1
|
Wang J, Hu B, Wang W. Prognostic value and immunological role of CSNK1D in human cancers. Aging (Albany NY) 2023; 15:8948-8975. [PMID: 37688771 PMCID: PMC10522368 DOI: 10.18632/aging.205009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/24/2023] [Indexed: 09/11/2023]
Abstract
CSNK1D, also known as CK1δ, is a crucial gene involved in various biological processes such as cell cycle, transcriptional regulation, apoptosis, cell polarity, and cell motility. It is associated with different cancers and neurodegenerative diseases. This study aimed to investigate the role of CSNK1D in multiple human cancers, particularly hepatocellular carcinoma (HCC), through in vitro experiments. The research utilized various online resources and databases like UCSC, NCBI, GEPIA2, HPA, cBioPortal, SangerBox, UALCAN, and TCGA for analyzing CSNK1D expression, prognosis significance, immune features, and gene alterations in cancers. RT-PCR was employed to evaluate CSNK1D expression in normal liver and liver cancer cell lines. In vitro experiments, including CCK-8, Edu, wound healing, and Transwell assays, were conducted to assess CSNK1D's biological function in HCC cells. Results demonstrated consistent upregulation of CSNK1D in various tumors. Heightened CSNK1D expression correlated with reduced overall survival and disease-free survival rates in different cancer patient cohorts. Significant associations were found between CSNK1D expression levels and immune cell infiltrations, immune checkpoint inhibitors, tumor mutation burden, and microsatellite instability across multiple malignancies. Notably, statistical analyses using TCGA and ICGC data identified CSNK1D as a robust and independent prognostic biomarker in HCC. Inhibiting CSNK1D expression effectively hindered cell proliferation, migration, and invasion in cellular experiments. In conclusion, this study suggests that CSNK1D may serve as a biomarker for tumor prognosis and immunotherapy. It influences the proliferation and metastasis of HCC cells.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Baohong Hu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
2
|
Huang K, Jia Z, Li H, Peng Y, Chen X, Luo N, Song T, Wang Y, Shi X, Kuang S, Yang G. Proto-oncogene FAM83A contributes to casein kinase 1-mediated mitochondrial maintenance and white adipocyte differentiation. J Biol Chem 2022; 298:102339. [PMID: 35931121 PMCID: PMC9493395 DOI: 10.1016/j.jbc.2022.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Family with sequence similarity 83 A (FAM83A) is a newly discovered proto-oncogene that has been shown to play key roles in various cancers. However, the function of FAM83A in other physiological processes is not well known. Here, we report a novel function of FAM83A in adipocyte differentiation. We used an adipocyte-targeting fusion oligopeptide (FITC-ATS-9R) to deliver a FAM83A-sgRNA/Cas9 plasmid to knockdown Fam83a (ATS/sg-FAM83A) in white adipose tissue in mice, which resulted in reduced white adipose tissue mass, smaller adipocytes, and mitochondrial damage that was aggravated by a high-fat diet. In cultured 3T3-L1 adipocytes, we found loss or knockdown of Fam83a significantly repressed lipid droplet formation and downregulated the expression of lipogenic genes and proteins. Furthermore, inhibition of Fam83a decreased mitochondrial ATP production through blockage of the electron transport chain, associated with enhanced apoptosis. Mechanistically, we demonstrate FAM83A interacts with casein kinase 1 (CK1) and promotes the permeability of the mitochondrial outer membrane. Furthermore, loss of Fam83a in adipocytes hampered the formation of the TOM40 complex and impeded CK1-driven lipogenesis. Taken together, these results establish FAM83A as a critical regulator of mitochondria maintenance during adipogenesis.
Collapse
Affiliation(s)
- Kuilong Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907; Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou China, 215123
| | - Haoran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Ying Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Xiaochang Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an, Shaanxi, China, 710021
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Tongxing Song
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Yingqian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Xin'e Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100.
| |
Collapse
|
3
|
Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019; 715:144005. [PMID: 31376410 PMCID: PMC7939460 DOI: 10.1016/j.gene.2019.144005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 020000, Kazakhstan.
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Eltsin, Technology for Organic Synthesis Laboratory, 19 Mirastr., 620002 Ekaterinburg, Russia.
| | - Najma Rachidi
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Abstract
Adiponectin circulates in blood in multiple isoforms. High molecular weight (HMW) adiponectin is thought to be most biologically active and promotes glucose uptake, insulin sensitivity, and fatty acid oxidation. In obesity, adiponectin isoform formation is disrupted, leading to an inverse association between metabolic disease and HMW and total adiponectin. Adiponectin isoforms also function as acute-phase reactants influencing inflammation in acute and chronic disease. Interestingly, adiponectin and mortality have a U-shaped association. Unfortunately, data concerning adiponectin and its pathophysiologic function conflict. This is predominantly due to difficulties in adequate measurement of adiponectin isoforms and lack of a gold standard. In this review we provide a general overview of the formation and function of adiponectin and its isoforms under physiologic conditions. We highlight the ways adiponectin isoform formation is disrupted in obesity and its ensuing pathologic conditions. Furthermore, we will elaborate on the role of adiponectin isoforms as inflammatory proteins with respect to cardiac and kidney disease and discuss the association of adiponectin with mortality. Finally, we will provide a historical perspective on the measurement of adiponectin isoforms, current limitations, and future challenges.
Collapse
Affiliation(s)
| | - Annemieke C Heijboer
- VU University Medical Center, Amsterdam, The Netherlands; Academic Medical Center, Amsterdam, The Netherlands
| | - Madeleine L Drent
- VU University Medical Center, Amsterdam, The Netherlands; VU University, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Targeting of the circadian clock via CK1δ/ε to improve glucose homeostasis in obesity. Sci Rep 2016; 6:29983. [PMID: 27439882 PMCID: PMC4954991 DOI: 10.1038/srep29983] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/24/2016] [Indexed: 12/21/2022] Open
Abstract
Growing evidence indicates that disruption of our internal timing system contributes to the incidence and severity of metabolic diseases, including obesity and type 2 diabetes. This is perhaps not surprising since components of the circadian clockwork are tightly coupled to metabolic processes across the body. In the current study, we assessed the impact of obesity on the circadian system in mice at a behavioural and molecular level, and determined whether pharmacological targeting of casein kinase 1δ and ε (CK1δ/ε), key regulators of the circadian clock, can confer metabolic benefit. We demonstrate that although behavioural rhythmicity was maintained in diet-induced obesity (DIO), gene expression profiling revealed tissue-specific alteration to the phase and amplitude of the molecular clockwork. Clock function was most significantly attenuated in visceral white adipose tissue (WAT) of DIO mice, and was coincident with elevated tissue inflammation, and dysregulation of clock-coupled metabolic regulators PPARα/γ. Further, we show that daily administration of a CK1δ/ε inhibitor (PF-5006739) improved glucose tolerance in both DIO and genetic (ob/ob) models of obesity. These data further implicate circadian clock disruption in obesity and associated metabolic disturbance, and suggest that targeting of the clock represents a therapeutic avenue for the treatment of metabolic disorders.
Collapse
|