1
|
Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers (Basel) 2022; 15:cancers15010147. [PMID: 36612143 PMCID: PMC9817897 DOI: 10.3390/cancers15010147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Current prognostic and diagnostic tests for prostate cancer are not able to accurately distinguish between aggressive and latent cancer. Members of the transforming growth factor-β (TGFB) family are known to be important in regulating prostate cell growth and some have been shown to be dysregulated in prostate cancer. Therefore, the aims of this study were to examine expression of TGFB family members in primary prostate tumour tissue and the phenotypic effect of activins on prostate cell growth. Tissue cores of prostate adenocarcinoma and normal prostate were immuno-stained and protein expression was compared between samples with different Gleason grades. The effect of exogenous treatment with, or overexpression of, activins on prostate cell line growth and migration was examined. Activin B expression was increased in cores containing higher Gleason patterns and overexpression of activin B inhibited growth of PNT1A cells but increased growth and migration of the metastatic PC3 cells compared to empty vector controls. In contrast, activin C expression decreased in higher Gleason grades and overexpression increased growth of PNT1A cells and decreased growth of PC3 cells. In conclusion, increased activin B and decreased activin C expression is associated with increasing prostate tumor grade and therefore have potential as prognostic markers of aggressive prostate cancer.
Collapse
|
2
|
Liu N, Wang S, Yao Q, Li Y, Hu H, Xiaorong T, Ran H, Price CA, Jiang Z. Activin A attenuates apoptosis of granulosa cells in atretic follicles through ERβ-induced autophagy. Reprod Domest Anim 2022; 57:625-634. [PMID: 35244300 DOI: 10.1111/rda.14103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
It is well known that about 99% of ovarian follicles in mammals suffer from a degenerative process known as atresia, which is a huge waste of genetic resource in female animals. Studies have shown that activin A (ACT-A) is located in ovarian granulosa cells and has different effects in granulosa cell depending on species. Although granulosa cells play a critical role during follicular atresia, the mechanism of action of ACT-A in bovine ovarian granulosa cells (BGC) is poorly understood. In this study, we firstly determined the apoptosis of BGCs isolated from growth follicles and atretic follicles, respectively. Then, BGC isolated from atretic follicles were used as a model to elucidate the role of ACT-A in cattle ovary. The results showed that apoptosis occurred in both growing follicles and atretic follicles, and the percentage of apoptotic cells in atretic follicles was higher than that in growing follicles. The current results indicated that ACT-A can attenuate apoptosis of BGC through maintaining the function of BGC in atretic follicles. Increased ERβ induced by ACT-A promoted BGC autophagy but had no effect on apoptosis. In summary, this study suggests that ACT-A attenuates BGC apoptosis in atretic follicles by ERβ-mediated autophagy signaling.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Shiyou Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Qichun Yao
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Yuanyou Li
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Hai Hu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Tang Xiaorong
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Haohan Ran
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Jintong Road, Xiqing District, 300380, Tianjin, China
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Zhongliang Jiang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, Czika A, Kumar Sah S, Lamptey J, Ding YB, Wang YX. Activin and inhibin signaling: From regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine 2020; 133:155105. [PMID: 32438278 DOI: 10.1016/j.cyto.2020.155105] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Activins and inhibins - comprising activin A, B, AB, C and E, and inhibin A and B isoforms - belong to the transforming growth factor beta (TGFβ) superfamily. They regulate several biological processes, including cellular proliferation, differentiation and invasiveness, to enhance the formation and functioning of many human tissues and organs. In this review, we have discussed the role of activin and inhibin signaling in the physiological and female-specific pathological events that occur in the female reproductive system. The up-to-date evidence indicates that these cytokines regulate germ cell development, follicular development, ovulation, uterine receptivity, decidualization and placentation through the activation of several signaling pathways; and that their dysregulated expression is involved in the pathogenesis and pathophysiology of the numerous diseases, including pregnancy complications, that disturb reproduction. Hence, some of the isoforms have been suggested as potential biomarkers and therapeutic targets for the management of some of these diseases. Tackling the research directions highlighted in this review will enhance a detailed comprehension and the clinical utility of these cytokines.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - William Nelson
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania.
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Sanjay Kumar Sah
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, Ghana.
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
4
|
Reader KL, Marino FE, Nicholson HD, Risbridger GP, Gold EJ. Role of activin C in normal ovaries and granulosa cell tumours of mice and humans. Reprod Fertil Dev 2019; 30:958-968. [PMID: 29207252 DOI: 10.1071/rd17250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022] Open
Abstract
Activins and inhibins play important roles in the development, growth and function of the ovary. Mice lacking inhibin develop granulosa cell tumours in their ovaries that secrete activin A, and these tumours are modulated by increased activin C expression. The aim of the present study was to identify where activin C is expressed in mouse and human ovaries and whether overexpression of activin C modulates normal follicular development in mice. Immunohistochemical staining for the activin βC subunit was performed on sections from mouse and human ovaries and human adult granulosa cell tumours. Stereology techniques were used to quantify oocyte and follicular diameters, and the percentage of different follicular types in ovaries from wild-type mice and those underexpressing inhibin α and/or overexpressing activin C. Staining for activin βC was observed in the oocytes, granulosa cells, thecal cells and surface epithelium of mouse and human ovaries, and in the granulosa-like cells of adult granulosa cell tumours. Overexpression of activin C in mice did not alter follicular development compared with wild-type mice, but it did modulate the development of abnormal early stage follicles in inhibin α-null mice. These results provide further evidence of a role for activin C in the ovary.
Collapse
Affiliation(s)
- Karen L Reader
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | | | - Helen D Nicholson
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Gail P Risbridger
- Consortium and Cancer Program Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Vic. 3800, Australia
| | - Elspeth J Gold
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Gold E, Zellhuber-McMillan S, Risbridger G, Marino FE. Regional localization of activin-β A , activin-β C , follistatin, proliferation, and apoptosis in adult and developing mouse prostate ducts. Gene Expr Patterns 2017; 23-24:70-79. [DOI: 10.1016/j.gep.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/04/2023]
|
6
|
Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update 2016; 22:342-57. [PMID: 26884470 DOI: 10.1093/humupd/dmv058] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. METHODS A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. RESULTS Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. CONCLUSIONS The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor.
Collapse
Affiliation(s)
- R Wijayarathna
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| | - D M de Kretser
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
7
|
Reader KL, Gold E. Activins and activin antagonists in the human ovary and ovarian cancer. Mol Cell Endocrinol 2015; 415:126-32. [PMID: 26277402 DOI: 10.1016/j.mce.2015.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
Abstract
Activins are members of the transforming growth factor β superfamily that play an important role in controlling cell proliferation and differentiation in many organs including the ovary. It is essential that activin signalling be tightly regulated as imbalances can lead to uncontrolled cell proliferation and cancer. This review describes the expression and function of the activins and their known antagonists in both normal and cancerous human ovaries.
Collapse
Affiliation(s)
- Karen L Reader
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | - Elspeth Gold
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
8
|
Marino FE, Risbridger G, Gold E. Re-evaluating the role of activin-βC in cancer biology. Cytokine Growth Factor Rev 2015; 26:463-70. [DOI: 10.1016/j.cytogfr.2015.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022]
|