1
|
Hariani HN, Ghosh AK, Rosen SM, Tso HY, Kessinger C, Zhang C, Jones WK, Sappington RM, Mitchell CH, Stubbs EB, Rao VR, Kaja S. Lysyl oxidase like-1 deficiency in optic nerve head astrocytes elicits reactive astrocytosis and alters functional effects of astrocyte derived exosomes. Exp Eye Res 2024; 240:109813. [PMID: 38331016 PMCID: PMC10962968 DOI: 10.1016/j.exer.2024.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.
Collapse
Affiliation(s)
- Harsh N Hariani
- Graduate Program in Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA; Research Service, Edward Hines Jr Veterans Affairs Hospital, Hines, IL, 60141, USA
| | - Anita K Ghosh
- Graduate Program in Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA; Research Service, Edward Hines Jr Veterans Affairs Hospital, Hines, IL, 60141, USA
| | - Sasha M Rosen
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, 60153, USA; Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Huen-Yee Tso
- Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cassidy Kessinger
- Graduate Program in Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Chongyu Zhang
- Graduate Program in Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, 60153, USA
| | - W Keith Jones
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Rebecca M Sappington
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27109, USA; Translational Eye and Vision Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27109, USA
| | - Claire H Mitchell
- Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Evan B Stubbs
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, 60153, USA; Research Service, Edward Hines Jr Veterans Affairs Hospital, Hines, IL, 60141, USA
| | - Vidhya R Rao
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, 60153, USA; Research Service, Edward Hines Jr Veterans Affairs Hospital, Hines, IL, 60141, USA
| | - Simon Kaja
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, 60153, USA; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA; Research Service, Edward Hines Jr Veterans Affairs Hospital, Hines, IL, 60141, USA.
| |
Collapse
|
2
|
Zaniker EJ, Babayev E, Duncan FE. Common mechanisms of physiological and pathological rupture events in biology: novel insights into mammalian ovulation and beyond. Biol Rev Camb Philos Soc 2023; 98:1648-1667. [PMID: 37157877 PMCID: PMC10524764 DOI: 10.1111/brv.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Ovulation is a cyclical biological rupture event fundamental to fertilisation and endocrine function. During this process, the somatic support cells that surround the germ cell undergo a remodelling process that culminates in breakdown of the follicle wall and release of a mature egg. Ovulation is driven by known proteolytic and inflammatory pathways as well as structural alterations to the follicle vasculature and the fluid-filled antral cavity. Ovulation is one of several types of systematic remodelling that occur in the human body that can be described as rupture. Although ovulation is a physiological form of rupture, other types of rupture occur in the human body which can be pathological, physiological, or both. In this review, we use intracranial aneurysms and chorioamniotic membrane rupture as examples of rupture events that are pathological or both pathological and physiological, respectively, and compare these to the rupture process central to ovulation. Specifically, we compared existing transcriptomic profiles, immune cell functions, vascular modifications, and biomechanical forces to identify common processes that are conserved between rupture events. In our transcriptomic analysis, we found 12 differentially expressed genes in common among two different ovulation data sets and one intracranial aneurysm data set. We also found three genes that were differentially expressed in common for both ovulation data sets and one chorioamniotic membrane rupture data set. Combining analysis of all three data sets identified two genes (Angptl4 and Pfkfb4) that were upregulated across rupture systems. Some of the identified genes, such as Rgs2, Adam8, and Lox, have been characterised in multiple rupture contexts, including ovulation. Others, such as Glul, Baz1a, and Ddx3x, have not yet been characterised in the context of ovulation and warrant further investigation as potential novel regulators. We also identified overlapping functions of mast cells, macrophages, and T cells in the process of rupture. Each of these rupture systems share local vasoconstriction around the rupture site, smooth muscle contractions away from the site of rupture, and fluid shear forces that initially increase and then decrease to predispose one specific region to rupture. Experimental techniques developed to study these structural and biomechanical changes that underlie rupture, such as patient-derived microfluidic models and spatiotemporal transcriptomic analyses, have not yet been comprehensively translated to the study of ovulation. Review of the existing knowledge, transcriptomic data, and experimental techniques from studies of rupture in other biological systems yields a better understanding of the physiology of ovulation and identifies avenues for novel studies of ovulation with techniques and targets from the study of vascular biology and parturition.
Collapse
Affiliation(s)
- Emily J. Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Lu JW, Lei WJ, Ling LJ, Wang LY, Lin YK, Zhang F, Li MD, Pan F, Wang WS, Sun K. Cortisol Stimulates Local Progesterone Withdrawal Through Induction of AKR1C1 in Human Amnion Fibroblasts at Parturition. Endocrinology 2022; 163:6681118. [PMID: 36048433 DOI: 10.1210/endocr/bqac148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/19/2022]
Abstract
Fetal membrane activation is seen as being one of the crucial triggering components of human parturition. Increased prostaglandin E2 (PGE2) production, a common mediator of labor onset in virtually all species, is recognized as one of the landmark events of membrane activation. Fetal membranes are also equipped with a high capacity of cortisol regeneration by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), and the cortisol regenerated potently induces PGE2 synthesis, an effect normally suppressed by progesterone during gestation. There is no precipitous decline of progesterone synthesis in human parturition. It is intriguing how this suppression is lifted in parturition. Here, we investigated this issue by using human amnion tissue and primary amnion fibroblasts which synthesize the most PGE2 in the fetal membranes. Results showed that the expression of 11β-HSD1 and aldo-keto reductase family 1 member C1 (AKR1C1), a progesterone-inactivating enzyme, increased in parallel in human amnion tissue with gestational age toward the end of gestation and at parturition. Cortisol induced AKR1C1 expression via the transcription factor CCAAT enhancer binding protein δ (C/EBPδ) in amnion fibroblasts. Inhibition of AKR1C1 not only blocked progesterone catabolism induced by cortisol, but also enhanced the suppression of cortisol-induced cyclooxygenase-2 (COX-2) expression by progesterone in amnion fibroblasts. In conclusion, our results indicate that cortisol regenerated in the fetal membranes triggers local progesterone withdrawal through enhancement of AKR1C1-mediated progesterone catabolism in amnion fibroblasts, so that the suppression of progesterone on the induction of COX-2 expression and PGE2 synthesis by cortisol can be lifted for parturition.
Collapse
Affiliation(s)
- Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Li-Jun Ling
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Lu-Yao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
4
|
Ovarian Transcriptomic Analysis of Ninghai Indigenous Chickens at Different Egg-Laying Periods. Genes (Basel) 2022; 13:genes13040595. [PMID: 35456401 PMCID: PMC9027236 DOI: 10.3390/genes13040595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Egg production is an essential indicator of poultry fertility. The ovary is a crucial organ involved in egg production; however, little is known about the key genes and signaling pathways involved in the whole egg-laying cycle of hens. In order to explore the mechanism of egg production at different stages of the egg-laying process, ovarian tissues from four chickens were randomly selected for transcriptome analysis at each of the three ages (145 d, 204 d, and 300 d in the early, peak, and late stages of egg laying). A total of 12 gene libraries were constructed, and a total of 8433 differential genes were identified from NH145d vs. NH204d, NH145d vs. NH300d and NH300d vs. NH204d (Ninghai 145-day-old, Ninghai 204-day-old, and Ninghai 300-day-old), with 1176, 1653 and 1868 up-regulated genes, and 621, 1955 and 1160 down-regulated genes, respectively. In each of the two comparison groups, 73, 1004, and 1030 differentially expressed genes were found to be co-expressed. We analyzed the differentially expressed genes and predicted nine genes involved in egg production regulation, including LRP8, BMP6, ZP4, COL4A1, VCAN, INHBA, LOX, PTX3, and IHH, as well as several essential egg production pathways, such as regulation adhesion molecules (CAMs), calcium signaling pathways, neuroactive ligand–receptor interaction, and cytokine–cytokine receptor interaction. Transcriptional analysis of the chicken ovary during different phases of egg-lay will provide a useful molecular basis for study of the development of the egg-laying ovary.
Collapse
|
5
|
Li WJ, Lu JW, Zhang CY, Wang WS, Ying H, Myatt L, Sun K. PGE2 vs PGF2α in human parturition. Placenta 2020; 104:208-219. [PMID: 33429118 DOI: 10.1016/j.placenta.2020.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) and F2α (PGF2α) are the two most prominent prostanoids in parturition. They are involved in cervical ripening, membrane rupture, myometrial contraction and inflammation in gestational tissues. Because multiple receptor subtypes for PGE2 and PGF2α exist, coupled with diverse signaling pathways, the effects of PGE2 and PGF2α depend largely on the spatial and temporal expression of these receptors in intrauterine tissues. It appears that PGE2 and PGF2α play different roles in parturition. PGE2 is probably more important for labor onset, while PGF2α may play a more important role in labor accomplishment, which may be attributed to the differential effects of PGE2 and PGF2α in gestational tissues. PGE2 is more powerful than PGF2α in the induction of cervical ripening. In terms of myometrial contraction, PGE2 produces a biphasic effect with an initial contraction and a following relaxation, while PGF2α consistently stimulates myometrial contraction. In the fetal membranes, both PGE2 and PGF2α appear to be involved in the process of membrane rupture. In addition, PGE2 and PGF2α may also participate in the inflammatory process of intrauterine tissues at parturition by stimulating not only neutrophil influx and cytokine production but also cyclooxygenase-2 expression thereby intensifying their own production. This review summarizes the differential roles of PGE2 and PGF2α in parturition with respect to their production and expression of receptor subtypes in gestational tissues. Dissecting the specific mechanisms underlying the effects of PGE2 and PGF2α in parturition may assist in developing specific therapeutic targets for preterm and post-term birth.
Collapse
Affiliation(s)
- Wen-Jiao Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
6
|
Laczko R, Csiszar K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020; 10:biom10081093. [PMID: 32708046 PMCID: PMC7465975 DOI: 10.3390/biom10081093] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cu-dependent lysyl oxidase (LOX) plays a catalytic activity-related, primary role in the assembly of the extracellular matrix (ECM), a dynamic structural and regulatory framework which is essential for cell fate, differentiation and communication during development, tissue maintenance and repair. LOX, additionally, plays both activity-dependent and independent extracellular, intracellular and nuclear roles that fulfill significant functions in normal tissues, and contribute to vascular, cardiac, pulmonary, dermal, placenta, diaphragm, kidney and pelvic floor disorders. LOX activities have also been recognized in glioblastoma, diabetic neovascularization, osteogenic differentiation, bone matrix formation, ligament remodeling, polycystic ovary syndrome, fetal membrane rupture and tumor progression and metastasis. In an inflammatory context, LOX plays a role in diminishing pluripotent mesenchymal cell pools which are relevant to the pathology of diabetes, osteoporosis and rheumatoid arthritis. Most of these conditions involve mechanisms with complex cell and tissue type-specific interactions of LOX with signaling pathways, not only as a regulatory target, but also as an active player, including LOX-mediated alterations of cell surface receptor functions and mutual regulatory activities within signaling loops. In this review, we aim to provide insight into the diverse ways in which LOX participates in signaling events, and explore the mechanistic details and functional significance of the regulatory and cross-regulatory interactions of LOX with the EGFR, PDGF, VEGF, TGF-β, mechano-transduction, inflammatory and steroid signaling pathways.
Collapse
|
7
|
Wang WS, Guo CM, Sun K. Cortisol Regeneration in the Fetal Membranes, A Coincidental or Requisite Event in Human Parturition? Front Physiol 2020; 11:462. [PMID: 32523541 PMCID: PMC7261858 DOI: 10.3389/fphys.2020.00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The fetal membranes are equipped with high capacity of cortisol regeneration through the reductase activity of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). The expression of 11β-HSD1 in the fetal membranes is under the feedforward induction by cortisol, which is potentiated by proinflammatory cytokines. As a result, the abundance of 11β-HSD1 increases with gestational age and furthermore at parturition with an escalation of cortisol concentration in the fetal membranes. Accumulated cortisol takes parts in a number of crucial events pertinent to the onset of labor in the fetal membranes, including extracellular matrix (ECM) remodeling and stimulation of prostaglandin output. Cortisol remodels the ECM through multiple approaches including induction of collagen I, III, and IV degradation, as well as inhibition of their cross-linking. These effects of cortisol are executed through activation of the autophagy, proteasome, and matrix metalloprotease 7 pathways, as well as inhibition of the expression of cross-linking enzyme lysyl oxidase in mesenchymal cells of the membranes. With regard to prostaglandin output, cortisol not only increases prostaglandin E2 and F2α syntheses through induction of their synthesizing enzymes such as cytosolic phospholipase A2, cyclooxygenase 2, and carbonyl reductase 1 in the amnion, but also decreases their degradation through inhibition of their metabolizing enzyme 15-hydroxyprostaglandin dehydrogenase in the chorion. Taking all together, data accumulated so far denote that the feedforward cortisol regeneration by 11β-HSD1 in the fetal membranes is a requisite event in the onset of parturition, and the effects of cortisol on prostaglandin synthesis and ECM remodeling may be enhanced by proinflammatory cytokines in chorioamnionitis.
Collapse
Affiliation(s)
- Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Chun-Ming Guo
- School of Life Sciences, Yunnan University, Kunming, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
8
|
Concerted EP2 and EP4 Receptor Signaling Stimulates Autocrine Prostaglandin E 2 Activation in Human Podocytes. Cells 2020; 9:cells9051256. [PMID: 32438662 PMCID: PMC7290667 DOI: 10.3390/cells9051256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glomerular hyperfiltration is an important mechanism in the development of albuminuria. During hyperfiltration, podocytes are exposed to increased fluid flow shear stress (FFSS) in Bowman’s space. Elevated Prostaglandin E2 (PGE2) synthesis and upregulated cyclooxygenase 2 (Cox2) are associated with podocyte injury by FFSS. We aimed to elucidate a PGE2 autocrine/paracrine pathway in human podocytes (hPC). We developed a modified liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS) protocol to quantify cellular PGE2, 15-keto-PGE2, and 13,14-dihydro-15-keto-PGE2 levels. hPC were treated with PGE2 with or without separate or combined blockade of prostaglandin E receptors (EP), EP2, and EP4. Furthermore, the effect of FFSS on COX2, PTGER2, and PTGER4 expression in hPC was quantified. In hPC, stimulation with PGE2 led to an EP2- and EP4-dependent increase in cyclic adenosine monophosphate (cAMP) and COX2, and induced cellular PGE2. PTGER4 was downregulated after PGE2 stimulation in hPC. In the corresponding LC/ESI-MS/MS in vivo analysis at the tissue level, increased PGE2 and 15-keto-PGE2 levels were observed in isolated glomeruli obtained from a well-established rat model with glomerular hyperfiltration, the Munich Wistar Frömter rat. COX2 and PTGER2 were upregulated by FFSS. Our data thus support an autocrine/paracrine COX2/PGE2 pathway in hPC linked to concerted EP2 and EP4 signaling.
Collapse
|
9
|
Lu JW, Wang WS, Zhou Q, Gan XW, Myatt L, Sun K. Activation of prostaglandin EP4 receptor attenuates the induction of cyclooxygenase-2 expression by EP2 receptor activation in human amnion fibroblasts: implications for parturition. FASEB J 2019; 33:8148-8160. [PMID: 30917001 DOI: 10.1096/fj.201802642r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human amnion fibroblasts produce abundant prostaglandin E2 (PGE2), which plays a crucial role in parturition by stimulating not only myometrial contraction and cervical ripening but also the expression of the rate-limiting enzyme in PGE2 synthesis-namely, cyclooxygenase-2 (COX-2). This feed-forward induction of COX-2 expression by PGE2 is mediated via its receptors coupled with the cAMP and PKA pathway and subsequent phosphorylation of the transcription factors cAMP-response element binding protein (CREB) and signal transducer and activator of transcription 3 (STAT3). Although prostaglandin E receptor (EP)-2 and EP4 for PGE2 are coupled with activation of the cAMP and PKA pathway, the exact roles of these 2 receptors in the regulation of COX-2 expression in amnion fibroblasts remain to be determined. Here, we clarify this issue by employing human amnion tissue and fibroblasts with the long-term objective of specific targeting of prostaglandin synthesis in prevention of preterm birth. We find that an EP2 agonist caused long-lasting increases in CREB phosphorylation and COX-2 expression, whereas an EP4 agonist induced only transient increases in CREB phosphorylation and COX-2 expression in amnion fibroblasts. Moreover, only EP2 stimulation increased STAT3 phosphorylation, whereas only EP4 stimulation increased PI3K activity. EP4 antagonist or inhibition of PI3K enhanced the induction of CREB and STAT3 phosphorylation and COX-2 expression by PGE2 or EP2 stimulation, which was attenuated by EP4 overexpression. Of interest, PGE2 and cortisol, both well-demonstrated stimulants of COX-2 expression in amnion fibroblasts, increased EP2 but decreased EP4 receptor expression. Furthermore, increased EP2 but decreased EP4 abundance were observed in amnion tissue at parturition. We conclude that EP2 and EP4 receptors play different roles in the regulation of COX-2 expression in human amnion fibroblasts. EP2 is the dominant PGE2 receptor mediating the induction of COX-2 at parturition, which can be attenuated by simultaneous activation of PI3K coupled to the EP4 receptor.-Lu, J.-W., Wang, W.-S., Zhou, Q., Gan, X.-W., Myatt, L., Sun, K. Activation of prostaglandin EP4 receptor attenuates the induction of cyclooxygenase-2 expression by EP2 receptor activation in human amnion fibroblasts: implications for parturition.
Collapse
Affiliation(s)
- Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
10
|
Wang YW, Wang WS, Wang LY, Bao YR, Lu JW, Lu Y, Zhang CY, Li WJ, Sun K, Ying H. Extracellular matrix remodeling effects of serum amyloid A1 in the human amnion: Implications for fetal membrane rupture. Am J Reprod Immunol 2018; 81:e13073. [PMID: 30461130 DOI: 10.1111/aji.13073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Rupture of fetal membranes is a crucial event at parturition, which is preceded by extensive extracellular matrix (ECM) remodeling. Our recent studies have demonstrated that the human fetal membranes are capable of de novo synthesis of serum amyloid A1 (SAA1), an acute phase protein, and the abundance of SAA1 in the amnion was increased at parturition. However, the exact role of SAA1 in human parturition remains to be established. METHOD OF STUDY The effects of SAA1 on the abundance of collagenases and lysyl oxidase, the enzyme that cross-links collagens, were investigated in culture primary human amnion fibroblasts and tissue explants with an aim to examine the involvement of SAA1 in the ECM remodeling in the amnion. RESULTS Serum amyloid A1 (SAA1) time- and dose-dependently increased the abundance of collagenases MMP-1, MMP-8, and MMP-13, while decreased the abundance of lysyl oxidase-like 1 (LOXL1). These effects of SAA1 were attenuated by siRNA-mediated knockdown of the Toll-like receptor (TLR) 4 and its antagonist CLI-095, but not by siRNA-mediated knockdown of TLR2. Furthermore, the inhibitors for NF-κB (JSH-23) and mitogen-activated protein kinases (MAPKs) p38 (SB203580) and JNK (SP600125) could also attenuate the effects of SAA1, while the inhibitor for MAPK ERK1/2 (PD 98059) could block the effects of SAA1 only on MMP-1, MMP-8, and LOXL1 but not on MMP-13. CONCLUSION These data highlight a possible role for SAA1 in ECM remodeling preceding membrane rupture by regulating the expression of collagenases MMP-1, MMP-8, MMP-13, and LOXL1 through TLR4-mediated activation of the NF-κB and MAPK pathways in amnion fibroblasts.
Collapse
Affiliation(s)
- Ya-Wei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Lu-Yao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Rong Bao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jiao Li
- Maternity and Infant Hospital of Changning District, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Cao Y, Pan T, Chen X, Wu J, Guo N, Wang B. EP4 knockdown alleviates glomerulosclerosis through Smad and MAPK pathways in mesangial cells. Mol Med Rep 2018; 18:5141-5150. [PMID: 30320390 DOI: 10.3892/mmr.2018.9553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/21/2018] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin E2 has exhibited pleiotropic effects in the regulation of glomerulosclerosis progression through its four receptors. The current study aimed to evaluate the effect of prostaglandin receptor EP4 on mesangial cell proliferation. In vivo, 5/6 nephrectomy was introduced into EP4+/‑ and wild‑type (WT) mice. Clinical parameters were monitored post‑surgery. At 8 weeks post‑surgery, glomerular fibrosis‑associated indicators were measured by immunohistochemical staining and trichrome staining. In vitro, mesangial cells in different groups (transfected with green fluorescent protein, AD‑EF4 or AD‑CRE) were exposed to transforming growth factor (TGF)‑β1 for 24 h to detect the level of downstream signaling. Corresponding signaling inhibitors were also used to validate the signaling effects. Following surgery, EP4+/‑ mice presented a higher survival rate and normal urine volume compared with the WT group, and serum creatinine level and 24 h urine protein were lower in the EP4+/‑ mice. Furthermore, associated profibrotic indicators were identified to have decreased at 8 weeks post‑surgery along with less tubule‑interstitial fibrosis. In vivo, the inhibition of extracellular signal‑regulated kinase and P38 phosphorylation alleviated the accumulation of mesangial matrix, and these signals were enhanced when EP4 was overexpressed. EP4 enhancement aggravated imbalanced mesangial cell proliferation stimulated by TGF‑β1 and GS of mice treated with 5/6 nephrectomy through the Smad and mitogen‑activated protein kinase pathways.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Tianyi Pan
- Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200000, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Jianhua Wu
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Naifeng Guo
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Bicheng Wang
- Basic Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
12
|
Zhang C, Wang W, Liu C, Lu J, Sun K. Role of NF-κB/GATA3 in the inhibition of lysyl oxidase by IL-1β in human amnion fibroblasts. Immunol Cell Biol 2017; 95:943-952. [PMID: 28878297 DOI: 10.1038/icb.2017.73] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
Preterm premature rupture of membranes (pPROMs) account for one-third of preterm births, a leading cause of neonatal death. Understanding the mechanism of membrane rupture is thus of clinical significance in the prevention of preterm birth. Parturition at both term and preterm is associated with increased abundance of proinflammatory cytokines in the fetal membranes regardless of the presence of infection, which is believed to induce rupture of membranes through activation of the matrix metalloproteinases. It remains unknown whether there are any alternative mechanisms underpinning proinflammatory cytokine-induced rupture of membranes. Here we showed that there were reciprocal increases in interleukin-1β (IL-1β) and decreases in lysyl oxidase (LOX), a collagen crosslinking enzyme, in the human amnion tissue following spontaneous rupture of membrane at term and pPROM. Studies using human amnion tissue explants revealed that IL-1β inhibited the expression of LOX, which can be reproduced in cultured human amnion fibroblasts. Mechanistic study revealed that IL-1β inhibited LOX expression through activation of p38 and Erk1/2 mitogen-activated protein kinase pathways, which resulted in the phosphorylation of the nuclear factor kappa light-chain enhancer of activated B (NF-κB) cell subunit p65 as well as GATA binding protein 3 (GATA3). Subsequently, activated NF-κB interacted with GATA3 at the NF-κB binding site of LOX promoter to inhibit its expression. Conclusively, this study has revealed an alternative mechanism that IL-1β may contribute to the rupture of membranes by attenuating collagen crosslinking through downregulation of LOX expression in amnion fibroblasts.
Collapse
Affiliation(s)
- Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Chao Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|