1
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
2
|
Tian S, Zhang H, Chang HM, Klausen C, Huang HF, Jin M, Leung PCK. Activin a promotes hyaluronan production and upregulates versican expression in human granulosa cells via the ALK4-SMAD2/3-SMAD4 signaling pathway. Biol Reprod 2022; 107:458-473. [PMID: 35403677 PMCID: PMC9382401 DOI: 10.1093/biolre/ioac070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan is a structural component of the expanded cumulus matrix, and hyaluronan synthase 2 (HAS2) is the major enzyme for the synthesis of hyaluronan in humans. Versican cross-links the hyaluronan-rich matrix to cumulus cells and is critical for successful ovulation. Activin A is a critical intrafollicular regulator of ovarian function. Although activin A has been shown to promote cumulus matrix expansion in mice, the functional role of activin A in the regulation of cumulus expansion in the human ovary remains to be elucidated. Using primary and immortalized human granulosa-lutein (hGL) cells as study models, we provide the first data showing that activin A increased the production of hyaluronan by upregulating the expression of HAS2 in these cells. Additionally, activin A also promoted the expression of the hyaluronan-binding protein versican. Moreover, using inhibitor- and siRNA-mediated inhibition approaches, we found that these stimulatory effects of activin A are most likely mediated through the type I receptor ALK4-mediated SMAD2/SMAD3-SMAD4 signaling pathway. Notably, the ChIP analyses demonstrated that SMAD4 could bind to human HAS2 and VERSICAN promoters. The results obtained from this in vitro study suggest that locally produced activin A plays a functional role in the regulation of hyaluronan production and stabilization in hGL cells.
Collapse
Affiliation(s)
- Shen Tian
- Department of Reproductive Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Han Zhang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - He-Feng Huang
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Chang HM, Bai L, Zhu YM, Leung PCK. Connective tissue growth factor mediates bone morphogenetic protein 2-induced increase in hyaluronan production in luteinized human granulosa cells. Reprod Biol Endocrinol 2022; 20:65. [PMID: 35395768 PMCID: PMC8991488 DOI: 10.1186/s12958-022-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hyaluronan is the main component of the cumulus-oocyte complex (COC) matrix, and it maintains the basic structure of the COC during ovulation. As a member of the transforming growth factor β (TGF-β) superfamily, bone morphogenetic protein 2 (BMP2) has been identified as a critical regulator of mammalian folliculogenesis and ovulation. However, whether BMP2 can regulate the production of hyaluronan in human granulosa cells has never been elucidated. METHODS In the present study, we investigated the effect of BMP2 on the production of hyaluronan and the underlying molecular mechanism using both immortalized (SVOG) and primary human granulosa-lutein (hGL) cells. The expression of three hyaluronan synthases (including HAS1, HAS2 and HAS3) were examined following cell incubation with BMP2 at different concentrations. The concentrations of the hyaluronan cell culture medium were determined by enzyme-linked immunosorbent assay (ELISA). The TGF-β type I receptor inhibitors (dorsomorphin and DMH-1) and small interfering RNAs targeting ALK2, ALK3, ALK6 and SMAD4 were used to investigate the involvement of TGF-β type I receptor and SMAD-dependent pathway. RESULTS Our results showed that BMP2 treatment significantly increased the production of hyaluronan by upregulating the expression of hyaluronan synthase 2 (HAS2). In addition, BMP2 upregulates the expression of connective tissue growth factor (CTGF), which subsequently mediates the BMP2-induced increases in HAS2 expression and hyaluronan production because overexpression of CTGF enhances, whereas knockdown of CTGF reverses, these effects. Notably, using kinase inhibitor- and siRNA-mediated knockdown approaches, we demonstrated that the inductive effect of BMP2 on the upregulation of CTGF is mediated by the ALK2/ALK3-mediated SMAD-dependent signaling pathway. CONCLUSIONS Our findings provide new insight into the molecular mechanism by which BMP2 promotes the production of hyaluronan in human granulosa cells.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Peter C K Leung
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
4
|
Fukihara J, Maiolo S, Kovac J, Sakamoto K, Wakahara K, Hashimoto N, Reynolds PN. Overexpression of bone morphogenetic protein receptor type 2 suppresses transforming growth factor β-induced profibrotic responses in lung fibroblasts. Exp Lung Res 2022; 48:35-51. [PMID: 35037801 DOI: 10.1080/01902148.2021.2024301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
MATERIALS AND METHODS We investigated BMPR2 expression in pulmonary fibrosis and TGF-β/BMP signaling in lung fibroblasts. Then we evaluated the impact of BMPR2 upregulation using adenoviral transduction on TGF-β-induced Smad2/3 phosphorylation and fibronectin production in lung fibroblasts. RESULTS BMPR2 was distributed in airway epithelium and alveolar walls in rat lungs. BMPR2 expression was decreased in fibrotic lesions in the lungs of rats with bleomycin-induced pulmonary fibrosis and in human lung fibroblasts (HLFs) stimulated with TGF-β. Although Smad2/3 phosphorylation and fibronectin production were not suppressed solely by BMPs, phosphorylated Smad2/3 was decreased in BMPR2-transduced cells even without BMP stimulation. Fibronectin was decreased only when BMPR2-transduced HLFs were stimulated with BMP7 (but not BMP4). Similar results were also observed in IPF patient HLFs and rat lung fibroblasts. CONCLUSIONS BMPR2 expression was reduced in fibrotic lungs and lung fibroblasts stimulated with TGF-β. BMPR2 transduction to lung fibroblasts reduced Smad2/3 phosphorylation, and reduced fibronectin production when treated with BMP7. Upregulation of BMPR2 may be a possible strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Suzanne Maiolo
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica Kovac
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Paul N Reynolds
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Luo X, Chang HM, Yi Y, Sun Y, Leung PCK. Bone morphogenetic protein 2 inhibits growth differentiation factor 8-induced cell signaling via upregulation of gremlin2 expression in human granulosa-lutein cells. Reprod Biol Endocrinol 2021; 19:173. [PMID: 34838049 PMCID: PMC8626944 DOI: 10.1186/s12958-021-00854-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP2), growth differentiation factor 8 (GDF8) and their functional receptors are expressed in human ovarian follicles, and these two intrafollicular factors play essential roles in regulating follicle development and luteal function. As BMP antagonists, gremlin1 (GREM1) and gremlin2 (GREM2) suppress BMP signaling through blockage of ligand-receptor binding. However, whether BMP2 regulates the expression of GREM1 and GREM2 in follicular development remains to be determined. METHODS In the present study, we investigated the effect of BMP2 on the expression of GREM1 and GREM2 and the underlying mechanisms in human granulosa-lutein (hGL) cells. An established immortalized human granulosa cell line (SVOG) and primary hGL cells were used as study models. The expression of GREM1 and GREM2 were examined following cell incubation with BMP2 at different concentrations and time courses. The TGF-β type I inhibitors (dorsomorphin, DMH-1 and SB431542) and small interfering RNAs targeting ALK2, ALK3, SMAD2/3, SMAD1/5/8 and SMAD4 were used to investigate the involvement of the SMAD-dependent pathway. RESULTS Our results showed that BMP2 significantly increased the expression of GREM2 (but not GREM1) in a dose- and time-dependent manner. Using a dual inhibition approach combining kinase inhibitors and siRNA-mediated knockdown, we found that the BMP2-induced upregulation of GREM2 expression was mediated by the ALK2/3-SMAD1/5-SMAD4 signaling pathway. Moreover, we demonstrated that BMP2 pretreatment significantly attenuated the GDF8-induced phosphorylation of SMAD2 and SMAD3, and this suppressive effect was reversed by knocking down GREM2 expression. CONCLUSIONS Our findings provide new insight into the molecular mechanisms by which BMP2 modulates the cellular activity induced by GDF8 through the upregulated expression of their antagonist (GREM2).
Collapse
Affiliation(s)
- Xiaoyan Luo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, Zhengzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, Zhengzhou, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
6
|
Luo X, Chang HM, Yi Y, Leung PCK, Sun Y. Bone morphogenetic protein 2 upregulates SERPINE2 expression through noncanonical SMAD2/3 and p38 MAPK signaling pathways in human granulosa-lutein cells. FASEB J 2021; 35:e21845. [PMID: 34369625 DOI: 10.1096/fj.202100670rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Serine protease inhibitor-E2 (SERPINE2) is highly expressed in the granulosa cells of growing follicles and the dynamic changes in SERPINE2 expression are correlated with follicular development and ovulation in several mammals, including mice, cattle, sheep, and humans. Bone morphogenetic proteins (BMPs) and their functional receptors are extensively expressed in the ovary and play critical roles in the regulation of ovarian folliculogenesis and luteal function. To date, whether BMPs regulate the expression of SERPINE2 during human follicular development remains to be elucidated. The aim of this study was to investigate the effects of BMPs on the regulation of SERPINE2 expression (a major regulator of plasminogen activators [PA]) and the underlying mechanisms using primary and immortalized human granulosa-lutein (hGL) cells. Our results demonstrated that these BMPs (BMP2, BMP4, BMP6, BMP7, and BMP15) induced differential upregulation of SERPINE2 expression. In this regard, BMP2 is the major modulator that has the best cellular activity, which further decreased the production of urokinase PA and tissue PA in hGL cells. In addition to canonical SMAD1/5/8 signaling, BMP2 also activates noncanonical SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) signaling. Using two inhibition approaches (kinase receptor inhibitors and siRNA-mediated knockdown), we found that SMAD2/3-SMAD4 and p38 MAPK, but not SMAD1/5/8 signaling, was involved in the BMP2-induced upregulation of SERPINE2 expression via activin receptor-like kinase 3. These findings deepen our understanding of the differential effect of BMPs in regulating follicular function and provide new insights of the molecular mechanisms by which BMP2 regulates the expression of SERPINE2 in human granulosa cells.
Collapse
Affiliation(s)
- Xiaoyan Luo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Yang D, Yang X, Dai F, Wang Y, Yang Y, Hu M, Cheng Y. The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reprod Sci 2021; 28:3316-3330. [PMID: 33966186 DOI: 10.1007/s43032-021-00600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β (TGF-β) superfamily. BMP4 is a secreted protein that was originally identified due to its role in bone and cartilage development. Over the past decades, extensive literature has indicated that BMP4 and its receptors are widely expressed in the ovary. Dysregulation of BMP4 expression may play a vital role in follicular development, polycystic ovary syndrome (PCOS), and ovarian cancer. In this review, we summarized the expression pattern of BMP4 in the ovary, focused on the role of BMP4 in follicular development and steroidogenesis, and discussed the role of BMP4 in ovarian diseases such as polycystic ovary syndrome and ovarian cancer. Some studies have shown that the expression of BMP4 in the ovary is spatiotemporal and species specific, but the effects of BMP4 seem to be similar in follicular development of different species. In addition, BMP4 is involved in the development of hyperandrogenemia in PCOS and drug resistance in ovarian cancer, but further research is still needed to clarify the specific mechanisms.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Shi X, Tang T, Lin Q, Liu H, Qin Y, Liang X, Cong P, Mo D, Liu X, Chen Y, He Z. Efficient generation of bone morphogenetic protein 15-edited Yorkshire pigs using CRISPR/Cas9†. Biol Reprod 2020; 103:1054-1068. [PMID: 32761111 DOI: 10.1093/biolre/ioaa138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15), a member of the transforming growth factor beta superfamily, plays an essential role in ovarian follicular development in mono-ovulatory mammalian species. Studies using a biallelic knockout mouse model revealed that BMP15 potentially has just a minimal impact on female fertility and ovarian follicular development in polyovulatory species. In contrast, our previous study demonstrated that in vivo knockdown of BMP15 significantly affected porcine female fertility, as evidenced by the dysplastic ovaries containing significantly decreased numbers of follicles and an increased number of abnormal follicles. This finding implied that BMP15 plays an important role in the regulation of female fertility and ovarian follicular development in polyovulatory species. To further investigate the regulatory role of BMP15 in porcine ovarian and follicular development, here, we describe the efficient generation of BMP15-edited Yorkshire pigs using CRISPR/Cas9. Using artificial insemination experiments, we found that the biallelically edited gilts were all infertile, regardless of different genotypes. One monoallelically edited gilt #4 (Δ66 bp/WT) was fertile and could deliver offspring with a litter size comparable to that of wild-type gilts. Further analysis established that the infertility of biallelically edited gilts was caused by the arrest of follicular development at preantral stages, with formation of numerous structurally abnormal follicles, resulting in streaky ovaries and the absence of obvious estrous cycles. Our results strongly suggest that the role of BMP15 in nonrodent polyovulatory species may be as important as that in mono-ovulatory species.
Collapse
Affiliation(s)
- Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hongbo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Du X, Yin H, Pan Z, Wu W, Shang P, Chamba Y, Li Q. BMP7 is a candidate gene for reproductive traits in Yorkshire sows. Anim Reprod Sci 2020; 221:106598. [PMID: 32937257 DOI: 10.1016/j.anireprosci.2020.106598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein 7 (BMP7) is of the BMP subfamily, and has effects on female fertility by regulating steroidogenesis, granulosa cell states, and follicular development. In the present study, there was assessment of the combined genotypes formed by the three variants within the 3'-UTR of BMP7 gene as associations with sow reproductive functions. The 3'-UTR of the BMP7 gene of pigs was identified using the 3' RACE assay, and its full-length sequence was found to be 1538 bp in length. Multiple RNA regulatory elements were detected in this region, luciferase activity assays were performed and results indicated miR-22-3p affects BMP7 by directly binding to the miRNA response element in the 3'-UTR (c.2358-2382). In addition, two novel complete linkage variants, c.2256 G > C and a 7-bp indel (c.2259-2265), were identified within the 3'-UTR of the BMP7 gene of pigs. Importantly, combined genotypes with these two novel variants and c.1569A > G, a variant previously identified in the BMP7 3'-UTR of pigs, were associated with sow reproductive traits, including the total number of piglets born, number of dead piglets at birth, and litter weight in the Yorkshire pig population studies. Results from the present study confirm that BMP7 is a candidate gene for the reproductive traits in Yorkshire sows.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hang Yin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet 860000, China
| | - Yongzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet 860000, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Li X, Du X, Yao W, Pan Z, Li Q. TGF‐β/SMAD4 signaling pathway activates the HAS2–HA system to regulate granulosa cell state. J Cell Physiol 2019; 235:2260-2272. [DOI: 10.1002/jcp.29134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xinyu Li
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Xing Du
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Wang Yao
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Zengxiang Pan
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Qifa Li
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
11
|
Wang F, Chang HM, Yi Y, Li H, Leung PCK. TGF-β1 promotes hyaluronan synthesis by upregulating hyaluronan synthase 2 expression in human granulosa-lutein cells. Cell Signal 2019; 63:109392. [PMID: 31437481 DOI: 10.1016/j.cellsig.2019.109392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022]
Abstract
Hyaluronan serves as a structural component of ovarian follicles, and hyaluronan-mediated signaling cascades lead to follicular development, oocyte maturation, and ovulation. Transforming growth factor-β (TGF-β1) is highly expressed in human oocytes and granulosa cells and involved in the regulation of follicular development and ovulation. Previous studies have shown the imperative role for TGF-β signaling in the regulation of hyaluronan-mediated cumulus expansion and ovulation in human granulosa-lutein (hGL) cells. However, the detailed underlying molecular mechanisms by which TGF-β regulates the synthesis of hyaluronan in hGL cells are not fully elucidated. Using both primary and immortalized hGL cells as study models, we provide the first data showing that TGF-β1 significantly promoted the synthesis of hyaluronan by upregulating the expression of hyaluronan synthase 2 in these cells. Additionally, using dual inhibition approaches, we show that the TGF-β type II (TβRII) receptor and TGF-β type I (ALK5) receptor are functional receptors that mediate stimulatory effects in response to TGF-β1. Moreover, we found that the canonical SMAD2/SMAD3-SMAD4 signaling pathway is the principal intracellular signaling pathway that upregulates the expressionhyaluronan synthase and subsequent hyaluronan synthesis. Notably, we showed that SNAIL transcription factor is a critical molecule mediating the TGF-β signaling, which contributes to the increase in hyaluronan synthesis. These results of our in vitro studies suggest that intraovarian TGF-β1 plays a functional role in the local regulation of hyaluronan synthesis in hGL cells.
Collapse
Affiliation(s)
- Fuxin Wang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215002, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | - Hong Li
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215002, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada.
| |
Collapse
|
12
|
GDF-9 and BMP-15 direct the follicle symphony. J Assist Reprod Genet 2018; 35:1741-1750. [PMID: 30039232 DOI: 10.1007/s10815-018-1268-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023] Open
Abstract
Understanding the physiology underlying the complex dialog between the oocyte and its surrounding somatic cells within the ovarian follicle has been crucial in defining optimal procedures for the development of clinical approaches in ART for women suffering from infertility and ovarian dysfunction. Recent studies have implicated oocyte-secreted factors like growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15), members of the transforming growth factor-beta (TGFβ) superfamily, as potent regulators of folliculogenesis and ovulation. These two factors act as biologically active heterodimers or as homodimers in a synergistic cooperation. Through autocrine and paracrine mechanisms, the GDF-9 and BMP-15 system has been shown to regulate growth, differentiation, and function of granulosa and thecal cells during follicular development playing a vital role in oocyte development, ovulation, fertilization, and embryonic competence. The present mini-review provides an overview of recent findings relating GDF-9 and BMP-15 as fundamental factors implicated in the regulation of ovarian function and discusses their potential role as markers of oocyte quality in women.
Collapse
|
13
|
Zhao HJ, Chang HM, Zhu H, Klausen C, Li Y, Leung PCK. Bone Morphogenetic Protein 2 Promotes Human Trophoblast Cell Invasion by Inducing Activin A Production. Endocrinology 2018; 159:2815-2825. [PMID: 29846546 DOI: 10.1210/en.2018-00301] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) 2 and activin A belong to the TGF-β superfamily and are highly expressed in human endometrium and placenta. Studies have demonstrated that activin A and BMP2 play essential roles in the process of early embryo implantation by promoting human trophoblast cell invasion. However, whether activin A production can be regulated by BMP2 in human trophoblast cells remains unknown. The aim of our study was to determine the effects of BMP2 on activin A production and its role in human trophoblast invasion. Primary human extravillous trophoblast (EVT) cells were used as study models. BMP2 treatment significantly increased inhibin βA (INHBA) mRNA levels and activin A production without altering inhibin α and inhibin βB levels. BMP2-induced EVT cell invasion was attenuated by knockdown of INHBA. The increased INHBA transcription and activin A production by BMP2 were blocked by the type I receptor activin receptor (ACVR)-like kinase 2 (ALK2) and activin receptor-like kinase 3 (ALK3) inhibitor dorsomorphin homolog 1 (DMH-1). BMP2-induced INHBA upregulation was also inhibited by knockdown of type I receptor ALK3 or combined knockdown of type II receptors for BMP2 (BMPR2) and ACVR2A. Whereas BMP2 initiated both canonical SMAD1/5/8 and noncanonical SMAD2/3 signaling, only knockdown of SMAD4, but not SMAD2 and SMAD3, abolished the effects of BMP2 on INHBA. Our results show that BMP2 increases human trophoblast invasion by upregulating INHBA and activin A production via ALK3-BMPR2/ACVR2A-SMAD1/5/8-SMAD4 signaling.
Collapse
Affiliation(s)
- Hong-Jin Zhao
- Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yan Li
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Zhao HJ, Klausen C, Li Y, Zhu H, Wang YL, Leung PCK. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis 2018; 9:174. [PMID: 29416020 PMCID: PMC5833391 DOI: 10.1038/s41419-017-0230-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
BMP2 expression is spatiotemporally correlated with embryo implantation and is crucial for endometrial decidualization and fertility in mice. BMP2 has been reported to increase the mesenchymal adhesion molecule N-cadherin and enhance cell invasion in cancer cells; moreover, studies suggest that N-cadherin promotes placental trophoblast invasion. However, whether BMP2 can promote trophoblast cell invasion during placentation remains unknown. The objective of our study was to investigate the effects of BMP2 on human trophoblast cell invasion and the involvement of N-cadherin and SMAD signaling. Primary and immortalized (HTR8/SVneo) cultures of human extravillous trophoblast (EVT) cells were used as study models. Treatment with recombinant human BMP2 increased HTR8/SVneo cell transwell Matrigel invasion as well as N-cadherin mRNA and protein levels, but had no significant effect on cell proliferation. Likewise, BMP2 treatment enhanced primary human EVT cell invasion and N-cadherin production. Basal and BMP2-induced invasion were attenuated by small interfering RNA-mediated downregulation of N-cadherin in both HTR8/SVneo and primary EVT cells. Intriguingly, BMP2 induced the phosphorylation/activation of both canonical SMAD1/5/8 and non-canonical SMAD2/3 signaling in HTR8/SVneo and primary EVT cells. Knockdown of SMAD2/3 or common SMAD4 totally abolished the effects of BMP2 on N-cadherin upregulation in HTR8/SVneo cells. Upregulation of SMAD2/3 phosphorylation and N-cadherin were totally abolished by type I receptor activin receptor-like kinases 2/3 (ALK2/3) inhibitor DMH1; moreover, knockdown of ALK2 or ALK3 inhibited N-cadherin upregulation. Interestingly, activation of SMAD2/3 and upregulation of N-cadherin were partially attenuated by ALK4/5/7 inhibitor SB431542 or knockdown of ALK4, but not ALK5. Our results show that BMP2 promotes trophoblast cell invasion by upregulating N-cadherin via non-canonical ALK2/3/4-SMAD2/3-SMAD4 signaling.
Collapse
Affiliation(s)
- Hong-Jin Zhao
- Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, PR China, 250021.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Yan Li
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 100101
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4.
| |
Collapse
|
15
|
Ampuja M, Kallioniemi A. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer 2017; 57:3-11. [DOI: 10.1002/gcc.22502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- M. Ampuja
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
- Fimlab Laboratories; Tampere Finland
| |
Collapse
|
16
|
Wu FJ, Lin TY, Sung LY, Chang WF, Wu PC, Luo CW. BMP8A sustains spermatogenesis by activating both SMAD1/5/8 and SMAD2/3 in spermatogonia. Sci Signal 2017; 10:10/477/eaal1910. [DOI: 10.1126/scisignal.aal1910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Chang HM, Qiao J, Leung PCK. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23:1-18. [PMID: 27797914 PMCID: PMC5155571 DOI: 10.1093/humupd/dmw039] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Initially identified for their capability to induce heterotopic bone formation,
bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong
to the transforming growth factor β superfamily. Using cellular and
molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as
potent regulators of ovarian follicular function. The bi-directional communication
of oocytes and the surrounding somatic cells is mandatory for normal follicle
development and oocyte maturation. This review summarizes the current knowledge on
the physiological role and molecular determinants of these ovarian regulatory
factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because,
while the fundamental process of follicular development and oocyte maturation is
highly similar across species, most information on the regulation of ovarian
function is obtained from studies using rodent models. Thus, this review focuses
on the studies that used human biological materials to gain knowledge about human
ovarian biology and disorders and to develop strategies for preventing, diagnosing
and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth
differentiation factors (GDFs) in human ovarian biology and phenotypes were
comprehensively searched using PubMed and the Google Scholar database. The
publications included those published since the initial identification of BMPs in
the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs,
GDFs and their putative receptors as well as their molecular signaling in the
fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells)
of the ovarian follicles throughout follicle development. With the availability of
recombinant human BMPs/GDFs and the development of immortalized human cell lines,
functional studies have demonstrated the physiological role of intra-ovarian
BMPs/GDFs in all aspects of ovarian functions, from follicle development to
steroidogenesis, cell–cell communication, oocyte maturation, ovulation and
luteal function. Furthermore, there is crosstalk between these potent ovarian
regulators and the endocrine signaling system. Dysregulation or naturally
occurring mutations within the BMP system may lead to several female reproductive
diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors,
gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a
potential therapeutic target in certain human fertility disorders; however,
further clinical trials are needed. Recent studies have indicated that GDF8 is an
intra-ovarian factor that may play a novel role in regulating ovarian functions in
the human ovary. WIDER IMPLICATIONS Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human
ovarian functions. Any dysregulation or variations in these ligands or their
receptors may affect the related intracellular signaling and influence ovarian
functions, which accounts for several reproductive pathologies and infertility.
Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs,
especially as related to GC functions and follicular fluid levels, will inform
innovative approaches to fertility regulation and improve the diagnosis and
treatment of ovarian disorders.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China.,Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jie Qiao
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
18
|
Barruet E, Morales BM, Lwin W, White MP, Theodoris CV, Kim H, Urrutia A, Wong SA, Srivastava D, Hsiao EC. The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling. Stem Cell Res Ther 2016; 7:115. [PMID: 27530160 PMCID: PMC4988052 DOI: 10.1186/s13287-016-0372-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Background The Activin A and bone morphogenetic protein (BMP) pathways are critical regulators of the immune system and of bone formation. Inappropriate activation of these pathways, as in conditions of congenital heterotopic ossification, are thought to activate an osteogenic program in endothelial cells. However, if and how this occurs in human endothelial cells remains unclear. Methods We used a new directed differentiation protocol to create human induced pluripotent stem cell (hiPSC)-derived endothelial cells (iECs) from patients with fibrodysplasia ossificans progressiva (FOP), a congenital disease of heterotopic ossification caused by an activating R206H mutation in the Activin A type I receptor (ACVR1). This strategy allowed the direct assay of the cell-autonomous effects of ACVR1 R206H in the endogenous locus without the use of transgenic expression. These cells were challenged with BMP or Activin A ligand, and tested for their ability to activate osteogenesis, extracellular matrix production, and differential downstream signaling in the BMP/Activin A pathways. Results We found that FOP iECs could form in conditions with low or absent BMP4. These conditions are not normally permissive in control cells. FOP iECs cultured in mineralization media showed increased alkaline phosphatase staining, suggesting formation of immature osteoblasts, but failed to show mature osteoblastic features. However, FOP iECs expressed more fibroblastic genes and Collagen 1/2 compared to control iECs, suggesting a mechanism for the tissue fibrosis seen in early heterotopic lesions. Finally, FOP iECs showed increased SMAD1/5/8 signaling upon BMP4 stimulation. Contrary to FOP hiPSCs, FOP iECs did not show a significant increase in SMAD1/5/8 phosphorylation upon Activin A stimulation, suggesting that the ACVR1 R206H mutation has a cell type-specific effect. In addition, we found that the expression of ACVR1 and type II receptors were different in hiPSCs and iECs, which could explain the cell type-specific SMAD signaling. Conclusions Our results suggest that the ACVR1 R206H mutation may not directly increase the formation of mature chondrogenic or osteogenic cells by FOP iECs. Our results also show that BMP can induce endothelial cell dysfunction, increase expression of fibrogenic matrix proteins, and cause differential downstream signaling of the ACVR1 R206H mutation. This iPSC model provides new insight into how human endothelial cells may contribute to the pathogenesis of heterotopic ossification. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0372-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emilie Barruet
- Institute for Human Genetics and the Division of Endocrinology and Metabolism, University of California, 513 Parnassus Avenue, HSE901G, San Francisco, CA, 94143-0794, USA
| | - Blanca M Morales
- Institute for Human Genetics and the Division of Endocrinology and Metabolism, University of California, 513 Parnassus Avenue, HSE901G, San Francisco, CA, 94143-0794, USA
| | - Wint Lwin
- Institute for Human Genetics and the Division of Endocrinology and Metabolism, University of California, 513 Parnassus Avenue, HSE901G, San Francisco, CA, 94143-0794, USA
| | - Mark P White
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Christina V Theodoris
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Hannah Kim
- Institute for Human Genetics and the Division of Endocrinology and Metabolism, University of California, 513 Parnassus Avenue, HSE901G, San Francisco, CA, 94143-0794, USA
| | - Ashley Urrutia
- Institute for Human Genetics and the Division of Endocrinology and Metabolism, University of California, 513 Parnassus Avenue, HSE901G, San Francisco, CA, 94143-0794, USA
| | - Sarah Anne Wong
- School of Dentistry, Oral and Craniofacial Sciences Program, University of California, 707 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Edward C Hsiao
- Institute for Human Genetics and the Division of Endocrinology and Metabolism, University of California, 513 Parnassus Avenue, HSE901G, San Francisco, CA, 94143-0794, USA. .,Department of Endocrinology, Diabetes, and Metabolism, Institute for Human Genetics, University of California, 513 Parnassus Avenue, HSE901G, UCSF Box 0794, San Francisco, CA, 94143-0794, USA.
| |
Collapse
|