1
|
Zhang P, Guan L, Sun W, Zhang Y, Du Y, Yuan S, Cao X, Yu Z, Jia Q, Zheng X, Meng Z, Li X, Zhao L. Targeting miR-31 represses tumourigenesis and dedifferentiation of BRAF V600E-associated thyroid carcinoma. Clin Transl Med 2024; 14:e1694. [PMID: 38797942 PMCID: PMC11128713 DOI: 10.1002/ctm2.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND BRAFV600E is the most common genetic mutation in differentiated thyroid cancer (DTC) occurring in 60% of patients and drives malignant tumour cell phenotypes including proliferation, metastasis and immune-escape. BRAFV600E-mutated papillary thyroid cancer (PTC) also displays greatly reduced expression of thyroid differentiation markers, thus tendency to radioactive iodine (RAI) refractory and poor prognosis. Therefore, understanding the molecular mechanisms and main oncogenic events underlying BRAFV600E will guide future therapy development. METHODS Bioinformatics and clinical specimen analyses, genetic manipulation of BRAFV600E-induced PTC model, functional and mechanism exploration guided with transcriptomic screening, as well as systematic rescue experiments were applied to investigate miR-31 function within BRAFV600E-induced thyroid cancer development. Besides, nanoparticles carrying miR-31 antagomirs were testified to alleviate 131I iodide therapy on PTC models. RESULTS We identify miR-31 as a significantly increased onco-miR in BRAFV600E-associated PTC that promotes tumour progression, metastasis and RAI refractoriness via sustained Wnt/β-catenin signalling. Mechanistically, highly activated BRAF/MAPK pathway induces miR-31 expression via c-Jun-mediated transcriptional regulation across in vitro and transgenic mouse models. MiR-31 in turn facilitates β-catenin stabilisation via directly repressing tumour suppressors CEBPA and DACH1, which direct the expression of multiple essential Wnt/β-catenin pathway inhibitors. Genetic functional assays showed that thyroid-specific knockout of miR-31 inhibited BRAFV600E-induced PTC progression, and strikingly, enhanced expression of sodium-iodide symporter and other thyroid differentiation markers, thus promoted 131I uptake. Nanoparticle-mediated application of anti-miR-31 antagomirs markedly elevated radio-sensitivity of BRAFV600E-induced PTC tumours to 131I therapy, and efficiently suppressed tumour progression in the pre-clinical mouse model. CONCLUSIONS Our findings elucidate a novel BRAF/MAPK-miR-31-Wnt/β-catenin regulatory mechanism underlying clinically BRAFV600E-associated DTC tumourigenesis and dedifferentiation, also highlight a potential adjuvant therapeutic strategy for advanced DTC.
Collapse
Affiliation(s)
- Peitao Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Lizhao Guan
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wei Sun
- Laboratory of molecular genetics, School of Medicine, Nankai University, Tianjin, China
| | - Yu Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shukai Yuan
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaolong Cao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Li Zhao
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Wu M, Yuan H, Zou W, Xu S, Liu S, Gao Q, Guo Q, Han Y, An X. Circular RNAs: characteristics, functions, mechanisms, and potential applications in thyroid cancer. Clin Transl Oncol 2024; 26:808-824. [PMID: 37864677 DOI: 10.1007/s12094-023-03324-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 10/23/2023]
Abstract
Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/β-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.
Collapse
Affiliation(s)
- Mengmeng Wu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Shujian Xu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Song Liu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiang Gao
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qingqun Guo
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| | - Xingguo An
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Turkowski K, Herzberg F, Günther S, Weigert A, Haselbauer T, Fink L, Brunn D, Grimminger F, Seeger W, Sültmann H, Stiewe T, Pullamsetti SS, Savai R. miR-147b mediated suppression of DUSP8 promotes lung cancer progression. Oncogene 2024; 43:1178-1189. [PMID: 38396293 PMCID: PMC11014796 DOI: 10.1038/s41388-024-02969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Dual-specificity phosphatase 8 (DUSP8) plays an important role as a selective c-Jun N-terminal kinase (JNK) phosphatase in mitogen-activated protein kinase (MAPK) signaling. In this study, we found that DUSP8 is silenced by miR-147b in patients with lung adenocarcinoma (LUAD), which correlates with poor overall survival. Overexpression of DUSP8 resulted in a tumor-suppressive phenotype in vitro and in vivo experimental models, whereas silencing DUSP8 with a siRNA approach abrogated the tumor-suppressive properties. We found that miR-147b is a posttranscriptional regulator of DUSP8 that is highly expressed in patients with LUAD and is associated with lower survival. NanoString analysis revealed that the MAPK signaling pathway is mainly affected by overexpression of miR-147b, leading to increased proliferation and migration and decreased apoptosis in vitro. Moreover, induction of miR-147b promotes tumor progression in vitro and in vivo experimental models. Knockdown of miR-147b restored DUSP8, decreased tumor progression in vitro, and increased apoptosis via JNK phosphorylation. These results suggest that miR-147b plays a key role in regulating MAPK signaling in LUAD. The link between DUSP8 and miR-147b may provide novel approaches for the treatment of lung cancer.
Collapse
Affiliation(s)
- Kati Turkowski
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
| | - Frederik Herzberg
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Hesse, Germany
| | - Tamara Haselbauer
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, UEGP, Wetzlar, Germany
| | - David Brunn
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Friedrich Grimminger
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), Germany Center for Lung Research (DZL), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thorsten Stiewe
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Soni S Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Hesse, Germany.
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
4
|
Cao T, Hong L, Yu D, Shen J, Jiang L, Hu N, He S. Circular RNA circTMEM59 inhibits progression of pancreatic ductal adenocarcinoma by targeting miR-147b/SOCS1: An in vitro study. Heliyon 2024; 10:e24402. [PMID: 38304778 PMCID: PMC10831602 DOI: 10.1016/j.heliyon.2024.e24402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Purpose This study aimed to detect the role and mechanism of circTMEM59 in pancreatic ductal adenocarcinoma (PDAC). Methods 66 paired PDAC tissues and normal samples were harvested from patients diagnosed and undergoing pancreatic cancer surgery in our hospital. The expression of circTMEM59 in PDAC tissues and cell lines was detected. Based on bioinformatics information, the circTMEM59 mimics, miR-147b mimics, miR-147b inhibitor and si-suppressor of cytokine signaling 1 (SOCS1) were transfected into PDAC cells. The expression levels of circTMEM59, miR-147b and SOCS1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). RNA interaction was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Cell invasion and proliferation were evaluated by Transwell and Cell Counting Kit-8 (CCK-8) assays. The protein expression was detected by Western blot. Results CircTMEM59 was confirmed to be downregulated in PDAC tumor tissues and cells. Low expression of circTMEM59 was closely correlated with the short survival time and poor clinicopathological characteristics. By up-regulating the expression of circTMEM59 in PDAC cells, cell proliferation, invasion and epithelial-mesenchymal transition (EMT) were inhibited. More importantly, miR-147b could be sponged by circTMEM59, and knockdown of miR-147b inhibited progression of PDAC cells. Further study revealed that SOCS1 was targeted by miR-147b. SOCS1 expression was negatively related to miR-147b expression and positively related to circTMEM59 expression in PDAC tissues. Upregulated miR-147b and downregulated SOCS1 could rescue the effects of circTMEM59 on cell proliferation, EMT and invasion. Conclusion Our data indicated that circTMEM59 inhibited cell proliferation, invasion and EMT of PDAC by regulating miR-147b/SOCS1 axis.
Collapse
Affiliation(s)
- Tieliu Cao
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Liang Hong
- Department of Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Dan Yu
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Jie Shen
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Liwen Jiang
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Nanhua Hu
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Shengli He
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| |
Collapse
|
5
|
Ganguly T, Laha S, Senapati S, Chatterjee G, Chatterjee R. Serum miRNA profiling identified miRNAs associated with disease severity in psoriasis. Exp Dermatol 2024; 33:e14973. [PMID: 37926911 DOI: 10.1111/exd.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Psoriasis vulgaris is a chronic, autoimmune skin disease involving a complex interplay of epidermal keratinocytes, dermal fibroblast and infiltrating immune cells. Differential expressions of miRNAs are observed in psoriasis and the deregulated miRNAs are sometimes associated with disease severity. This study aims to identify miRNAs altered in the serum of psoriasis patients that are associated with the Psoriasis Area and Severity Index (PASI). In order to assess miRNA levels in the serum of psoriasis patients, we selected 24 differentially expressed miRNAs in the psoriatic skin are possibly derived from the skin and immune cells, as well as five miRNAs that are enriched in other tissues. We identified 16 miRNAs that exhibited significantly (p < 0.05) altered levels in the serum of psoriasis patients compared to healthy individuals. Among these, 13 miRNAs showed similar expression pattern in the serum of psoriasis patients as also observed in the psoriatic skin tissues. Ten miRNAs showed an accuracy of greater than 75% in classifying the psoriasis patients from healthy individuals. Further analysis of differential miRNA levels between the low PASI group and the high PASI group identified three miRNAs (miR-147b, miR-3614-5p, and miR-125a-5p) with significantly altered levels between the low severity and the high severity psoriasis patients. Our systematic investigation of skin and immune cell-derived miRNAs in the serum of psoriasis patients revealed alteration in miRNA levels to be associated with disease severity, which may help in monitoring the disease progression and therapeutic response.
Collapse
Affiliation(s)
- Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | | | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | | |
Collapse
|
6
|
Wang L, Wu X, Ruan Y, Zhang X, Zhou X. Exosome-transmitted hsa_circ_0012634 suppresses pancreatic ductal adenocarcinoma progression through regulating miR-147b/HIPK2 axis. Cancer Biol Ther 2023; 24:2218514. [PMID: 37326330 PMCID: PMC10281470 DOI: 10.1080/15384047.2023.2218514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Circular RNA (circRNA) has been confirmed to play a vital role in pancreatic ductal adenocarcinoma (PDAC) progression. However, the function and regulatory mechanism of hsa_circ_0012634 in PDAC progression remain unclear. Quantitative real-time PCR was used to measure the expression of hsa_circ_0012634, microRNA (miR)-147b and homeodomain interacting protein kinase 2 (HIPK2). Cell function was assessed by cell counting kit 8 assay, EdU assay, colony formation assay and flow cytometry. Glucose uptake and lactate production were evaluated to determine cell glycolysis ability. Protein expression was examined by western blot analysis. RNA interaction was confirmed by RNA pull-down assay and dual-luciferase reporter assay. Exosomes were isolated from serums and cell culture supernatant using ultracentrifugation and identified by transmission electron microscopy. Animal experiments were conducted using nude mice. Hsa_circ_0012634 was downregulated in PDAC tissues and cells, and its overexpression suppressed PDAC cell proliferation, glycolysis and enhanced apoptosis. MiR-147b was targeted by hsa_circ_0012634, and its inhibitors repressed PDAC cell growth and glycolysis. HIPK2 could be targeted by miR-147b, and hsa_circ_0012634 regulated miR-147b/HIPK2 to suppress PDAC cell progression. Hsa_circ_0012634 was lowly expressed in serum exosomes of PDAC patients. Exosomal hsa_circ_0012634 inhibited PDAC cell growth and glycolysis in vitro, as well as tumorigenesis in vivo. Exosomal hsa_circ_0012634 restrained PDAC progression via the miR-147b/HIPK2 pathway, confirming that hsa_circ_0012634 might serve as a diagnosis and treatment biomarker for PDAC.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Wu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Ruan
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xueming Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinhua Zhou
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Epigenetic Silencing of SOX15 Is Controlled by miRNAs rather than Methylation in Papillary Thyroid Cancer. DISEASE MARKERS 2021; 2021:1588220. [PMID: 34603557 PMCID: PMC8486500 DOI: 10.1155/2021/1588220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Methods In this study, qRT-PCR was used to investigate the expression levels of the SOX15 gene and of miR-182, miR-183, miR-375, and miR-96 in thyroid tumors and adjacent noncancerous tissues. We also investigated the methylation status of the SOX15 promoter by methylation-specific PCR in tumors and adjacent noncancerous tissues. Results We observed a statistically significant downregulation of SOX15 expression in tumors compared to noncancerous tissue samples. The methylation levels of tumors and matched noncancerous tissues were similar, but miR-182, miR-183, and miR-375 expression levels were elevated in tumor tissues compared to noncancerous tissue samples. Conclusions Our results indicate that SOX15 gene expression is associated with the pathogenesis of papillary thyroid carcinoma (PTC), and the epigenetic control of the SOX15 gene is regulated by miRNAs rather than by promoter methylation.
Collapse
|
8
|
Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8020022. [PMID: 33669699 PMCID: PMC7923109 DOI: 10.3390/jcdd8020022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide in different cohorts. It is well known that miRNAs have a crucial role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. MiRNAs also have been reported to be associated with cardiac reactions, leading to myocardial infarction (MCI) and ultimately heart failure (HF). To prevent these heart diseases, proper and timely diagnosis of cardiac dysfunction is pivotal. Though there are many symptoms associated with an irregular heart condition and though there are some biomarkers available that may indicate heart disease, authentic, specific and sensitive markers are the need of the hour. In recent times, miRNAs have proven to be promising candidates in this regard. They are potent biomarkers as they can be easily detected in body fluids (blood, urine, etc.) due to their remarkable stability and presence in apoptotic bodies and exosomes. Existing studies suggest the role of miRNAs as valuable biomarkers. A single biomarker may be insufficient to diagnose coronary artery disease (CAD) or acute myocardial infarction (AMI); thus, a combination of different miRNAs may prove fruitful. Therefore, this review aims to highlight the role of circulating miRNA as diagnostic and prognostic biomarkers in cardiovascular diseases such as coronary artery disease (CAD), myocardial infarction (MI) and atherosclerosis.
Collapse
|
9
|
Ke D, Guo Q, Fan TY, Xiao X. Analysis of the Role and Regulation Mechanism of hsa-miR-147b in Lung Squamous Cell Carcinoma Based on The Cancer Genome Atlas Database. Cancer Biother Radiopharm 2020; 36:280-291. [PMID: 33112657 DOI: 10.1089/cbr.2020.4187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to explore the role and regulatory mechanism of hsa-miR-147b in lung squamous cell carcinoma (LUSC) through The Cancer Genome Atlas (TCGA) database. Methods: The expression and clinical value of miR-147b in LUSC were analyzed in the TCGA database. The target genes of miR-147b were screened via miRWalk 2.0 and verified in TCGA database. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyzed the differential target genes of miR-147b. Kaplan-Meier survival analysis and Cox regression were used to screen the prognosis-related target genes. Results: The expression of miR-147b in LUSC tissues increased, and was associated with poor prognosis, gender, and stage of LUSC patients. The area under the curve (AUC) of miR-147b was 0.8478 by the receiver-operating characteristic curve. There were 428 differentially expressed genes of miR-147b that played a critical role in drug transport, DNA binding, calcium signaling pathway, and Ras signaling pathway through GO and KEGG. PTGIS, SUSD4, ARC, HTR2C, SHISA9, and PLA2G4D were independent risk factors for poor prognosis in LUSC patients. LUSC patients in the high-risk group had a higher risk of death. The time-dependent AUC was 0.673. Conclusions: MiR-147b might be a potential molecular marker for poor prognosis in patients with LUSC.
Collapse
Affiliation(s)
- Di Ke
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Teng-Yang Fan
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xue Xiao
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
SOX15 exerts antitumor function in glioma by inhibiting cell proliferation and invasion via downregulation of Wnt/β-catenin signaling. Life Sci 2020; 255:117792. [PMID: 32416168 DOI: 10.1016/j.lfs.2020.117792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
AIMS Sex-determining region of Y chromosome-related high-mobility-group box 15 (SOX15) has recently emerged as a candidate tumor-inhibitor in multiple types of human tumors. To date, the involvement of SOX15 in glioma is undetermined. The purpose of this study was to investigate the expression, function and potential molecular mechanism of SOX15 in glioma. MAIN METHODS Relative mRNA expression was analyzed by real-time quantitative PCR. Protein expression was determined by Western blot. Cell proliferation was assessed by cell counting kit-8 and colony formation assay. Cell invasion was evaluated by Matrigel invasion assay. Wnt/β-catenin activation was monitored by luciferase reporter assay. KEY FINDINGS SOX15 expression was decreased in glioma tissues and cell lines compared with normal controls. Kaplan-Meier analysis revealed that patients with low expression of SOX15 had shorter survival than those who had high expression of SOX15. The upregulation of SOX15 markedly repressed the proliferation and invasion of glioma cells, whereas its depletion enhanced glioma cell proliferation and invasion. Research into the mechanism revealed that SOX15 exerted an inhibitory effect on Wnt/β-catenin signaling in glioma cells. Notably, overexpression of β-catenin partially reversed the SOX15 overexpression-mediated tumor-suppressive effect. In addition, SOX15 overexpression significantly impeded tumor formation by glioma cells in vivo in a mouse xenograft model associated with downregulation of active β-catenin expression. SIGNIFICANCE These data demonstrate that SOX15 functions as a potential tumor-suppressor in glioma by inhibiting cell proliferation and invasion via the downregulation of Wnt/β-catenin signaling.
Collapse
|