1
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Qin C, Wang Y, Zhang Y, Zhu Y, Wang Y, Cao F. Transcriptome-wide analysis reveals the molecular mechanisms of cannabinoid type II receptor agonists in cardiac injury induced by chronic psychological stress. Front Genet 2023; 13:1095428. [PMID: 36704356 PMCID: PMC9871316 DOI: 10.3389/fgene.2022.1095428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Growing evidence has supported that chronic psychological stress would cause heart damage, However the mechanisms involved are not clear and effective interventions are insufficient. Cannabinoid type 2 receptor (CB2R) can be a potential treatment for cardiac injury. This study is aimed to investigate the protective mechanism of CB2R agonist against chronic psychological stress-induced cardiac injury. Methods: A mouse chronic psychological stress model was constructed based on a chronic unpredictable stress pattern. Mice were performed a three-week psychological stress procedure, and cardiac tissues of them were collected for whole-transcriptome sequencing. Overlap analysis was performed on differentially expressed mRNAs (DE-mRNAs) and ER stress-related genes (ERSRGs), and bioinformatic methods were used to predict the ceRNA networks and conduct pathway analysis. The expressions of the DE-ERSRGs were validated by RT-qPCR. Results: In the comparison of DE mRNA in Case group, Control group and Treatment group, three groups of ceRNA networks and ceRNA (circ) networks were constructed. The DE-mRNAs were mainly enriched in chromatid-relevant terms and Hematopoietic cell lineage pathway. Additionally, 13 DE-ERSRGs were obtained by the overlap analysis, which were utilized to establish a ceRNA network with 15 nodes and 14 edges and a ceRNA (circ) network with 23 nodes and 28 edges. Furthermore, four DE-ERSRGs (Cdkn1a, Atf3, Fkbp5, Gabarapl1) in the networks were key, which were mainly enriched in response to extracellular stimulus, response to nutrient levels, cellular response to external stimulus, and FoxO signaling pathway. Finally, the RT-qPCR results showed almost consistent expression patterns of 13 DE-ERSRGs between the transcriptome and tissue samples. Conclusion: The findings of this study provide novel insights into the molecular mechanisms of chronic psychological stress-induced cardiac diseases and reveal novel targets for the cardioprotective effects of CB2R agonists.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujia Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Zhu
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China,Beijing Key Laboratory of Research on Aging and Related Diseases, Beijing, China,*Correspondence: Feng Cao,
| |
Collapse
|
3
|
Chen X, Xiao Z, Cai Y, Huang L, Chen C. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol Metab 2022; 33:206-217. [PMID: 35063326 DOI: 10.1016/j.tem.2021.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Ovulatory disorders are the most common clinical feature exhibited among obese women. Initiation of ovulation physiologically requires a surge of gonadotropin-releasing hormone (GnRH) released from GnRH neurons located in the hypothalamus. These GnRH neurons receive metabolic signals from circulation and vicinal neurons to regulate GnRH release. Leptin acts indirectly on GnRH via adjacent leptin receptor (LEPR)-expressing neurons such as proopiomelanocortin (POMC), neuropeptide Y (NPY)/agouti-related peptide (AgRP), and neuronal nitric oxide (NO) synthase (nNOS) neurons to affect GnRH neuronal activities. Additionally, hypothalamic inflammation also affects ovulation independent of obesity. Therefore, this review focuses on hypothalamic mechanisms that underlie the disturbance of hypothalamic-pituitary-ovarian (HPO) axis during obesity with an attempt to promote future studies and/or novel therapeutic strategies for ovulatory disorders in obesity.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Lili Huang
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Chen Chen
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
4
|
Kohn SA, Fought AJ, Kuhn K, Jones Slogett K, Bradford AP, Santoro N, Schauer I. Heparin Effects on Serum Gonadotropins. J Endocr Soc 2022; 6:bvab178. [PMID: 35024539 PMCID: PMC8739648 DOI: 10.1210/jendso/bvab178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction Studies using lipid infusions to raise fatty acid levels require heparin to release lipoprotein lipase (LPL), thus calling into question the appropriate control infusion for this type of study: saline alone or saline plus heparin. We aimed to evaluate whether the addition of heparin alone, in doses needed to release LPL, would alter circulating free fatty acids (FFAs) and/or affect gonadotropins. Materials and Methods This was a secondary analysis using combined data from eumenorrheic normal-weight women subjected to "control" conditions in 1 of 2 separate studies. In 1 study, participants received saline alone (group 1) as a control, and in the other study participants received saline alone and/or saline plus heparin (groups 2-3) as a control. Both studies performed early follicular phase, frequent blood sampling. FSH and LH were compared across groups and in conditions with and without heparin. Linear mixed models were used to analyze the data. Results LH did not differ across any of the 3 groups. Estimated means (SE) for FSH differed between groups but this difference was marginal (P = .05) after adjusting for anti-Mullerian hormone and unrelated to heparin infusion (group 1: 4.47 IU/L [SE 1.19], group 2: 8.01 IU/L [SE 1.14], group 3: 7.94 IU/L [SE 1.13]). Conclusions Heparin does not exert major effects on gonadotropins when infused in quantities sufficient to release LPL. However, because it can release other vascular membrane-bound proteins, heparin should be considered part of the control infusions in lipid infusion studies where increased FFA levels are the goal.
Collapse
Affiliation(s)
- Sarah A Kohn
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela J Fought
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Katherine Kuhn
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelsey Jones Slogett
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew P Bradford
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nanette Santoro
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Irene Schauer
- Department of Medicine (Endocrinology) University of Colorado School of Medicine and Department of Medicine, Aurora, CO 80045, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Lieu CV, Loganathan N, Belsham DD. Mechanisms Driving Palmitate-Mediated Neuronal Dysregulation in the Hypothalamus. Cells 2021; 10:3120. [PMID: 34831343 PMCID: PMC8617942 DOI: 10.3390/cells10113120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus maintains whole-body homeostasis by integrating information from circulating hormones, nutrients and signaling molecules. Distinct neuronal subpopulations that express and secrete unique neuropeptides execute the individual functions of the hypothalamus, including, but not limited to, the regulation of energy homeostasis, reproduction and circadian rhythms. Alterations at the hypothalamic level can lead to a myriad of diseases, such as type 2 diabetes mellitus, obesity, and infertility. The excessive consumption of saturated fatty acids can induce neuroinflammation, endoplasmic reticulum stress, and resistance to peripheral signals, ultimately leading to hyperphagia, obesity, impaired reproductive function and disturbed circadian rhythms. This review focuses on the how the changes in the underlying molecular mechanisms caused by palmitate exposure, the most commonly consumed saturated fatty acid, and the potential involvement of microRNAs, a class of non-coding RNA molecules that regulate gene expression post-transcriptionally, can result in detrimental alterations in protein expression and content. Studying the involvement of microRNAs in hypothalamic function holds immense potential, as these molecular markers are quickly proving to be valuable tools in the diagnosis and treatment of metabolic disease.
Collapse
Affiliation(s)
- Calvin V. Lieu
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
- Departments of Obstetrics/Gynecology and Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Spexin: Its role, regulation, and therapeutic potential in the hypothalamus. Pharmacol Ther 2021; 233:108033. [PMID: 34763011 DOI: 10.1016/j.pharmthera.2021.108033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Spexin is the most recently discovered member of the galanin/kisspeptin/spexin family of peptides. This 14-amino acid peptide is highly conserved and is implicated in homeostatic functions including, but not limited to, metabolism, energy homeostasis, and reproduction. Spexin is expressed by neurons in the hypothalamus, which coordinate energy homeostasis and reproduction. Critically, levels of spexin appear to be altered in disorders related to energy homeostasis and reproduction, such as obesity, diabetes, and polycystic ovarian syndrome. In this review, we discuss the evidence for the involvement of spexin in the hypothalamic control of energy homeostasis and reproduction. The anorexigenic properties of spexin have been attributed to its effects on the energy-regulating neuropeptide Y/agouti-related peptide neurons and proopiomelanocortin neurons. While the role of spexin in reproduction remains unclear, there is evidence that gonadotropin-releasing hormone expressing neurons may produce and respond to spexin. Furthermore, we discuss the disorders and concomitant treatments, which have been reported to alter spexin expression, as well as the underlying signaling mechanisms that may be involved. Finally, we discuss the biochemical basis of spexin, its interaction with its cognate receptors, and how this information can be adapted to develop therapeutics for disorders related to the alteration of energy homeostasis and reproduction.
Collapse
|
7
|
McIlwraith EK, Belsham DD. Hypothalamic reproductive neurons communicate through signal transduction to control reproduction. Mol Cell Endocrinol 2020; 518:110971. [PMID: 32750397 DOI: 10.1016/j.mce.2020.110971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus coordinate fertility and puberty. In order to achieve successful reproductive capacity, they receive signals from the periphery and from other hypothalamic neurons that coordinate energy homeostasis. Hormones, such as estradiol, insulin, leptin, and adiponectin, act directly or indirectly on GnRH and its associated reproductive neurons. Nutrients like glucose and fatty acids can also affect reproductive neurons to signal nutrient availability. Additionally, acute and chronic inflammation is reported to detrimentally affect GnRH and kisspeptin expression. All of these cues activate signal transduction pathways within neurons that lead to the changes in GnRH neuronal function. The signalling pathways can also be dysregulated by endocrine disrupting chemicals, which impair fertility by misappropriating common signalling pathways. The complex mechanisms controlling the levels of GnRH during the reproductive cycle rely on a carefully orchestrated set of signal transduction events to regulate the positive and negative feedback arms of the hypothalamic-pituitary-gonadal axis. If these signalling events are dysregulated, this will result is a downregulatory event leading to hypogonadal hypogonadism with decreased or absent fertility. Therefore, an understanding of the mechanisms involved in distinct neuronal signalling could provide an advantage to inform therapeutic interventions for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Biobaku F, Ghanim H, Monte SV, Caruana JA, Dandona P. Bariatric Surgery: Remission of Inflammation, Cardiometabolic Benefits, and Common Adverse Effects. J Endocr Soc 2020; 4:bvaa049. [PMID: 32775937 PMCID: PMC7402590 DOI: 10.1210/jendso/bvaa049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with increased mortality as a result of several comorbidities which occur in tandem with the obese state. Chronic inflammation is well documented in obesity, and evidence from numerous studies support the notion that the increased inflammation in individuals with obesity accentuates the comorbidities seen in this condition. The remission of comorbidities such as metabolic, cardiovascular, and neurological complications occurs following bariatric procedures. Bariatric surgery significantly reduces mortality and results in remarkable weight loss and reversal in several obesity-related comorbidities. There is indisputable evidence that the resolution of inflammation that occurs after bariatric surgery mitigates some of these comorbidities. With the increasing use of bariatric surgery for the treatment of severe obesity, it is pivotal to elucidate the underlying mechanisms responsible for the notable improvements seen after the procedure. This review summarizes underlying mechanisms responsible for the remission of obesity-related abnormalities and discusses the common adverse effects of bariatric surgery. Well-stratified, large-scale studies are still needed for a proper evaluation of these underlying mechanisms.
Collapse
Affiliation(s)
- Fatimo Biobaku
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, New York
| | - Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, New York
| | - Scott V Monte
- Synergy Bariatrics (Erie County Medical Center), Williamsville, NY
| | - Joseph A Caruana
- Synergy Bariatrics (Erie County Medical Center), Williamsville, NY
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, New York
| |
Collapse
|