, did not inhibit the CFVg1-induced oocyte maturation but wortmannin and Ly294002 two mechanistically different specific inhibitors of PI3 kinase blocked the oocyte maturation. The results thus indicate that oocyte maturation in catfish by Vg may be regulated by two pathways: (1) through decreasing the intraoocyte cAMP level by activating the cAMP-PKA pathway and (2) by cAMP-dependent PI3K/Akt pathway. Therefore, there might be role of vitellogenin itself in initiation of oocyte maturation.
Collapse
Affiliation(s)
- Debapriya Bhattacharya
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, W.B, India.
- Current Address: Center for Biotechnology, School of Pharmaceutical Sciences, Siksha "O" Anusandhan University, Bhubaneswar, 751003, India.
| | - Shrabanti Sarkar
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, W.B, India
| | - Panchanan Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, W.B, India.
| |
Collapse
|
12
|
Banerjee S, Maity S, Guchhait R, Chatterjee A, Biswas C, Adhikari M, Pramanick K. Toxic effects of cyanotoxins in teleost fish: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105971. [PMID: 34560410 DOI: 10.1016/j.aquatox.2021.105971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The phenomenon of eutrophication leads to the global occurrence of algal blooms. Cyanotoxins as produced by many cyanobacterial species can lead to detrimental effects to the biome due to their stability and potential biomagnification along food webs. Therefore, understanding of the potential risks these toxins pose to the most susceptible organisms is an important prerequisite for ecological risks assessment of cyanobacteria blooms. Fishes are an important component of aquatic ecosystems that are prone to direct exposure to cyanotoxins. However, relatively few investigations have focused on measuring the toxic potentials of cyanotoxins in teleost fishes. This review comprehensively describes the major toxicological impacts (such as hepatotoxicity, neurotoxicity, immune toxicity, reproductive toxicity and cytogenotoxicity) of commonly occurring cyanotoxins in teleost fishes. The present work encompasses recent research progresses with special emphasis on the basic molecular mechanisms by which different cyanotoxins impose their toxicities in teleost fishes. The major research areas, which need to be focused on in future scientific investigations, have also been highlighted. Protein kinase inhibition, transcriptional dysregulation, disruption of redox homeostasis and the induction of apoptotic pathways appear to be the key drivers of the toxicological effects of cyanotoxins in fish. Analyses also showed that the impacts of cyanotoxins on specific reproductive processes are relatively less described in teleosts in comparison to mammalian systems. In fact, as compared to other toxicological effects of cyanotoxins, their reproductive toxicity (such as impacts on oocyte development, maturation and their hormonal regulation) is poorly understood in fish, and thus requires further studies. Furthermore, additonal studies characterizing the molecular mechanisms responsible for the cellular uptake of cyanotoxins need to be investigated.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Garkamalpur, Purba Medinipur, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
13
|
Zhao Y, Xu G, Li H, Chang M, Xiong C, Tao Y, Guan Y, Li Y, Yao S. Genome-wide mRNA profiling identifies the NRF2-regulated lymphocyte oxidative stress status in patients with silicosis. J Occup Med Toxicol 2021; 16:40. [PMID: 34517882 PMCID: PMC8436508 DOI: 10.1186/s12995-021-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immunomodulatory abnormalities of silicosis are related to the lymphocyte oxidative stress state. The potential effect of antioxidant therapy on silicosis may depend on the variation in nuclear factor erythroid 2-related factor 2 (NRF2)-regulated antioxidant genes in peripheral blood mononuclear cells (PBMCs). As NRF2 is a redox-sensitive transcription factor, its possible roles and underlying mechanism in the treatment of silicosis need to be clarified. METHODS Ninety-two male patients with silicosis and 87 male healthy volunteers were randomly selected. PBMCs were isolated from fresh blood from patients with silicosis and healthy controls. The lymphocyte oxidative stress state was investigated by evaluating NRF2 expression and NRF2-dependent antioxidative genes in PBMCs from patients with silicosis. Key differentially expressed genes (DEGs) and signaling pathways were identified utilizing RNA sequencing (RNA-Seq) and bioinformatics technology. Gene set enrichment analysis was used to identify the differences in NRF2 signaling networks between patients with silicosis and healthy controls. RESULTS The number of monocytes was significantly higher in patients with silicosis than that of healthy controls. Furthermore, RNA-Seq findings were confirmed using quantitative polymerase chain reaction and revealed that NRF2-regulated DEGs were associated with glutathione metabolism, transforming growth factor-β, and the extracellular matrix receptor interaction signaling pathway in PBMCs from patients with silicosis. The top 10 hub genes were identified by PPI analysis: SMAD2, MAPK3, THBS1, SMAD3, ITGB3, integrin alpha-V (ITGAV), von Willebrand factor (VWF), BMP4, CD44, and SMAD7. CONCLUSIONS These findings suggest that NRF2 signaling regulates the lymphocyte oxidative stress state and may contribute to fibrogenic responses in human PBMCs. Therefore, NRF2 might serve as a novel preventive and therapeutic candidate for silicosis.
Collapse
Affiliation(s)
- Yingzheng Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China. .,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
14
|
Biswas S, Maitra S. Altered redox homeostasis in steroid-depleted follicles attenuates hCG regulation of follicular events: Cross-talk between endocrine and IGF axis in maturing oocytes. Free Radic Biol Med 2021; 172:675-687. [PMID: 34289395 DOI: 10.1016/j.freeradbiomed.2021.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/11/2023]
Abstract
Steroids and insulin-like growth factors (Igfs) are indispensable for folliculogenesis and reproductive fitness in the vertebrate ovary. The intrafollicular redox balance is also of immense importance for ovarian follicles wherein low levels of ROS are being utilized for cell signalling and regulation of gene expression; its excess may interfere with normal physiological processes leading to ovotoxicity. However, the functional relevance of ovarian steroidogenesis in maintaining the follicular microenvironment with coordinated redox homeostasis and intra-ovarian growth factors axis is relatively less understood. Using zebrafish full-grown (FG) ovarian follicles in vitro, our study shows that blocking steroid biosynthesis with anti-steroidal drugs, DL-aminoglutethimide (AG) or Trilostane (Trilo), prevents hCG (LH analogue)-induced StAR expression concomitant with a robust increase in intrafollicular ROS levels. Congruent with heightened intracellular levels of superoxide anions (O2•-) and hydrogen peroxide (H2O2), priming with AG or Trilo abrogates the transcript abundance of major antioxidant enzyme genes (SOD1, SOD2, and CAT) in hCG-stimulated follicles. Significantly, blocking steroidogenesis attenuates transcript abundance of HSP70 but elevates NOX4 expression potentially through ERα-mediated pathway. Importantly, disrupted redox balance in AG/Trilo pre-incubated FG follicles negatively impacts hCG-mediated activation of PKA/CREB signaling and transcriptional activation of igf ligands. Elevated ROS attenuation of antioxidant defense parameters and impaired endocrine and autocrine/paracrine homeostasis converge upon reduced p34cdc2 (Thr-161) phosphorylation, a reliable marker for MPF activation, and resumption of meiotic G2-M1 transition in hCG-treated follicles. Collectively, altered redox homeostasis in steroid-depleted follicles has a significant negative influence on GTH (LH) regulation of follicular events, specifically Igf synthesis, meiotic maturational competence and ovarian fitness.
Collapse
Affiliation(s)
- Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
15
|
Biswas S, Ghosh S, Samanta A, Das S, Mukherjee U, Maitra S. Bisphenol A impairs reproductive fitness in zebrafish ovary: Potential involvement of oxidative/nitrosative stress, inflammatory and apoptotic mediators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115692. [PMID: 33254711 DOI: 10.1016/j.envpol.2020.115692] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a highly pervasive chemical in consumer products with its ascribed endocrine-disrupting properties. Several studies have shown the cytotoxic, genotoxic, and carcinogenic property of BPA over a multitude of tissues. Although BPA exposure has earlier been implicated in female infertility, the underlying molecular mechanisms explaining the toxicity of BPA in the ovary remains less understood. In the present study, a plausible correlation between redox balance or inflammatory signaling and reproductive fitness upon BPA exposure has been examined in zebrafish (Danio rerio) ovary. Congruent with significant alteration of major antioxidant enzymes (SOD1, SOD2, catalase, GPx1α, GSTα1) at the transcript level, 30 d BPA exposure at environmentally relevant concentrations (1, 10 and 100 μg L-1) promotes ovarian ROS/RNS synthesis, lipid peroxidation but attenuates catalase activity indicating elevated stress response. BPA promotes a sharp increase in ovarian p38 MAPK, NF-κB phosphorylation (activation), inducible nitric oxide synthase (Nos2a), and pro-inflammatory cytokines (TNF-α and IL-1β) expression, the reliable markers for inflammatory response. Congruent to an increased number of atretic follicles, BPA-exposed zebrafish ovary reveals elevated Bax/Bcl2 ratio, activation of caspase-8, -3 and DNA breakdown suggesting heightened cell death. Importantly, significant alteration in nuclear estrogen receptor (ER) transcripts (esr1, esr2a, and esr2b) and proteins (ERα, ERβ), gonadotropin receptors, and markers associated with steroidogenesis and growth factor gene expression in BPA-exposed ovary correlates well with impaired ovarian functions and maturational response. Collectively, elevated oxidative/nitrosative stress-mediated inflammatory response and altered ER expression can influence ovarian health and reproductive fitness in organisms exposed to BPA environment.
Collapse
Affiliation(s)
- Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Anwesha Samanta
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sriparna Das
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
16
|
Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Front Physiol 2020; 11:574030. [PMID: 33324237 PMCID: PMC7723848 DOI: 10.3389/fphys.2020.574030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
The protein kinase enzyme family plays a pivotal role in almost every aspect of cellular function, including cellular metabolism, division, proliferation, transcription, movement, and survival. Protein kinase A (PKA), whose activation is triggered by cyclic adenosine monophosphate (cAMP), is widely distributed in various systems and tissues throughout the body and highly related to pathogenesis and progression of various kinds of diseases. The inhibition of PKA activation is essential for the study of PKA functions. Protein kinase inhibitor peptide (PKI) is a potent, heat-stable, and specific PKA inhibitor. It has been demonstrated that PKI can block PKA-mediated phosphorylase activation. Since then, researchers have a lot of knowledge about PKI. PKI is considered to be the most effective and specific method to inhibit PKA and is widely used in related research. In this review, we will first introduce the knowledge on the activation of PKA and mechanisms related on the inhibitory effects of PKI on PKA. Then, we will compare PKI-mediated PKA inhibition vs. several popular methods of PKA inhibition.
Collapse
Affiliation(s)
- Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jingjing Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiaoying Zhang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
17
|
Saha S, Das S, Das S, Samanta A, Maitra S, Sahoo P. Prompt detection of endogenous hypochlorite (ClO -) in murine macrophages and zebrafish embryos facilitated by a distinctive chemodosimetric mode. Org Biomol Chem 2020; 18:6716-6723. [PMID: 32820796 DOI: 10.1039/d0ob01389g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An innovative fluorescein appended naphthalene diimide based probe (FANDI) has been prepared and characterized to selectively recognize hypochlorite or ClO- ions in the presence of other reactive oxygen species (ROS) and biorelevant ions, using a unique chemodosimetric method. Hypochlorite induced oxidation can efficiently alter the initial photophysical properties of FANDI and shows an easily detectable "turn on" green fluorescence. The chemodosimeter FANDI can efficiently detect exogenous as well as endogenous ClO- ions in RAW 264.7 cells (macrophages) and zebrafish embryos (Danio rerio) which further ensures the high potential, easy cell permeability and photostability of FANDI and makes it worth exploring in the future.
Collapse
Affiliation(s)
- Shrabani Saha
- Molecular Recognition Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
18
|
Sone R, Taimatsu K, Ohga R, Nishimura T, Tanaka M, Kawahara A. Critical roles of the ddx5 gene in zebrafish sex differentiation and oocyte maturation. Sci Rep 2020; 10:14157. [PMID: 32873816 PMCID: PMC7463030 DOI: 10.1038/s41598-020-71143-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/07/2020] [Indexed: 02/04/2023] Open
Abstract
DEAD-box helicase 5 (Ddx5) functions as an ATP-dependent RNA helicase and as a transcriptional coactivator for several transcription factors; however, the developmental function of the ddx5 gene in vertebrates is not fully understood. We found that the zebrafish ddx5 gene was expressed in developing gonads. Using the genome editing technology transcription activator-like effector nuclease, we established a ddx5-disrupted zebrafish and examined the morphological phenotypes of the mutant. We found that the majority of ddx5-deficient mutants developed as fertile males with normal testes and a small number of ddx5-deficient mutants developed as infertile females with small ovaries. Apoptotic cell death at 31 days post fertilization was increased in thick immature gonads (presumptive developing ovaries) of the ddx5-deficient mutant compared to those of heterozygous wild-type fish, while the number of apoptotic cells in thin immature gonads (presumptive developing testes) was comparable between the mutant and wild-type animals. Histological analysis revealed that ovaries of adult ddx5-deficient females had fewer vitellogenic oocytes and a larger number of stage I and II oocytes. The amount of cyclic adenosine monophosphate in the ddx5-deficient ovaries was high compared to that of wild-type ovaries, presumably leading to the mitotic arrest of oocyte maturation. Therefore, the ddx5 gene is dispensable for testis development, but it is essential for female sex differentiation and oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Ryota Sone
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kiyohito Taimatsu
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Faculty of Fisheries Science, Hokkaido University, Sapporo, 041-8611, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
19
|
Zhan C, Zhang F, Liu W, Zhang X. Microcystin-LR promotes zebrafish (Danio rerio) oocyte (in vivo) maturation by activating ERK1/2-MPF signaling pathways, and cAMP is involved in this process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113843. [PMID: 31887595 DOI: 10.1016/j.envpol.2019.113843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms and their secondary metabolites, microcystins (MCs), are not only toxic to aquatic organisms, but also to humans. MCs exert reproductive toxicity in female fish by affecting the oocyte development. However, the mechanism behind MC-LR interference in oocyte development remains largely unknown. In our study, adult female zebrafish were exposed to MC-LR (0, 1, 5, 20 μg/L) for 30 d. After exposure to MC-LR for 30 d, fertilized eggs from the treated females and healthy males were collected and cultured in water without MC-LR. Histomorphological observations showed pathological damage in the ovary after MC-LR exposure, which was mainly characterized by enlarged intercellular spaces, detachment of follicular cells from oocytes, and vacuolation of parenchymal tissues. The 20 μg/L MC-LR treatment caused a remarkable increase in the rate of the zebrafish oocytes germinal vesicle breakdown (GVBD) and a significant decrease in the levels of cyclic adenosine monophosphate (cAMP) and vitellogenin (VTG). In addition, the phosphorylation levels of the extracellular signal-regulated kinases (ERK) were elevated in ovaries from zebrafish exposed to 5 and 20 μg/L MC-LR, and cyclinB phosphorylation levels were also upregulated notably in the 20 μg/L MC-LR group. However, MC-LR exposure did not cause any change in the levels of cAMP-dependent protein kinase (PKA) protein and cdc2 phosphorylation in all the treatments. All the doses of MC-LR reduced the number of eggs, prematurely hatched the fertilized eggs and increased the abnormal rate of offspring generation. In summary, the present study demonstrates that MC-LR promotes oocyte maturation by activating the ERK1/2 and MPF signaling pathways, and cAMP is involved in this process.
Collapse
Affiliation(s)
- Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
20
|
Nath P, Mukherjee U, Biswas S, Pal S, Das S, Ghosh S, Samanta A, Maitra S. Expression of nitric oxide synthase (NOS) in Anabas testudineus ovary and participation of nitric oxide-cyclic GMP cascade in maintenance of meiotic arrest. Mol Cell Endocrinol 2019; 496:110544. [PMID: 31419465 DOI: 10.1016/j.mce.2019.110544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Participation of cyclic nucleotide-mediated signaling in nitric oxide/soluble guanylate cyclase (NO/sGC) regulation of oocyte maturation (OM) in perch (Anabas testudineus) follicle-enclosed oocytes has been investigated. Congruent with sharp decline in follicular cyclic GMP (cGMP) level, nitric oxide synthase (NOS)-inhibitor (L-NAME) attenuates protein kinase A (PKA) phosphorylation but promotes p-ERK1/2 and p-p34Cdc2 (Thr-161) in maturing oocytes. Conversely, NO donor (SNP) prevents OM, potentially through elevated cGMP synthesis. Expression and localization of Nos2 and Nos3 immunoreactivity in perch ovary varied considerably at progressively higher stages of folliculogenesis. While sGC inhibitor (ODQ) alone could induce OM, 8-bromo-cGMP attenuates 17,20β-P-induced OM indicating functional significance of NO/sGC/cGMP in perch ovary. Interestingly, high NO/cGMP inhibition of OM shows positive relation with elevated cAMP level. MIS induced OM is more susceptible to the oocyte-specific phosphodiesterase (PDE) 3 than PDE4 inhibition. Collectively, high NO/cGMP attenuation of OM potentially involves PDE3 inhibition, cAMP accumulation and PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sriparna Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumyajyoti Ghosh
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Anwesha Samanta
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
21
|
Liu W, Zhan C, Zhang T, Zhang X. Microcystin-LR influences the in vitro oocyte maturation of zebrafish by activating the MAPK pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105261. [PMID: 31419757 DOI: 10.1016/j.aquatox.2019.105261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Harmful cyanobacteria and their production of microcystins (MCs) exert significant toxicity on reproduction of fish, especially the process of oogenesis. Our previous studies demonstrated that MCs have negative impacts on the quantity and quality of mature oocytes in female zebrafish. However, the underlying mechanisms of MCs disrupting oocyte maturation (OM) have been rarely reported. In the present study, in vitro oocytes (immature) were separated from zebrafish and treated with 1, 10, 100 μg/L MC-LR. The serine/threonine protein phosphatase 2A (PP2A) activity was downregulated significantly in oocytes exposed to 10 and 100 μg/L MC-LR for both 2 and 4 h. The phosphorylation levels of mitogen-activated protein kinase (MAPK) were detected without noticeable change in all oocytes treated with MC-LR for 2 h, whereas the activated levels of MAPK subtypes (ERK, p38 and JNK) increased remarkably in the 100 μg/L MC-LR treatment of 4 h. In the oocytes exposed to 100 μg/L MC-LR for 4 h, germinal vesicle breakdown (GVBD) rates changed abnormally and maturation-promoting factor (MPF) activity increased significantly, in accordance with the upregulation of Cyclin B protein levels. Moreover, the MAPK inhibitors (10 μM) were applied to explore the role of MAPK subtypes during MC-LR influencing OM and results showed that ERK inhibitor U0126 and p38 inhibitor SB203580 mitigated the effects of 100 μg/L MC-LR-induced MAPK hyper-phosphorylation and elevated GVBD in the oocytes. In conclusion, the present study indicates that microcystins disrupt the meiotic maturation by the pathway of MC-PP2A-MAPK-OM due to the phosphorylation disorder in oocytes.
Collapse
Affiliation(s)
- Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Tongzhou Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
22
|
Zhang N, Wang L, Luo G, Tang X, Ma L, Zheng Y, Liu S, A Price C, Jiang Z. Arachidonic Acid Regulation of Intracellular Signaling Pathways and Target Gene Expression in Bovine Ovarian Granulosa Cells. Animals (Basel) 2019; 9:ani9060374. [PMID: 31248190 PMCID: PMC6617051 DOI: 10.3390/ani9060374] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Arachidonic acid (AA) is one of the polyunsaturated fatty acids that presents in a very high proportion in the mammalian follicular fluid. However, the mechanism of its effects on bovine ovarian granulosa cells is not clear. In the present study, we found that arachidonic acid plays an important role in regulating cell proliferation, lipid accumulation and steroidogenesis of granulosa cells. In this sense, arachidonic acid can directly affect the functionality of granulosa cells and therefore follicular development and ovulation, which could provide useful information for future studies relating to increasing fecundity of bovine. Abstract In the present study, AA was used to challenge bovine ovarian granulosa cells in vitro and the related parameters of cellular and molecular biology were measured. The results indicated that lower doses of AA increased survival of bovine granulosa cells whereas higher doses of AA suppressed survival. While lower doses of AA induced accumulation of lipid droplet in granulosa cells, the higher dose of AA inhibited lipid accumulation, and AA increased abundance of FABP3, CD36 and SLC27A1 mRNA. Higher doses of AA decreased the secretion of E2 and increased the secretion of P4 accompanied by down-regulation of the mRNA abundance of CYP19A1, FSHR, HSD3B1 and STAR in granulosa cells. The signaling pathways employed by AA in the stimulation of genes expression included both ERK1/2 and Akt. Together, AA specifically affects physiological features, gene expression levels and steroid hormone secretion, and thus altering the functionality of granulosa cells of cattle.
Collapse
Affiliation(s)
- Nina Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Liqiang Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Guoya Luo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Xiaorong Tang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Lizhu Ma
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Yuxin Zheng
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| | - Shujie Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinhai University, Xining 810016, Qinghai, China.
| | - Christopher A Price
- Centre de recherche en reproduction fertility, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Zhongliang Jiang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang 712100, Shaanxi, China.
| |
Collapse
|
23
|
Zhan C, Liu W, Hegazy AM, Zhang T, Kawan A, Zhang X. Explorations of the optimal method for isolating oocytes from zebrafish (
Danio rerio
) ovary. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 330:417-426. [DOI: 10.1002/jez.b.22841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/29/2018] [Accepted: 12/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan China
| | - Abeer M. Hegazy
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan China
- Central Laboratory for Environmental Quality Monitoring “CLEQM,” National Water Research Center “NWRC”Cairo Egypt
| | - Tongzhou Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan China
| | - Atufa Kawan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan China
| |
Collapse
|
24
|
Nath P, Das D, Pal S, Maitra S. Nitric oxide (NO) inhibition of meiotic G2-M1 transition in Anabas testudineus oocytes: Participation of cAMP-dependent protein kinase (PKA) in regulation of intra-oocyte signaling events. Mol Cell Endocrinol 2018; 460:162-169. [PMID: 28743518 DOI: 10.1016/j.mce.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Nitric oxide (NO) regulation of ovarian function in mammals has been studied extensively. However, relatively less information is available on NO action on meiotic G2-M1 transition in teleost oocytes. In the present study using follicle-enclosed oocytes of Anabas testudineus, NO regulation of intra-oocyte signaling events during meiotic G2-M1 transition were examined. Priming with NO donor, sodium nitroprusside (SNP) prevented 17α,20β-dihydroxy-4-pregenen-3-one (17,20β-P)-induced germinal vesicle break down (GVBD) in dose- and duration-dependent manner. Impaired GVBD response in SNP-treated groups corroborated well with reduced p34Cdc2 (Thr161) phosphorylation. Immunoblot analysis revealed that congruent with elevated cAMP-dependent protein kinase (PKA) phosphorylation (activation), NO inhibition of meiotic maturation involves down regulation of Cdc25 activation, Mos synthesis and MAPK3/1 (ERK1/2) phosphorylation. However, priming with PKA inhibitor (H89) could reverse SNP attenuation of oocyte GVBD significantly. Collectively our results indicate that negative influence of NO on meiotic G2-M1 transition in perch oocytes might involve PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
25
|
Relative importance of phosphatidylinositol-3 kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK3/1) signaling during maturational steroid-induced meiotic G2-M1 transition in zebrafish oocytes. ZYGOTE 2017; 26:62-75. [PMID: 29229010 DOI: 10.1017/s0967199417000545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Participation and relative importance of phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling, either alone or in combination, have been investigated during 17α,20β-dihydroxy-4-pregnen-3-one (DHP)-induced meiotic G2-M1 transition in denuded zebrafish oocyte. Results demonstrate that concomitant with rapid phosphorylation (activation) of Akt (Ser473) and MAPK (ERK1/2) at as early as 15 min of incubation, DHP stimulation promotes enhanced an GVBD response and histone H1 kinase activation between 1 and 5 h in full-grown oocytes in vitro. While p-Akt reaches its peak at 60 to 90 min and undergoes downregulation to the basal level by 240 min, ERK1/2 phosphorylation (activation) increases gradually until 120 min and remains high thereafter. Although, priming with MEK1/2 inhibitor U0126 is without effect, PI3K inhibitors, wortmannin or LY294002, delay the GVBD response significantly (P < 0.001) until 3 h but not at 5 h of incubation. Interestingly, blocking PI3K and MEK function together could abrogate steroid-induced oocyte maturation at all time points tested. While DHP stimulation promotes phospho-PKA catalytic (p-PKAc) dephosphorylation (inactivation) between 30-120 min of incubation, simultaneous inhibition of PI3K and MEK1/2 kinases abrogates DHP action. Conversely, elevated intra-oocyte cAMP, through priming with either adenylyl cyclase (AC) activator forskolin (FK) or dibutyryl cAMP (db-cAMP), abrogates steroid-induced Akt and ERK1/2 phosphorylation. Taken together, these results suggest that DHP-induced Akt and ERK activation precedes the onset of meiosis (GVBD response) in a cAMP-sensitive manner and PI3K/Akt and MEK/MAPK pathways together have a pivotal influence in the downregulation of PKA and resumption of meiotic maturation in zebrafish oocytes in vitro.
Collapse
|
26
|
Sarasamma S, Varikkodan MM, Liang ST, Lin YC, Wang WP, Hsiao CD. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario. Zebrafish 2017; 14:589-605. [PMID: 29023224 DOI: 10.1089/zeb.2017.1447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is a versatile model organism that has been used in biomedical research for several decades to study a wide range of biological phenomena. There are many technical advantages of using zebrafish over other vertebrate models. They are readily available, hardy, easy, and inexpensive to maintain in the laboratory, have a short life cycle, and have excellent fecundity. Due to its optical clarity and reproducible capabilities, it has become one of the predominant models of human genetic diseases. Zebrafish research has made rapid strides in the United States and Europe, but in India the field is at an early stage and many researchers still remain unaware of the full research potential of this tiny fish. The zebrafish model system was introduced into India in the early 2000s. Up to now, more than 200 scientific referred articles have been published by Indian researchers. This review gives an overview of the current state of knowledge for zebrafish research in India, with the aim of promoting wider utilization of zebrafish for high level biological studies.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,3 Department of Chemical Biology, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Muhammed Muhsin Varikkodan
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,4 Department of Biotechnology and Genetic Engineering, Bharathidasan University , Tiruchirapalli, India
| | - Sung-Tzu Liang
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan
| | - Yen-Chang Lin
- 5 Graduate Institute of Biotechnology, Chinese Culture University , Taipei, Taiwan
| | - Wen-Pin Wang
- 6 Institute of Medical Sciences, Tzu-Chi University , Hualien, Taiwan .,7 Department of Molecular Biology and Human Genetics, Tzu-Chi University , Hualien, Taiwan
| | - Chung-Der Hsiao
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,8 Center for Biomedical Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,9 Center for Nanotechnology, Chung Yuan Christian University , Chung-Li, Taiwan
| |
Collapse
|
27
|
Khajeh M, Rahbarghazi R, Nouri M, Darabi M. Potential role of polyunsaturated fatty acids, with particular regard to the signaling pathways of arachidonic acid and its derivatives in the process of maturation of the oocytes: Contemporary review. Biomed Pharmacother 2017; 94:458-467. [PMID: 28779707 DOI: 10.1016/j.biopha.2017.07.140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023] Open
Abstract
Oocyte meiotic maturation is one of the significant physiological requirements for ovulation and fertility. It is believed that Cyclic Adenosine Monophosphate, protein kinase A and protein kinase C pathways along with eicosanoids, particularly prostaglandin E2, and steroids are the key factors regulating mammalian oocyte maturation. The aim of the current study was to highlight the molecular events triggered by arachidonic acid during oocyte meiotic arrest and resumption at the time of gonadotrophin surge. It should be noted that arachidonic acid release is tightly regulated by Follicle-stimulating and Luteinizing hormones during oocyte development.
Collapse
Affiliation(s)
- Masoumeh Khajeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
DAS DEBABRATA, ARUR SWATHI. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev 2017; 84:444-459. [PMID: 28379636 PMCID: PMC5477485 DOI: 10.1002/mrd.22806] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals-yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes.
Collapse
Affiliation(s)
- DEBABRATA DAS
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - SWATHI ARUR
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
29
|
Das D, Khan PP, Maitra S. Endocrine and paracrine regulation of meiotic cell cycle progression in teleost oocytes: cAMP at the centre of complex intra-oocyte signalling events. Gen Comp Endocrinol 2017; 241:33-40. [PMID: 26773339 DOI: 10.1016/j.ygcen.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
Participation of major endocrine and/or local autocrine/paracrine factors and potential interplay between apparently disparate intra-oocyte signalling events during maintenance and withdrawal of meiotic prophase arrest has been an area of active research in recent years. Studies on oocyte maturation have contributed substantially in the discovery of some of the most important biochemical and cellular events like functional significance of novel membrane-associated steroid receptors, elucidation of maturation promoting factor (MPF), cytostatic factor (CSF) and other signalling cascades that entrain the cell cycle clock to hormonal stimuli. While follicular estrogen has largely been implicated in maintenance of prophase arrest, involvement of maturational steroid and membrane progestin receptor in resumption of meiotic G2-M1 transition in piscine oocytes has been shown earlier. Moreover, detection of ovarian IGF system, maturational gonadotropin stimulation of IGF ligands and potential synergism between maturational steroid and IGF1 in zebrafish oocytes are most recent advancements. Though endocrine/paracrine regulation of cyclic nucleotide-mediated signalling events in meiotic cell cycle progression is well established, involvement of PI3K/Akt signalling cascade has also been reported in fish, amphibian and mammalian oocytes. The major objective of this overview is to describe how fish oocytes maintain high cAMP/PKA activity and how steroid- and/or growth factor-mediated signalling cascade regulate this pathway for the withdrawal of meiotic arrest. Moreover, special emphasis is placed on some recent findings on interaction of PKA with some of the MPF-regulating components (e.g., synthesis of cyclin B or MEK/MAPK signalling cascade) for the maintenance of prophase arrest.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | | | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
30
|
Das D, Nath P, Pal S, Hajra S, Ghosh P, Maitra S. Expression of two insulin receptor subtypes, insra and insrb, in zebrafish (Danio rerio) ovary and involvement of insulin action in ovarian function. Gen Comp Endocrinol 2016; 239:21-31. [PMID: 26853486 DOI: 10.1016/j.ygcen.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/25/2023]
Abstract
Present study reports differential expression of the two insulin receptor (IR) subtypes in zebrafish ovary at various stages of follicular growth and potential involvement of IR in insulin-induced oocyte maturation. The results showed that mRNA expression for IR subtypes, insra and insrb, exhibited higher levels in mid-vitellogenic (MV) and full-grown (FG) rather than pre-vitellogenic (PV) oocytes. Interestingly, compared to the levels in denuded oocytes, mRNAs for both insra and insrb were expressed at much higher level in the follicle layer harvested from FG oocytes. Immunoprecipitation using IRβ antibody could detect a protein band of desired size (∼95kDa) in FG oocyte lysates. Further, IRβ immunoreactivity was detected in ovarian tissue sections, especially at the follicle layer and oocyte membrane of MV and FG, but not PV stage oocytes. While hCG (10IU/ml) stimulation was without effect, priming with insulin (5μM) could promote oocyte maturation of MV oocytes in a manner sensitive to de novo protein and steroid biosynthesis. Compared to hCG, in insulin pre-incubated MV oocytes, stimulation with maturation inducing steroid (MIS), 17α,20β-dihydroxy-4-pregnen-3-one (DHP) elicited higher maturational response. Potential involvement of insulin-mediated action on acquisition of maturational competence and regulation of oocyte maturation was further manifested through up regulation of 20β-hydroxysteroid dehydrogenase (20β-hsd), MIS receptor (mPRα), insulin-like growth factor 3 (igf3) and IGF1 receptor (igf1rb), but not cyp19a expression in MV oocytes. Moreover, priming with anti-IRβ attenuated insulin action on meiotic G2-M1 transition indicating the specificity of insulin action and physiological relevance of IR in zebrafish ovary.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudip Hajra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Pritha Ghosh
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
31
|
Das D, Pal S, Maitra S. Releasing prophase arrest in zebrafish oocyte: synergism between maturational steroid and Igf1. Reproduction 2015; 151:59-72. [PMID: 26500283 DOI: 10.1530/rep-15-0389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/22/2015] [Indexed: 01/09/2023]
Abstract
Binding of 17β-estradiol (E2) to novel G-protein coupled receptor, Gper1, promotes intra-oocyte adenylyl cyclase activity and transactivates epidermal growth factor receptor to ensure prophase-I arrest. Although involvement of either membrane progestin receptor (mPR) or Igf system has been implicated in regulation of meiosis resumption, possibility of concurrent activation and potential synergism between 17α,20β-dihydroxy-4-pregnen-3-one (DHP)- and Igf-mediated signalling cascades in alleviating E2 inhibition of oocyte maturation (OM) has not been investigated. Here using zebrafish (Danio rerio) defolliculated oocytes, we examined the effect of DHP and Igf1, either alone or in combination, in presence or absence of E2, on OM in vitro. While priming of denuded oocytes with E2 blocked spontaneous maturation, co-treatment with DHP (3 nM) and Igf1 (10 nM), but not alone, reversed E2 inhibition and promoted a robust increase in germinal vesicle breakdown (GVBD). Although stimulation with either Igf1 or DHP promoted Akt phosphorylation, pharmacological inhibition of PI3K/Akt signalling prevented Igf1-induced GVBD but delayed DHP action till 4-5 h of incubation. Moreover, high intra-oocyte cAMP attenuates both DHP and Igf1-mediated OM and co-stimulation with DHP and Igf1 could effectively reverse E2 action on PKA phosphorylation. Interestingly, data from in vivo studies reveal that heightened expression of igf1, igf3 transcripts in intact follicles corresponded well with elevated phosphorylation of Igf1r and Akt, mPRa immunoreactivity, PKA inhibition and accelerated GVBD response just prior to ovulation. This indicates potential synergism between maturational steroid and Igf1 which might have physiological relevance in overcoming E2 inhibition of meiosis resumption in zebrafish oocytes.
Collapse
Affiliation(s)
- Debabrata Das
- Department of ZoologyVisva-Bharati University, Santiniketan 731235, India
| | - Soumojit Pal
- Department of ZoologyVisva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of ZoologyVisva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
32
|
Tung A. Editorial comment: High frequency ventilation and extracorporeal membrane oxygenation: a winning combination? ACTA ACUST UNITED AC 2015; 4:85-6. [PMID: 25827859 DOI: 10.1213/xaa.0000000000000133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Avery Tung
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois,
| |
Collapse
|
33
|
Regulation of recombinant human insulin-induced maturational events in Clarias batrachus (L.) oocytes in vitro. ZYGOTE 2015; 24:181-94. [DOI: 10.1017/s0967199415000015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryRegulation of insulin-mediated resumption of meiotic maturation in catfish oocytes was investigated. Insulin stimulation of post-vitellogenic oocytes promotes the synthesis of cyclin B, histone H1 kinase activation and a germinal vesicle breakdown (GVBD) response in a dose-dependent and duration-dependent manner. The PI3K inhibitor wortmannin abrogates recombinant human (rh)-insulin action on histone H1 kinase activation and meiotic G2–M1 transition in denuded and follicle-enclosed oocytes in vitro. While the translational inhibitor cycloheximide attenuates rh-insulin action, priming with transcriptional blocker actinomycin D prevents insulin-stimulated maturational response appreciably, albeit in low amounts. Compared with rh-insulin, human chorionic gonadotrophin (hCG) stimulation of follicle-enclosed oocytes in vitro triggers a sharp increase in 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DHP) secreted in the incubation medium at 12 h. Interestingly, the insulin, but not the hCG-induced, maturational response shows less susceptibility to steroidogenesis inhibitors, trilostane or dl-aminoglutethimide. In addition, priming with phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) or cell-permeable dbcAMP or adenylyl cyclase activator forskolin reverses the action of insulin on meiotic G2–M1 transition. Conversely, the adenylyl cyclase inhibitor, SQ 22536, or PKA inhibitor H89 promotes the resumption of meiosis alone and further potentiates the GVBD response in the presence of rh-insulin. Furthermore, insulin-mediated meiotic maturation involves the down-regulation of endogenous protein kinase A (PKA) activity in a manner sensitive to PI3K activation, suggesting potential involvement of a cross-talk between cAMP/PKA and insulin-mediated signalling cascade in catfish oocytes in vitro. Taken together, these results suggest that rh-insulin regulation of the maturational response in C. batrachus oocytes involves down-regulation of PKA, synthesis of cyclin B, and histone H1 kinase activation and demonstrates reduced sensitivity to steroidogenesis and transcriptional inhibition.
Collapse
|