1
|
Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A, Harasim-Symbor E. Cannabidiol and sphingolipid metabolism - an unexplored link offering a novel therapeutic approach against high-fat diet-induced hepatic insulin resistance. J Nutr Biochem 2025:109865. [PMID: 39986634 DOI: 10.1016/j.jnutbio.2025.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/29/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Despite extensive research on insulin resistance, which is associated with type 2 diabetes and obesity, there remains a lack of effective and safe methods to treat it. Thus, we hypothesized that cannabidiol (CBD), which influences lipid accumulation and inflammatory response, may interact with sphingolipid metabolism and insulin signaling. To investigate the effects of CBD, male Wistar rats were fed a standard rodent chow or high-fat diet for 7 weeks to induce IR and were treated with CBD or its vehicle administered intraperitoneally for the last two weeks of the experiment. High-Performance Liquid Chromatography (HPLC) was used to assess sphingolipid concentration in the liver, while multiplex assay and western blotting were used to investigate the level or expression of proteins in the insulin signaling pathway and sphingolipid metabolism. Our results revealed that CBD prevented ceramide deposition in the liver of high-fat-fed rats through inhibition of the ceramide de novo synthesis pathway. Moreover, the accumulation of sphingosine-1-phosphate was notably increased with impaired catabolic pathway. Observed changes in the sphingolipid pathway coincided with improved insulin signaling after CBD treatment in animals fed a high-fat diet. Considering the presented evidence, CBD exerted a beneficial effect on insulin sensitivity in a state of lipid overload through the modification of sphingolipid deposition. Our study reveals the importance of broadening IR treatment methods, especially with natural substances that lack serious side effects such as CBD.
Collapse
Affiliation(s)
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
2
|
Yang Y, Wang TT, Xie HA, Hu PP, Li P. Experimental cell models of insulin resistance: overview and appraisal. Front Endocrinol (Lausanne) 2024; 15:1469565. [PMID: 39749015 PMCID: PMC11693592 DOI: 10.3389/fendo.2024.1469565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Insulin resistance, a key factor in the development of type 2 diabetes mellitus (T2DM), is defined as a defect in insulin-mediated control of glucose metabolism in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind various metabolic diseases, such as T2DM, hyperlipidemia, hypertension, coronary heart disease and fatty liver. Therefore, improving insulin sensitivity can be considered as an effective strategy for the prevention and treatment of these complex metabolic diseases. Cell-based models are extensively employed for the study of pathological mechanisms and drug screening, particularly in relation to insulin resistance in T2DM. Currently, numerous methods are available for the establishment of in vitro insulin resistance models, a comprehensive review of these models is required and can serve as an excellent introduction or understanding for researchers undertaking studies in this filed. This review examines and discusses the primary methods for establishing and evaluating insulin resistance cell models. Furthermore, it highlights key issues and suggestions on cell selection, establishment, evaluation and drug screening of insulin resistance, thereby providing valuable references for the future research efforts.
Collapse
Affiliation(s)
- Ying Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ting-ting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hu-ai Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ping Ping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Sun JL, Kim YJ, Cho W, Lim DS, Gwon HJ, Abd El-Aty AM, Nas MA, Jeong JH, Jung TW. Interleukin 38 improves insulin resistance in hyperlipidemic skeletal muscle cells via PPARδ/SIRT1-mediated suppression of STAT3 signaling and oxidative stress. Biochem Biophys Res Commun 2024; 722:150158. [PMID: 38795455 DOI: 10.1016/j.bbrc.2024.150158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The cytokine interleukin-38 (IL-38), a recently discovered member of the IL-1 family, has been shown to regulate inflammation and improve hepatic endoplasmic reticulum stress and lipid metabolism in individuals with obesity. However, its impact on insulin signaling in skeletal muscle cells and the underlying mechanisms remain unclear. In vitro obesity models were established using palmitate treatment, and Western blot analysis was performed to assess target proteins. Commercial kits were used to measure glucose uptake in cultured myocytes. Our study showed that IL-38 treatment alleviated the impairment of insulin signaling, including IRS-1 and Akt phosphorylation, and increased glucose uptake in palmitate-treated C2C12 myocytes. Increased levels of STAT3-mediated signaling and oxidative stress were observed in these cells following palmitate treatment, and these effects were reversed by IL-38 treatment. In addition, IL-38 treatment upregulated the expression of PPARδ, SIRT1 and antioxidants. Knockdown of PPARδ or SIRT1 using appropriate siRNAs abrogated the effects of IL-38 on insulin signaling, oxidative stress, and the STAT3-dependent pathway. These results suggest that IL-38 alleviates insulin resistance by inhibiting STAT3-mediated signaling and oxidative stress in skeletal muscle cells through PPARδ/SIRT1. This study provides fundamental evidence to support the potential use of IL-38 as a safe therapeutic agent for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Mehmet Akif Nas
- Department of Medical Education, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Mei M, Liu M, Mei Y, Zhao J, Li Y. Sphingolipid metabolism in brain insulin resistance and neurological diseases. Front Endocrinol (Lausanne) 2023; 14:1243132. [PMID: 37867511 PMCID: PMC10587683 DOI: 10.3389/fendo.2023.1243132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Sphingolipids, as members of the large lipid family, are important components of plasma membrane. Sphingolipids participate in biological signal transduction to regulate various important physiological processes such as cell growth, apoptosis, senescence, and differentiation. Numerous studies have demonstrated that sphingolipids are strongly associated with glucose metabolism and insulin resistance. Insulin resistance, including peripheral insulin resistance and brain insulin resistance, is closely related to the occurrence and development of many metabolic diseases. In addition to metabolic diseases, like type 2 diabetes, brain insulin resistance is also involved in the progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the specific mechanism of sphingolipids in brain insulin resistance has not been systematically summarized. This article reviews the involvement of sphingolipids in brain insulin resistance, highlighting the role and molecular biological mechanism of sphingolipid metabolism in cognitive dysfunctions and neuropathological abnormalities of the brain.
Collapse
Affiliation(s)
- Meng Mei
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maochang Liu
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Mei
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Administrative Office, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Department of Pharmacy, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Song Z, Yan A, Guo Z, Zhang Y, Wen T, Li Z, Yang Z, Chen R, Wang Y. Targeting metabolic pathways: a novel therapeutic direction for type 2 diabetes. Front Cell Infect Microbiol 2023; 13:1218326. [PMID: 37600949 PMCID: PMC10433779 DOI: 10.3389/fcimb.2023.1218326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease that causes multi-organ complications, seriously affecting patients' quality of life and survival. Understanding its pathogenesis remains challenging, with current clinical treatment regimens often proving ineffective. Methods In this study, we established a mouse model of T2DM and employed 16s rDNA sequencing to detect changes in the species and structure of gut flora. Additionally, we used UPLC-Q-TOF-MS to identify changes in urinary metabolites of T2DM mice, analyzed differential metabolites and constructed differential metabolic pathways. Finally, we used Pearman correlation analysis to investigate the relationship between intestinal flora and differential metabolites in T2DM mice, aiming to elucidate the pathogenesis of T2DM and provide an experimental basis for its clinical treatment. Results Our findings revealed a reduction in both the species diversity and abundance of intestinal flora in T2DM mice, with significantly decreased levels of beneficial bacteria such as Lactobacillus and significantly increased levels of harmful bacteria such as Helicobacter pylori. Urinary metabolomics results identified 31 differential metabolites between T2DM and control mice, including Phosphatidylcholine, CDP-ethanolamine and Leukotriene A4, which may be closely associated with the glycerophospholipid and arachidonic acid pathways. Pearman correlation analysis showed a strong correlation between dopamine and gonadal, estradiol and gut microbiota, may be a novel direction underlying T2DM. Conclusion In conclusion, our study suggests that alterations in gut microbiota and urinary metabolites are characteristic features of T2DM in mice. Furthermore, a strong correlation between dopamine, estradiol and gut microbiota, may be a novel direction underlying T2DM, the aim is to provide new ideas for clinical treatment and basic research.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - An Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
de Deus IJ, Martins-Silva AF, Fagundes MMDA, Paula-Gomes S, Silva FGDE, da Cruz LL, de Abreu ARR, de Queiroz KB. Role of NLRP3 inflammasome and oxidative stress in hepatic insulin resistance and the ameliorative effect of phytochemical intervention. Front Pharmacol 2023; 14:1188829. [PMID: 37456758 PMCID: PMC10347376 DOI: 10.3389/fphar.2023.1188829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
NLRP3 inflammasome has a key role in chronic low-grade metabolic inflammation, and its excessive activation may contribute to the beginning and progression of several diseases, including hepatic insulin resistance (hIR). Thus, this review aims to highlight the role of NLRP3 inflammasome and oxidative stress in the development of hIR and evidence related to phytochemical intervention in this context. In this review, we will address the hIR pathogenesis related to reactive oxygen species (ROS) production mechanisms, involving oxidized mitochondrial DNA (ox-mtDNA) and thioredoxin interacting protein (TXNIP) induction in the NLRP3 inflammasome activation. Moreover, we discuss the inhibitory effect of bioactive compounds on the insulin signaling pathway, and the role of microRNAs (miRNAs) in the phytochemical target mechanism in ameliorating hIR. Although most of the research in the field has been focused on evaluating the inhibitory effect of phytochemicals on the NLRP3 inflammasome pathway, further investigation and clinical studies are required to provide insights into the mechanisms of action, and, thus, encourage the use of these bioactive compounds as an additional therapeutic strategy to improve hIR and correlated conditions.
Collapse
Affiliation(s)
- Isabela Jesus de Deus
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ana Flávia Martins-Silva
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Miliane Martins de Andrade Fagundes
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Sílvia Paula-Gomes
- Laboratório de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Guimarães Drummond e Silva
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Aline Rezende Ribeiro de Abreu
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Karina Barbosa de Queiroz
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
8
|
Jaganjac M, Zarkovic N. Lipid Peroxidation Linking Diabetes and Cancer: The Importance of 4-Hydroxynonenal. Antioxid Redox Signal 2022; 37:1222-1233. [PMID: 36242098 DOI: 10.1089/ars.2022.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: It is commonly believed that diabetes mellitus may be associated with cancer. Hence, diabetic patients are at higher risk for hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and breast cancer, but the mechanisms that may link these two severe diseases are not well understood. Recent Advances: A number of factors have been suggested to promote tumorigenesis in diabetic patients, including insulin resistance, hyperglycemia, dyslipidemia, inflammation, and elevated insulin-like growth factor-1 (IGF-1), which may also promote pro-oxidants, and thereby alter redox homeostasis. The consequent oxidative stress associated with lipid peroxidation appears to be a possible pathogenic link between cancer and diabetes. Critical Issues: Having summarized the above aspects of diabetes and cancer pathology, we propose that the major bioactive product of oxidative degradation of polyunsaturated fatty acids (PUFAs), the reactive aldehyde 4-hydroxynonenal (4-HNE), which is also considered a second messenger of free radicals, may be the key pathogenic factor linking diabetes and cancer. Future Directions: Because the bioactivities of 4-HNE are cell-type and concentration-dependent, are often associated with inflammation, and are involved in signaling processes that regulate antioxidant activities, proliferation, differentiation, and apoptosis, we believe that further research in this direction could reveal options for better control of diabetes and cancer. Controlling the production of 4-HNE to avoid its cytotoxicity to normal but not cancer cells while preventing its diabetogenic activities could be an important aspect of modern integrative biomedicine. Antioxid. Redox Signal. 37, 1222-1233.
Collapse
Affiliation(s)
- Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Sphingosine-1-Phosphate Alleviates Irradiation Induced Salivary Gland Hypofunction through Preserving Endothelial Cells and Resident Macrophages. Antioxidants (Basel) 2022; 11:antiox11102050. [PMID: 36290773 PMCID: PMC9598384 DOI: 10.3390/antiox11102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy for head-and-neck cancers frequently causes long-term hypofunction of salivary glands that severely compromises quality of life and is difficult to treat. Here, we studied effects and mechanisms of Sphingosine-1-phosphate (S1P), a versatile signaling sphingolipid, in preventing irreversible dry mouth caused by radiotherapy. Mouse submandibular glands (SMGs) were irradiated with or without intra-SMG S1P pretreatment. The saliva flow rate was measured following pilocarpine stimulation. The expression of genes related to S1P signaling and radiation damage was examined by flow cytometry, immunohistochemistry, quantitative RT-PCR, Western blotting, and/or single-cell RNA-sequencing. S1P pretreatment ameliorated irradiation-induced salivary dysfunction in mice through a decrease in irradiation-induced oxidative stress and consequent apoptosis and cellular senescence, which is related to the enhancement of Nrf2-regulated anti-oxidative response. In mouse SMGs, endothelial cells and resident macrophages are the major cells capable of producing S1P and expressing the pro-regenerative S1P receptor S1pr1. Both mouse SMGs and human endothelial cells are protected from irradiation damage by S1P pretreatment, likely through the S1pr1/Akt/eNOS axis. Moreover, intra-SMG-injected S1P did not affect the growth and radiosensitivity of head-and-neck cancer in a mouse model. These data indicate that S1P signaling pathway is a promising target for alleviating irradiation-induced salivary gland hypofunction.
Collapse
|
10
|
Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
11
|
Therond P, Chapman MJ. Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment. Curr Opin Lipidol 2022; 33:199-207. [PMID: 35695616 DOI: 10.1097/mol.0000000000000825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To better define the metabolism of sphingosine-1-phosphate (S1P), its transport in plasma and its interactions with S1P receptors on vascular cells, and to evaluate the effect of statin treatment on the subnormal plasma levels of high-density lipoprotein (HDL)-bound S1P characteristic of the atherogenic dyslipidemia of metabolic syndrome (MetS). RECENT FINDINGS Neither clinical intervention trials targeted to raising high-density lipoprotein-cholesterol (HDL-C) levels nor human genome-wide association studies (GWAS) studies have provided evidence to support an atheroprotective role of HDL. Recently however a large monogenic univariable Mendelian randomization on the N396S mutation in the gene encoding endothelial lipase revealed a causal protective effect of elevated HDL-C on coronary artery disease conferred by reduced enzyme activity. Given the complexity of the HDL lipidome and proteome, components of HDL other than cholesterol may in all likelihood contribute to such a protective effect. Among HDL lipids, S1P is a bioactive sphingolipid present in a small proportion of HDL particles (about 5%); indeed, S1P is preferentially enriched in small dense HDL3. As S1P is bound to apolipoprotein (apo) M in HDL, such enrichment is consistent with the elevated apoM concentration in HDL3. When HDL/apoM-bound S1P acts on S1P1 or S1P3 receptors in endothelial cells, potent antiatherogenic and vasculoprotective effects are exerted; those exerted by albumin-bound S1P at these receptors are typically weaker. When HDL/apoM-bound S1P binds to S1P2 receptors, proatherogenic effects may potentially be induced. Subnormal plasma levels of HDL-associated S1P are typical of dyslipidemic individuals at high cardiovascular risk and in patients with coronary heart disease. International Guidelines recommend statin treatment as first-line lipid lowering therapy in these groups. The cardiovascular benefits of statin therapy are derived primarily from reduction in low-density lipoprotein (LDL)-cholesterol, although minor contributions from pleiotropic actions cannot be excluded. Might statin treatment therefore normalize, directly or indirectly, the subnormal levels of S1P in dyslipidemic subjects at high cardiovascular risk? Our unpublished findings in the CAPITAIN study (ClinicalTrials.gov: NCT01595828), involving a cohort of obese, hypertriglyceridemic subjects (n = 12) exhibiting the MetS, showed that pitavastatin calcium (4 mg/day) treatment for 180days was without effect on either total plasma or HDL-associated S1P levels, suggesting that statin-mediated improvement of endothelial function is not due to normalization of HDL-bound S1P. Statins may however induce the expression of S1P1 receptors in endothelial cells, thereby potentiating increase in endothelial nitric oxide synthase response to HDL-bound S1P, with beneficial downstream vasculoprotective effects. SUMMARY Current evidence indicates that S1P in small dense HDL3 containing apoM exerts antiatherogenic effects and that statins exert vasculoprotective effects through activation of endothelial cell S1P1 receptors in response to HDL/apoM-bound S1P.
Collapse
Affiliation(s)
- Patrice Therond
- AP-HP, CHU Bicêtre, Laboratory of Biochemistry, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicetre
- EA7357, Paris Saclay University, Châte- nay-Malabry
| | - M John Chapman
- Faculty of Medicine, Sorbonne University
- Endocrinology and Cardiovascular Disease Prevention, Pitie-Salpetriere University Hospital
- National Institute for Health and Medical Research (INSERM), Paris, France
| |
Collapse
|
12
|
Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomed Pharmacother 2022; 149:112870. [PMID: 35367769 DOI: 10.1016/j.biopha.2022.112870] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynaecological endocrine disease that causes anovulatory infertility. The current study aimed to explore the possible role of diacerein (DIA), an IL-1β inhibitor, in treating letrozole-induced PCOS in rats that exhibit the metabolic and endocrinal criteria of PCOS patients. PCOS was induced in female Wistar rats by the oral administration of letrozole (1 mg/kg, per orally, p.o.) for 21 days. Rats were then treated with DIA (25 mg/kg/day, p.o.), DIA (50 mg/kg/day, p.o.), or metformin (2 mg/100 g/day, p.o.) for 14 days after the PCOS induction. PCOS resulted in a significantly higher body weight, ovarian weight, ovarian size, and cysts, as well as an elevation in serum testosterone, LH, insulin, glycemia, and lipid profile levels. All of these effects were significantly reduced by the DIA administration. Additionally, DIA remarkably inhibited the letrozole-induced oxidative stress in the ovaries, muscles, and liver by reducing the upraised levels of malondialdehyde and total nitrite and increasing the suppressed levels of superoxide dismutase and catalase. DIA enhanced the protective proteins Keap-1, Nrf2, and OH-1 levels. Finally, DIA inhibited the elevated mRNA levels of NLRP3 and caspase-1, the up-regulated inflammatory cytokines IL-6, TNF-α, and the IL-1β/NFκB signaling pathway. Our results proved that DIA ameliorates letrozole-induced PCOS through its antioxidant and anti-inflammatory properties.
Collapse
|
13
|
Bowdridge EC, DeVallance E, Garner KL, Griffith JA, Schafner K, Seaman M, Engels KJ, Wix K, Batchelor TP, Goldsmith WT, Hussain S, Nurkiewicz TR. Nano-titanium dioxide inhalation exposure during gestation drives redox dysregulation and vascular dysfunction across generations. Part Fibre Toxicol 2022; 19:18. [PMID: 35260159 PMCID: PMC8905816 DOI: 10.1186/s12989-022-00457-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.
Collapse
Affiliation(s)
- Elizabeth C. Bowdridge
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Evan DeVallance
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Krista L. Garner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Julie A. Griffith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Kallie Schafner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Madison Seaman
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kevin J. Engels
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kimberley Wix
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Thomas P. Batchelor
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - William T. Goldsmith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Salik Hussain
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Timothy R. Nurkiewicz
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
14
|
Chen W, Teng X, Ding H, Xie Z, Cheng P, Liu Z, Feng T, Zhang X, Huang W, Geng D. Nrf2 protects against cerebral ischemia-reperfusion injury by suppressing programmed necrosis and inflammatory signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:285. [PMID: 35434015 PMCID: PMC9011295 DOI: 10.21037/atm-22-604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022]
Abstract
Background The NOD-like receptor family pyrin domain-containing 3 (NLRP3) -mediated neuroinflammation is linked to neuronal necroptosis in cerebral ischemia-reperfusion (I/R) injury, especially in cerebral ischemic penumbra. This study was designed to investigate the regulation of nuclear factor E2-related factor-2 (Nrf2) on NLRP3 inflammasome in necroptosis signal pathway induced by I/R injury. Methods We investigated the mechanisms of Nrf2-negative regulation in necroptosis signaling pathway by using middle cerebral artery occlusion (MCAO) with Q-VD-OPH injected intraperitoneally. The protein level of the NLRP3 inflammasome was detected by western blot with Nrf2 knockdown and overexpression. NLRP3 inflammasome activation was Reactive oxygen species (ROS) dependent, and the protein level was regulated when N-acetylcysteine (NAC) and adenosine triphosphate (ATP) were selected as tools for regulating ROS. Results We demonstrated the negative regulation of Nrf2 on NLRP3 inflammasome activation in Q-VD-OPH-induced necroptosis in cerebral artery I/R injury through Lentivirus-mediated RNA Interferenc, which mediated knockdown and overexpression of Nrf2. NLRP3 inflammasome activation was sensitive to both ATP-mediated ROS level increases and NAC-mediated ROS inhibition, suggesting that ROS is associated with the activation of NLRP3 inflammasome in necroptosis. In addition, Nrf2-induced NAD(P)H quinone dehydrogenase 1 (NQO1) was involved in the inhibition of NLRP3 inflammasome activation. These results suggest that Nrf2 regulates NQO1 to attenuate ROS, which negatively regulates NLRP3 inflammasome. Conclusions Nrf2/NQO1 was an inhibitor of ROS-induced NLRP3 inflammasome activation in Q-VD-OPH-induced necroptosis following cerebral I/R injury. Therefore, NLRP3 inflammasome could be a potential therapeutic target for cerebral ischemia.
Collapse
Affiliation(s)
- Weiwei Chen
- Nanjing Medical University, Nanjing, China.,Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Xue Teng
- Nursing Department, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hongmei Ding
- Nanjing Medical University, Nanjing, China.,Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiyuan Xie
- Department of Gastrointestinal surgery, Xuzhou Central Hospital, Xuzhou, China
| | | | - Zhihan Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Feng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Wenjuan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Deqin Geng
- Nanjing Medical University, Nanjing, China.,Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
16
|
Lupin γ-conglutin protects against cell death induced by oxidative stress and lipotoxicity, but transiently inhibits in vitro insulin secretion by increasing K ATP channel currents. Int J Biol Macromol 2021; 187:76-90. [PMID: 34280449 DOI: 10.1016/j.ijbiomac.2021.07.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
Lupin γ-conglutin beneficially modulates glycemia, but whether it protects against oxidative and lipotoxic damage remains unknown. Here, we studied the effects of γ-conglutin on cell death provoked by hydrogen peroxide and palmitate in HepG2 hepatocytes and insulin-producing MIN6 cells, and if a modulation of mitochondrial potential and reactive oxygen species (ROS) levels was involved. We also investigated how γ-conglutin influences insulin secretion and electrical activity of β-cells. The increased apoptosis of HepG2 cells exposed to hydrogen peroxide was prevented by γ-conglutin, and the viability and ROS content in γ-conglutin-treated cells was similar to that of non-exposed cells. Additionally, γ-conglutin partially protected MIN6 cells against hydrogen peroxide-induced death. This was associated with a marked reduction in ROS. No significant changes were found in the mitochondrial potential of γ-conglutin-treated cells. Besides, we observed a partial protection against lipotoxicity only in hepatocytes. Unexpectedly, we found a transient inhibition of insulin secretion, plasma membrane hyperpolarization, and higher KATP channel currents in β-cells treated with γ-conglutin. Our data show that γ-conglutin protects against cell death induced by oxidative stress or lipotoxicity by decreasing ROS and might also indicate that γ-conglutin promotes a β-cell rest, which could be useful for preventing β-cell exhaustion in chronic hyperglycemia.
Collapse
|
17
|
Ziegler AC, Gräler MH. Barrier maintenance by S1P during inflammation and sepsis. Tissue Barriers 2021; 9:1940069. [PMID: 34152926 DOI: 10.1080/21688370.2021.1940069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a multifaceted lipid signaling molecule that activates five specific G protein-coupled S1P receptors. Despite the fact that S1P is known as one of the strongest barrier-enhancing molecules for two decades, no medical application is available yet. The reason for this lack of translation into clinical practice may be the complex regulatory network of S1P signaling, metabolism and transportation.In this review, we will provide an overview about the physiology and the network of S1P signaling with the focus on endothelial barrier maintenance in inflammation. We briefly describe the physiological role of S1P and the underlying S1P signaling in barrier maintenance, outline differences of S1P signaling and metabolism in inflammatory diseases, discuss potential targets and compounds for medical intervention, and summarize our current knowledge regarding the role of S1P in the maintenance of specialized barriers like the blood-brain barrier and the placenta.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
18
|
Mularczyk M, Bourebaba Y, Kowalczuk A, Marycz K, Bourebaba L. Probiotics-rich emulsion improves insulin signalling in Palmitate/Oleate-challenged human hepatocarcinoma cells through the modulation of Fetuin-A/TLR4-JNK-NF-κB pathway. Biomed Pharmacother 2021; 139:111560. [PMID: 33839491 DOI: 10.1016/j.biopha.2021.111560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fetuin-A, also known as α2-Heremans-Schmid glycoprotein (AHSG), is an abundant plasmatic serum protein synthesized predominantly in liver and adipose tissue. This glycoprotein is known to negatively regulate insulin signaling through the inhibition of insulin receptor (IR) autophosphorylation and tyrosine kinase activity, which participates in insulin resistance (IR) and metabolic syndrome development. Recent studies demonstrated that IR and associated metabolic disorders, are closely related to the gut microbiota and modulating it by probiotics could be effective in metabolic diseases management. OBJECTIVE In this present work we aimed to evaluate the effects of a probiotics-rich emulsion on reducing the IR induced by free fatty acids accumulation in human hepatocarcinoma cell line, and to elucidate the implicated molecular pathways, with a specific emphasis on the hepatokin Fetuin-A-related axis. RESULTS Here we showed, that probiotics improve HepG2 viability, protect against apoptosis under normal and IR conditions. Moreover, the emulsion was successful in attenuating oxidative stress as well as improving mitochondrial metabolism and dynamics. Interestingly, application of the probiotics to lipotoxic HepG2 cells resulted in significant reduction of Fetuin-A/TLR4/JNK/NF-κB pathway activation, which suggests a protective effect against inflammation, obesity as well as liver related insulin resistant. CONCLUSION Overall, the presented data reports clearly on the potent potential of probiotics formulated in an emulsion vehicle to enhance metabolic functions of affected IR HepG2 cells, and suggest the possibility of using such preparations as insulin sensitizing therapy, playing at the same time protective role for the development of liver related insulin resistant.
Collapse
Affiliation(s)
- Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Yasmina Bourebaba
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland; Département du Tronc Commun, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Krzyzstof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
19
|
Wigger D, Schumacher F, Schneider-Schaulies S, Kleuser B. Sphingosine 1-phosphate metabolism and insulin signaling. Cell Signal 2021; 82:109959. [PMID: 33631318 DOI: 10.1016/j.cellsig.2021.109959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
Abstract
Insulin is the main anabolic hormone secreted by β-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic β-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.
Collapse
Affiliation(s)
- Dominik Wigger
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | | | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
20
|
Zywno H, Bzdega W, Kolakowski A, Kurzyna P, Harasim-Symbor E, Sztolsztener K, Chabowski A, Konstantynowicz-Nowicka K. The Influence of Coumestrol on Sphingolipid Signaling Pathway and Insulin Resistance Development in Primary Rat Hepatocytes. Biomolecules 2021; 11:biom11020268. [PMID: 33673122 PMCID: PMC7918648 DOI: 10.3390/biom11020268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Coumestrol is a phytoestrogen widely known for its anti-diabetic, anti-oxidant, and anti-inflammatory properties. Thus, it gets a lot of attention as a potential agent in the nutritional therapy of diseases such as obesity and type 2 diabetes. In our study, we evaluated whether coumestrol affects insulin resistance development via the sphingolipid signaling pathway in primary rat hepatocytes. The cells were isolated from the male Wistar rat's liver with the use of collagenase perfusion. Next, we incubated the cells with the presence or absence of palmitic acid and/or coumestrol. Additionally, some groups were incubated with insulin. The sphingolipid concentrations were assessed by HPLC whereas the expression of all the proteins was evaluated by Western blot. Coumestrol markedly reduced the accumulation of sphingolipids, namely, ceramide and sphinganine through noticeable inhibition of the ceramide de novo synthesis pathway in insulin-resistant hepatocytes. Moreover, coumestrol augmented the expression of fatty acid transport proteins, especially FATP5 and FAT/CD36, which also were responsible for excessive sphingolipid accumulation. Furthermore, coumestrol altered the sphingolipid salvage pathway, which was observed as the excessive deposition of the sphingosine-1-phosphate and sphingosine. Our study clearly showed that coumestrol ameliorated hepatic insulin resistance in primary rat hepatocytes. Thus, we believe that our study may contribute to the discovery of novel preventive and therapeutic methods for metabolic disorders.
Collapse
|
21
|
Hodun K, Chabowski A, Baranowski M. Sphingosine-1-phosphate in acute exercise and training. Scand J Med Sci Sports 2020; 31:945-955. [PMID: 33345415 DOI: 10.1111/sms.13907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid found in all eukaryotic cells. Although it may function as an intracellular second messenger, most of its effects are induced extracellularly via activation of a family of five specific membrane receptors. Sphingosine-1-phosphate is enriched in plasma, where it is transported by high-density lipoprotein and albumin, as well as in erythrocytes and platelets which store and release large amounts of this sphingolipid. Sphingosine-1-phosphate regulates a host of cellular processes such as growth, proliferation, differentiation, migration, and apoptosis suppression. It was also shown to play an important role in skeletal muscle physiology and pathophysiology. In recent years, S1P metabolism in both muscle and blood was found to be modulated by exercise. In this review, we summarize the current knowledge on the effect of acute exercise and training on S1P metabolism, highlighting the role of this sphingolipid in skeletal muscle adaptation to physical effort.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
22
|
Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines 2020; 8:biomedicines8110526. [PMID: 33266387 PMCID: PMC7700424 DOI: 10.3390/biomedicines8110526] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are of great relevance to health, and their dysregulation is associated with major chronic diseases. Research on mitochondria-156 brand new publications from 2019 and 2020-have contributed to this review. Mitochondria have been fundamental for the evolution of complex organisms. As important and semi-autonomous organelles in cells, they can adapt their function to the needs of the respective organ. They can program their function to energy supply (e.g., to keep heart muscle cells going, life-long) or to metabolism (e.g., to support hepatocytes and liver function). The capacity of mitochondria to re-program between different options is important for all cell types that are capable of changing between a resting state and cell proliferation, such as stem cells and immune cells. Major chronic diseases are characterized by mitochondrial dysregulation. This will be exemplified by cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, immune system disorders, and cancer. New strategies for intervention in chronic diseases will be presented. The tumor microenvironment can be considered a battlefield between cancer and immune defense, competing for energy supply and metabolism. Cancer cachexia is considered as a final stage of cancer progression. Nevertheless, the review will present an example of complete remission of cachexia via immune cell transfer. These findings should encourage studies along the lines of mitochondria, energy supply, and metabolism.
Collapse
|
23
|
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E, Le Stunff H. Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes. Cells 2020; 9:E1682. [PMID: 32668665 PMCID: PMC7407406 DOI: 10.3390/cells9071682] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pathophysiological condition where excess free fatty acids (FFA) target and promote the dysfunctioning of insulin sensitive tissues and of pancreatic β cells. This leads to the dysregulation of glucose homeostasis, which culminates in the onset of type 2 diabetes (T2D). FFA, which accumulate in these tissues, are metabolized as lipid derivatives such as ceramide, and the ectopic accumulation of the latter has been shown to lead to lipotoxicity. Ceramide is an active lipid that inhibits the insulin signaling pathway as well as inducing pancreatic β cell death. In mammals, ceramide is a key lipid intermediate for sphingolipid metabolism as is sphingosine-1-phosphate (S1P). S1P levels have also been associated with the development of obesity and T2D. In this review, the current knowledge on S1P metabolism in regulating insulin signaling in pancreatic β cell fate and in the regulation of feeding by the hypothalamus in the context of obesity and T2D is summarized. It demonstrates that S1P can display opposite effects on insulin sensitive tissues and pancreatic β cells, which depends on its origin or its degradation pathway.
Collapse
Affiliation(s)
- Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Cecile L. Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Mohamed L. Mariko
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Yacir Benomar
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| |
Collapse
|