1
|
Zou H, Wang P, Zhang J. Role of microRNAs in pituitary gonadotrope cells. Gen Comp Endocrinol 2024; 355:114557. [PMID: 38797341 DOI: 10.1016/j.ygcen.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The gonadotrope cells within the pituitary control vital processes of reproduction by producing follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both external stimuli and internal regulatory factors contribute to the regulation of gonadotrope development and function. In recent years, growing evidences indicate that microRNAs (miRNAs), which regulate gene expression post-transcriptionally, play critical roles in multiple processes of gonadotrope development and function, including the syntheses of α or β subunits of FSH and LH, the secretion of LH, the regulation of GnRH signaling, and the maintenance of gonadotrope cell kinetics. Here, we review recent advances of miRNAs' expression, functions and mechanisms approached by using miRNA knockout mouse models, in silico analysis and the in vitro cultures of primary pituitary cells and gonadotrope-derived cell lines. By summarizing and discussing different roles of miRNAs in gonadotropes, this minireview helps to gain insights into the complex molecular network in gonadotropes and reproduction.
Collapse
Affiliation(s)
- He Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Peimin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
3
|
McDonald R, Larsen M, Liu Z, Southekal S, Eudy J, Guda C, Kumar TR. RNA-seq analysis identifies age-dependent changes in expression of mRNAs - encoding N-glycosylation pathway enzymes in mouse gonadotropes. Mol Cell Endocrinol 2023; 574:111971. [PMID: 37301504 PMCID: PMC10528389 DOI: 10.1016/j.mce.2023.111971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein that is assembled as a heterodimer of α/β subunits in gonadotropes. Each subunit contains two N-glycan chains. Our previous in vivo genetic studies identified that at least one N-glycan chain must be present on the FSHβ subunit for efficient FSH dimer assembly and secretion. Moreover, macroheterogeneity observed uniquely on human FSHβ results in ratiometric changes in age-specific FSH glycoforms, particularly during menopausal transition. Despite the recognition of many prominent roles of sugars on FSH including dimer assembly and secretion, serum half-life, receptor binding and signal transduction, the N-glycosylation machinery in gonadotropes has never been defined. Here, we used a mouse model in which gonadotropes are GFP-labeled in vivo and achieved rapid purification of GFP+ gonadotropes from pituitaries of female mice at reproductively young, middle, and old ages. We identified by RNA-seq analysis 52 mRNAs encoding N-glycosylation pathway enzymes expressed in 3- and 8-10-month-old mouse gonadotropes. We hierarchically mapped and localized the enzymes to distinct subcellular organelles within the N-glycosylation biosynthetic pathway. Of the 52 mRNAs, we found 27 mRNAs are differentially expressed between the 3- and 8-10-month old mice. We subsequently selected 8 mRNAs which showed varying changes in expression for confirmation of abundance in vivo via qPCR analysis, using more expanded aging time points with distinct 8-month and 14-month age groups. Real time qPCR analysis indicated dynamic changes in expression of N-glycosylation pathway enzyme-encoding mRNAs across the life span. Notably, computational analysis predicted the promoters of genes encoding these 8 mRNAs contain multiple high probability binding sites for estrogen receptor-1 and progesterone receptor. Collectively, our studies define the N-glycome and identify age-specific dynamic changes in mRNAs encoding N-glycosylation pathway enzymes in mouse gonadotropes. Our studies suggest the age-related decline in ovarian steroids may regulate expression of N-glycosylation enzymes in mouse gonadotropes and explain the age-related N-glycosylation shift previously observed on human FSHβ subunit in pituitaries of women.
Collapse
Affiliation(s)
- Rosemary McDonald
- Garduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mark Larsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zhenghui Liu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - James Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - T Rajendra Kumar
- Garduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Wang H, Liu Z, Larsen M, Hastings R, Gunewardena S, Kumar TR. Identification of follicle-stimulating hormone-responsive genes in Sertoli cells during early postnatal mouse testis development. Andrology 2023; 11:860-871. [PMID: 37208854 DOI: 10.1111/andr.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND In the mouse testis, Sertoli cells rapidly divide during a narrow window of time pre-pubertally and differentiate thereafter. The number of Sertoli cells determines the testis size and germ cell-carrying capacity. Follicle-stimulating hormone (FSH) binds its cognate FSH-receptors expressed on Sertoli cells and acts as a mitogen to regulate their proliferation. Fshb-/- mutant adult male mice have reduced Sertoli cell number and testis size and reduced sperm number and motility. However, FSH-responsive genes in early postnatal mouse Sertoli cells are unknown. OBJECTIVES To identify FSH-responsive genes in early postnatal mouse Sertoli cells. MATERIALS AND METHODS A fluorescence-activated cell sorting method was developed to rapidly purify Sertoli cells from control and Fshb-/- mice carrying a Sox9 GfpKI allele. These pure Sertoli cells were used for large-scale gene expression analyses. RESULTS We show that mouse Sertoli cells rarely divide beyond postnatal day 7. Our in vivo BrdU labeling studies indicate loss of FSH results in a 30% reduction in Sertoli cell proliferation in mice at 5 days of age. Flowsorted GFP+ Sertoli cells with maximal Fshr expression were 97%-98% pure and mostly devoid of Leydig and germ cells as assessed by Taqman qPCR quantification of gene expression and immunolabeling of the corresponding cell-specific markers. Large-scale gene expression analysis identified several differentially regulated genes in flow-sorted GFP+ Sertoli cells obtained from testis of control and Fshb-/- mice at 5 days of age. The top 25 networks identified by pathway analysis include those related to the cell cycle, cell survival and most importantly, carbohydrate and lipid metabolism and molecular transport. DISCUSSION Several of the FSH-responsive genes identified in this study could serve as useful markers for Sertoli cell proliferation in normal physiology, toxicant-induced Sertoli cell/testis injury, and other pathological conditions. CONCLUSION Our studies reveal that FSH-regulates macromolecular metabolism and molecular transport networks of genes in early postnatal Sertoli cells most likely in preparation for establishment of functional associations with germ cells to successfully coordinate spermatogenesis.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhenghui Liu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark Larsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Hastings
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction. Int J Mol Sci 2021; 22:ijms22073312. [PMID: 33805020 PMCID: PMC8038027 DOI: 10.3390/ijms22073312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022] Open
Abstract
The proper expression of gonadotropin-releasing hormone receptors (GnRHRs) by pituitary gonadotropes is critical for maintaining maximum reproductive capacity. GnRH receptor expression must be tightly regulated in order to maintain the normal pattern of expression through the estrous cycle in rodents, which is believed to be important for interpreting the finely tuned pulses of GnRH from the hypothalamus. Much work has shown that Gnrhr expression is heavily regulated at the level of transcription. However, researchers have also discovered that Gnrhr is regulated post-transcriptionally. This review will discuss how RNA-binding proteins and microRNAs may play critical roles in the regulation of GnRHR expression. We will also discuss how these post-transcriptional regulators may themselves be affected by metabolic cues, specifically with regards to the adipokine leptin. All together, we present evidence that Gnrhr is regulated post-transcriptionally, and that this concept must be further explored in order to fully understand the complex nature of this receptor.
Collapse
|
6
|
Simon LE, Liu Z, Bousfield GR, Kumar TR, Duncan FE. Recombinant FSH glycoforms are bioactive in mouse preantral ovarian follicles. Reproduction 2020; 158:517-527. [PMID: 31600726 DOI: 10.1530/rep-19-0392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Female reproductive aging is characterized by a rise in follicle-stimulating hormone (FSH) levels during peri-menopause. N-linked glycans are co-translationally attached to the Asn7 and Asn24 residues on the FSHβ subunit. Differences in the number of N-glycans on the FSHβ subunit result in distinct glycoforms: hypo-glycosylated (FSH21/18, glycans absent on either Asn24 or Asn7, respectively) or fully-glycosylated (FSH24, glycans present on both Asn7 and Asn24). The relative abundance of FSH glycoforms changes with advanced reproductive age, shifting from predominantly FSH21/18 in younger women to FSH24 in older women. Previous in vitro studies in granulosa cell lines and in vivo studies using Fshb-null mice showed these glycoforms elicit differential bioactivities. However, the direct effects of FSH glycoforms on the mouse ovarian follicle have not yet been determined. In this study, we isolated secondary follicles from pre-pubertal mice and treated them with 20- or 100 ng/mL purified recombinant FSH glycoforms for 1 h or 18-20 h. Analysis of phosphorylated PKA substrates showed that glycoforms were bioactive in follicles following 1-h treatment, although differential bioactivity was only observed with the 100 ng/mL dose. Treatment of follicles with 100 ng/mL of each glycoform also induced distinct expression patterns of FSH-responsive genes as assessed by qPCR, consistent with differential function. Our results, therefore, indicate that FSH glycoforms are bioactive in isolated murine follicles.
Collapse
Affiliation(s)
- Leah E Simon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zhenghui Liu
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Brown JL, Sones JL, Angulo CN, Abbott K, Miller AD, Boehm U, Roberson MS. Conditional loss of ERK1 and ERK2 results in abnormal placentation and delayed parturition in the mouse. Sci Rep 2019; 9:9641. [PMID: 31270345 PMCID: PMC6610138 DOI: 10.1038/s41598-019-45997-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/21/2019] [Indexed: 11/11/2022] Open
Abstract
Extracellular-signal-regulated kinases (ERK) 1 and 2 regulate many aspects of the hypothalamic-pituitary-gonadal axis. We sought to understand the role of ERK1/2 signaling in cells expressing a Cre allele regulated by the endogenous GnRHR promoter (GRIC-ERKdko). Adult female GRIC-ERKdko mice were hypogonadotropic and anovulatory. Gonadotropin administration and mating led to pregnancy in one-third of the ERKdko females. Litters from ERKdko females and pup weights were reduced coincident with delayed parturition and 100% neonatal mortality. Based on this, we examined Cre expression in implantation sites as a potential mechanism. GnRHR mRNA levels at e10.5 and e12.5 were comparable to pituitary levels from adult female mice at proestrus and GnRHR mRNA in decidua was enriched compared to whole implantation site. In vivo studies confirmed recombination in decidua, and GRIC-ERKdko placentas showed reduced ERK2 expression. Histopathology revealed abnormalities in placental architecture in the GRIC-ERKdko animals. Regions of apoptosis at the decidual/uterine interface at e18.5 were observed in control animals but apoptotic tone in these regions was reduced in ERKdko animals. These studies support a potential model of ERK-dependent signaling within the implantation site leading to loss of placental architecture and mis-regulation of apoptotic events at parturition occurring coincident with prolonged gestation and neonatal mortality.
Collapse
Affiliation(s)
- Jessica L Brown
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennifer L Sones
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Cynthia N Angulo
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Keelin Abbott
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Andrew D Miller
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Mark S Roberson
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
MiR-125b-2 Knockout in Testis Is Associated with Targeting to the PAP Gene, Mitochondrial Copy Number, and Impaired Sperm Quality. Int J Mol Sci 2019; 20:ijms20010148. [PMID: 30609807 PMCID: PMC6337273 DOI: 10.3390/ijms20010148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
It has been reported that the miR-125 family plays an important role in regulating embryo development. However, the function of miR-125b-2 in spermatogenesis remains unknown. In this study, we used a model of miR-125b knockout (KO) mice to study the relationship between miR-125b-2 and spermatogenesis. Among the KO mice, the progeny test showed that the litter size decreased significantly (p = 0.0002) and the rate of non-parous females increased significantly from 10% to 38%. At the same time, the testosterone concentration increased significantly (p = 0.007), with a remarkable decrease for estradiol (p = 0.02). Moreover, the sperm count decreased obviously (p = 0.011) and the percentage of abnormal sperm increased significantly (p = 0.0002). The testicular transcriptome sequencing revealed that there were 173 up-regulated genes, including Papolb (PAP), and 151 down-regulated genes in KO mice compared with wild type (WT). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analysis showed that many of these genes were involved in sperm mitochondrial metabolism and other cellular biological processes. Meanwhile, the sperm mitochondria DNA (mtDNA) copy number increased significantly in the KO mice, but there were no changes observed in the mtDNA integrity and mutations of mt-Cytb, as well as the mt-ATP6 between the WT mice and KO mice. In the top 10 up-regulated genes, PAP, as a testis specific expressing gene, affect the process of spermatogenesis. Western blotting and the Luciferase assay validated that PAP was the target of miR-125b-5p. Intriguingly, we also found that both miR-125b and PAP were only highly expressed in the germ cells (GC) instead of in the Leydig cells (LC) and Sertoli cells (SC). Additionally, miR-125b-5p down regulated the secretion of testosterone in the TM3 cell by targeting PAP (p = 0.021). Our study firstly demonstrated that miR-125b-2 regulated testosterone secretion by directly targeting PAP, and increased the sperm mtDNA copy number to affect semen quality. The study indicated that miR-125b-2 had a positive influence on the reproductive performance of animals by regulating the expression of the PAP gene, and could be a potential drugs and diagnostic target for male infertility.
Collapse
|
9
|
Abstract
The hypothalamic decapeptide, GnRH, is the gatekeeper of mammalian reproductive development and function. Activation of specific, high-affinity cell surface receptors (GnRH receptors) on gonadotropes by GnRH triggers signal transduction cascades to stimulate the coordinated synthesis and secretion of the pituitary gonadotropins FSH and LH. These hormones direct gonadal steroidogenesis and gametogenesis, making their tightly regulated production and secretion essential for normal sexual maturation and reproductive health. FSH and LH are glycoprotein heterodimers comprised of a common α-subunit and a unique β-subunit (FSHβ and LHβ, respectively), which determines the biological specificity of the gonadotropins. The unique β-subunit is the rate-limiting step for the production of the mature gonadotropins. Therefore, FSH synthesis is regulated at the transcriptional level by Fshb gene expression. The overarching goal of this review is to expand our understanding of the mechanisms and pathways underlying the carefully orchestrated control of FSH synthesis and secretion by GnRH, focusing on the transcriptional regulation of the Fshb gene. Identification of these regulatory mechanisms is not only fundamental to our understanding of normal reproductive function but will also provide a context for the elucidation of the pathophysiology of reproductive disorders and infertility to lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Yale New Haven Health, Bridgeport Hospital, Bridgeport, Connecticut
- School of Medicine, University of Crete, Heraklion, Greece
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
McDonald R, Sadler C, Kumar TR. Gain-of-Function Genetic Models to Study FSH Action. Front Endocrinol (Lausanne) 2019; 10:28. [PMID: 30792692 PMCID: PMC6374295 DOI: 10.3389/fendo.2019.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a pituitary-derived gonadotropin that plays key roles in male and female reproduction. The physiology and biochemistry of FSH have been extensively studied for many years. Beginning in the early 1990s, coincident with advances in the then emerging transgenic animal technology, and continuing till today, several gain-of-function (GOF) models have been developed to understand FSH homeostasis in a physiological context. Our group and others have generated a number of FSH ligand and receptor GOF mouse models. An FSH GOF model when combined with Fshb null mice provides a powerful genetic rescue platform. In this chapter, we discuss different GOF models for FSH synthesis, secretion and action and describe additional novel genetic models that could be developed in the future to further refine the existing models.
Collapse
Affiliation(s)
- Rosemary McDonald
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, IL, United States
- Integrated Physiology Graduate Program, University of Colorado Anschutz Medical CampusAurora, IL, United States
| | - Carolyn Sadler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, IL, United States
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, IL, United States
- Integrated Physiology Graduate Program, University of Colorado Anschutz Medical CampusAurora, IL, United States
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, IL, United States
- *Correspondence: T. Rajendra Kumar
| |
Collapse
|
11
|
Gilbert SB, Roof AK, Rajendra Kumar T. Mouse models for the analysis of gonadotropin secretion and action. Best Pract Res Clin Endocrinol Metab 2018; 32:219-239. [PMID: 29779578 PMCID: PMC5973545 DOI: 10.1016/j.beem.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gonadotropins are pituitary gonadotrope-derived glycoprotein hormones. They act by binding to G-protein coupled receptors on gonads. Gonadotropins play critical roles in reproduction by regulating both gametogenesis and steroidogenesis. Although biochemical and physiological studies provided a wealth of knowledge, gene manipulation techniques using novel mouse models gave new insights into gonadotropin synthesis, secretion and action. Both gain of function and loss of function mouse models for understanding gonadotropin action in a whole animal context have already been generated. Moreover, recent studies on gonadotropin actions in non-gonadal tissues challenged the central dogma of classical gonadotropin actions in gonads and revealed new signaling pathways in these non-gonadal tissues. In this Chapter, we have discussed our current understanding of gonadotropin synthesis, secretion and action using a variety of genetically engineered mouse models.
Collapse
Affiliation(s)
- Sara Babcock Gilbert
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Allyson K Roof
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T Rajendra Kumar
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Kumar TR. Fshb Knockout Mouse Model, Two Decades Later and Into the Future. Endocrinology 2018; 159:1941-1949. [PMID: 29579177 PMCID: PMC5888209 DOI: 10.1210/en.2018-00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022]
Abstract
In 1997, nearly 20 years ago, we reported the phenotypes of follicle-stimulating hormone (FSH) β (Fshb) null mice. Since then, these mice have been useful for various physiological and genetic studies in reproductive and skeletal biology. In a 2009 review titled "FSHβ Knockout Mouse Model: A Decade Ago and Into the Future," I summarized the need for and what led to the development of an FSH-deficient mouse model and its applications, including delineation of the emerging extragonadal roles of FSH in bone cells by using this genetic model. These studies opened up exciting avenues of research on osteoporosis and now extend into those on adiposity in postmenopausal women. Here, I summarize the progress made with this mouse model since 2009 with regard to FSH rerouting in vivo, deciphering the role of N-glycosylation on FSHβ, roles of FSH in somatic-germ cell interactions in gonads, and provide a road map that is anticipated to emerge in the near future. Undoubtedly, the next 10 years should be an even more exciting time to explore the fertile area of FSH biology and its implications for basic and clinical reproductive physiology research.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado
- Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, RC-2 Complex, 15-3000B, Aurora, Colorado 80045. E-mail:
| |
Collapse
|
13
|
Reproductive role of miRNA in the hypothalamic-pituitary axis. Mol Cell Neurosci 2018; 88:130-137. [DOI: 10.1016/j.mcn.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022] Open
|
14
|
Brown JL, Xie J, Brieño-Enriquez MA, Sones J, Angulo CN, Boehm U, Miller A, Toufaily C, Wang Y, Bernard DJ, Roberson MS. Sex- and Age-Specific Impact of ERK Loss Within the Pituitary Gonadotrope in Mice. Endocrinology 2018; 159:1264-1276. [PMID: 29300908 PMCID: PMC5802804 DOI: 10.1210/en.2017-00653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
Abstract
Extracellular signal-regulated kinase (ERK) signaling regulates hormone action in the reproductive axis, but specific mechanisms have yet to be completely elucidated. In the current study, ERK1 null and ERK2 floxed mice were combined with a gonadotropin-releasing hormone receptor (GnRHR)-internal ribosomal entry site-Cre (GRIC) driver. Female ERK double-knockout (ERKdko) animals were hypogonadotropic, resulting in anovulation and complete infertility. Transcript levels of four gonadotrope-specific genes (GnRHR and the three gonadotropin subunits) were reduced in pituitaries at estrus in ERKdko females, and the postcastration response to endogenous GnRH hyperstimulation was blunted. As females aged, they exhibited abnormal ovarian histology, as well as increased body weight. ERKdko males were initially less affected, showing moderate subfertility, up to 6 months of age. Male ERKdko mice also displayed a blunted response to endogenous GnRH following castration. By 12 months of age, ERKdko males had reduced testicular weights and sperm production. By 18 months of age, the ERKdko males displayed reduced testis and seminal vesicle weights, marked seminiferous tubule degeneration, and a 77% reduction in sperm production relative to controls. As the GRIC is also active in the male germ line, we examined the specific role of ERK loss in the testes using the stimulated by retinoic acid 8 (Stra8)-Cre driver. Whereas ERK loss in GRIC and Stra8 males resulted in comparable losses in sperm production, seminiferous tubule histological degeneration was only observed in the GRIC-ERKdko animals. Our data suggest that loss of ERK signaling and hypogonadotropism within the reproductive axis impacts fertility and gonadal aging.
Collapse
Affiliation(s)
- Jessica L Brown
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jianjun Xie
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Jennifer Sones
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Cynthia N Angulo
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Andrew Miller
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Québec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Québec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Québec, Canada
| | - Mark S Roberson
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
- Correspondence: Mark S. Roberson, PhD, Department of Biomedical Sciences, T4-018 Veterinary Research Tower, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853. E-mail:
| |
Collapse
|
15
|
Wang H, May J, Butnev V, Shuai B, May JV, Bousfield GR, Kumar TR. Evaluation of in vivo bioactivities of recombinant hypo- (FSH 21/18) and fully- (FSH 24) glycosylated human FSH glycoforms in Fshb null mice. Mol Cell Endocrinol 2016; 437:224-236. [PMID: 27561202 PMCID: PMC5048586 DOI: 10.1016/j.mce.2016.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/21/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
Abstract
The hormone - specific FSHβ subunit of the human FSH heterodimer consists of N-linked glycans at Asn7 and Asn24 residues that are co-translationally attached early during subunit biosynthesis. Differences in the number of N-glycans (none, one or two) on the human FSHβ subunit contribute to macroheterogeneity in the FSH heterodimer. The resulting FSH glycoforms are termed hypo-glycosylated (FSH21/18, missing either an Asn24 or Asn7 N-glycan chain on the β - subunit, respectively) or fully glycosylated (FSH24, possessing of both Asn7 and Asn24 N-linked glycans on the β - subunit) FSH. The recombinant versions of human FSH glycoforms (FSH21/18 and FSH24) have been purified and biochemically characterized. In vitro functional studies have indicated that FSH21/18 exhibits faster FSH- receptor binding kinetics and is much more active than FSH24 in every assay tested to date. However, the in vivo bioactivity of the hypo-glycosylated FSH glycoform has never been tested. Here, we evaluated the in vivo bioactivities of FSH glycoforms in Fshb null mice using a pharmacological rescue approach. In Fshb null female mice, both hypo- and fully-glycosylated FSH elicited an ovarian weight gain response by 48 h and induced ovarian genes in a dose- and time-dependent manner. Quantification by real time qPCR assays indicated that hypo-glycosylated FSH21/18 was bioactive in vivo and induced FSH-responsive ovarian genes similar to fully-glycosylated FSH24. Western blot analyses followed by densitometry of key signaling components downstream of the FSH-receptor confirmed that the hypo-glycosylated FSH21/18 elicited a response similar to that by fully-glycosylated FSH24 in ovaries of Fshb null mice. When injected into Fshb null males, hypo-glycosylated FSH21/18 was more active than the fully-glycosylated FSH24 in inducing FSH-responsive genes and Sertoli cell proliferation. Thus, our data establish that recombinant hypo-glycosylated human FSH21/18 glycoform elicits bioactivity in vivo similar to the fully-glycosylated FSH. Our studies may have clinical implications particularly in formulating FSH-based ovarian follicle induction protocols using a combination of different human FSH glycoforms.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob May
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Viktor Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Bin Shuai
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:49-84. [PMID: 27697204 DOI: 10.1016/bs.pmbts.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gonadotropins play fundamental roles in reproduction. More than 30years ago, Cga transgenic mice were generated, and more than 20years ago, the phenotypes of Cga null mice were reported. Since then, numerous mouse strains have been generated and characterized to address several questions in reproductive biology involving gonadotropin synthesis, secretion, and action. More recently, extragonadal expression, and in some cases, functions of gonadotropins in nongonadal tissues have been identified. Several genomic and proteomic approaches including novel mouse genome editing tools are available now. It is anticipated that these and other emerging technologies will be useful to build an integrated network of gonadotropin signaling pathways in various tissues. Undoubtedly, research on gonadotropins will continue to provide new knowledge and allow us transcend from benchside to the bedside.
Collapse
|
17
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
18
|
A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep 2016; 6:31563. [PMID: 27539363 PMCID: PMC4990909 DOI: 10.1038/srep31563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023] Open
Abstract
The GnRH neurohormone is the main activator of the pituitary gonadotropins, LH and FSH. Here we investigated the contribution of microRNAs in mediating GnRH activation. We first established that miR-125b targets several actors of Gαq/11 signalling pathway, without altering Gαs pathway. We then showed that a Gαs-mediated, PKA-dependent phosphorylation of NSun2 methyltransferase leads to miR-125b methylation and thereby induces its down-regulation. We demonstrated that NSun2 mRNA is a target of miR-132 and that NSun2 may be inactivated by the PP1α phosphatase. Time-course analysis of GnRH treatment revealed an initial NSun2-dependent down-regulation of miR-125b with consecutive up-regulation of LH and FSH expression. Increase of miR-132 and of the catalytic subunit of PP1α then contributed to NSun2 inactivation and to the return of miR-125b to its steady-state level. The Gαq/11-dependent pathway was thus again silenced, provoking the down-regulation of LH, FSH and miR-132. Overall, this study reveals that a regulatory loop that tends to maintain or restore high and low levels of miR-125b and miR-132, respectively, is responsible for gonadotrope cells desensitization to sustained GnRH. A dysregulation of this loop might be responsible for the inverted dynamics of these two miRNAs reported in several neuronal and non-neuronal pathologies.
Collapse
|
19
|
Wang H, Butnev V, Bousfield GR, Kumar TR. A human FSHB transgene encoding the double N-glycosylation mutant (Asn(7Δ) Asn(24Δ)) FSHβ subunit fails to rescue Fshb null mice. Mol Cell Endocrinol 2016; 426:113-24. [PMID: 26911932 PMCID: PMC5130991 DOI: 10.1016/j.mce.2016.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Follicle-stimulating hormone (FSH) is a gonadotrope-derived heterodimeric glycoprotein. Both the common α- and hormone-specific β subunits contain Asn-linked N-glycan chains. Recently, macroheterogeneous FSH glycoforms consisting of β-subunits that differ in N-glycan number were identified in pituitaries of several species and subsequently the recombinant human FSH glycoforms biochemically characterized. Although chemical modification and in vitro site-directed mutagenesis studies defined the roles of N-glycans on gonadotropin subunits, in vivo functional analyses in a whole-animal setting are lacking. Here, we have generated transgenic mice with gonadotrope-specific expression of either an HFSHB(WT) transgene that encodes human FSHβ WT subunit or an HFSHB(dgc) transgene that encodes a human FSHβ(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, and separately introduced these transgenes onto Fshb null background using a genetic rescue strategy. We demonstrate that the human FSHβ(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, unlike human FSHβ WT subunit, inefficiently combines with the mouse α-subunit in pituitaries of Fshb null mice. FSH dimer containing this mutant FSHβ subunit is inefficiently secreted with very low levels detectable in serum. Fshb null male mice expressing HFSHB(dgc) transgene are fertile and exhibit testis tubule size and sperm number similar to those of Fshb null mice. Fshb null female mice expressing the mutant, but not WT human FSHβ subunit-containing FSH dimer are infertile, demonstrate no evidence of estrus cycles, and many of the FSH-responsive genes remain suppressed in their ovaries. Thus, HFSHB(dgc) unlike HFSHB(WT) transgene does not rescue Fshb null mice. Our genetic approach provides direct in vivo evidence that N-linked glycans on FSHβ subunit are essential for its efficient assembly with the α-subunit to form FSH heterodimer in pituitary. Our studies also reveal that N-glycans on FSHβ subunit are essential for FSH secretion and FSH in vivo bioactivity to regulate gonadal growth and physiology.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology
| | - Vladimir Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine; Department of Pathology and Laboratory Medicine; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|