1
|
Truong DD, Weistuch C, Murgas KA, Admane P, King BL, Lee JC, Lamhamedi-Cherradi SE, Swaminathan J, Daw NC, Gordon N, Gopalakrishnan V, Gorlick RG, Somaiah N, Deasy JO, Mikos AG, Tannenbaum A, Ludwig J. Mapping the Single-Cell Differentiation Landscape of Osteosarcoma. Clin Cancer Res 2024; 30:3259-3272. [PMID: 38775859 PMCID: PMC11293971 DOI: 10.1158/1078-0432.ccr-24-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE The genetic intratumoral heterogeneity observed in human osteosarcomas poses challenges for drug development and the study of cell fate, plasticity, and differentiation, which are processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN To pinpoint errors in osteosarcoma differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs mesenchymal stem cells toward adipogenic and osteoblastic fates. Incorporating preexisting chondrocyte data, we applied trajectory analysis and non-negative matrix factorization to generate the first human mesenchymal differentiation atlas. RESULTS This "roadmap" served as a reference to delineate the cellular composition of morphologically complex osteosarcoma tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-sequencing osteosarcoma dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS Our study quantifies osteosarcoma differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.
Collapse
Affiliation(s)
- Danh D. Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin A. Murgas
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY
| | - Prasad Admane
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bridgette L. King
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jes Chauviere Lee
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Salah-Eddine Lamhamedi-Cherradi
- McCombs Institute, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Najat C. Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Richard G. Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
- Department of Computer Science, Stony Brook University, Stony Brook, NY
| | - Joseph Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
3
|
Truong DD, Weistuch C, Murgas KA, Deasy JO, Mikos AG, Tannenbaum A, Ludwig J. Mapping the Single-cell Differentiation Landscape of Osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.555156. [PMID: 37745374 PMCID: PMC10515803 DOI: 10.1101/2023.09.13.555156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation bottlenecks that might someday be targeted therapeutically.
Collapse
Affiliation(s)
- Danh D. Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin A. Murgas
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
- Department of Computer Science, Stony Brook University, Stony Brook, NY
| | - Joseph Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Lipreri MV, Di Pompo G, Boanini E, Graziani G, Sassoni E, Baldini N, Avnet S. Bone on-a-chip: a 3D dendritic network in a screening platform for osteocyte-targeted drugs. Biofabrication 2023; 15:045019. [PMID: 37552982 DOI: 10.1088/1758-5090/acee23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Age-related musculoskeletal disorders, including osteoporosis, are frequent and associated with long lasting morbidity, in turn significantly impacting on healthcare system sustainability. There is therefore a compelling need to develop reliable preclinical models of disease and drug screening to validate novel drugs possibly on a personalized basis, without the need ofin vivoassay. In the context of bone tissue, although the osteocyte (Oc) network is a well-recognized therapeutic target, currentin vitropreclinical models are unable to mimic its physiologically relevant and highly complex structure. To this purpose, several features are needed, including an osteomimetic extracellular matrix, dynamic perfusion, and mechanical cues (e.g. shear stress) combined with a three-dimensional (3D) culture of Oc. Here we describe, for the first time, a high throughput microfluidic platform based on 96-miniaturized chips for large-scale preclinical evaluation to predict drug efficacy. We bioengineered a commercial microfluidic device that allows real-time visualization and equipped with multi-chips by the development and injection of a highly stiff bone-like 3D matrix, made of a blend of collagen-enriched natural hydrogels loaded with hydroxyapatite nanocrystals. The microchannel, filled with the ostemimetic matrix and Oc, is subjected to passive perfusion and shear stress. We used scanning electron microscopy for preliminary material characterization. Confocal microscopy and fluorescent microbeads were used after material injection into the microchannels to detect volume changes and the distribution of cell-sized objects within the hydrogel. The formation of a 3D dendritic network of Oc was monitored by measuring cell viability, evaluating phenotyping markers (connexin43, integrin alpha V/CD51, sclerostin), quantification of dendrites, and responsiveness to an anabolic drug. The platform is expected to accelerate the development of new drug aimed at modulating the survival and function of osteocytes.
Collapse
Affiliation(s)
| | - Gemma Di Pompo
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Zheng Y, Shen P, Tong M, Li H, Ren C, Wu F, Li H, Yang H, Cai B, Du W, Zhao X, Yao S, Quan R. WISP2 downregulation inhibits the osteogenic differentiation of BMSCs in congenital scoliosis by regulating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2023:166783. [PMID: 37302424 DOI: 10.1016/j.bbadis.2023.166783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) are instrumental in bone development, metabolism, and marrow microenvironment homeostasis. Despite this, the relevant effects and mechanisms of BMSCs on congenital scoliosis (CS) remain undefined. Herein, it becomes our focus to reveal the corresponding effects and mechanisms implicated. METHODS BMSCs from CS patients (hereafter referred as CS-BMSCs) and healthy donors (NC-BMSCs) were observed and identified. Differentially expressed genes in BMSCs were analyzed utilizing scRNA-seq and RNA-seq profiles. The multi-differentiation potential of BMSCs following the transfection or infection was evaluated. The expression levels of factors related to osteogenic differentiation and Wnt/β-catenin pathway were further determined as appropriate. RESULTS A decreased osteogenic differentiation ability was shown in CS-BMSCs. Both the proportion of LEPR+ BMSCs and the expression level of WNT1-inducible-signaling pathway protein 2 (WISP2) were decreased in CS-BMSCs. WISP2 knockdown suppressed the osteogenic differentiation of NC-BMSCs, while WISP2 overexpression facilitated the osteogenesis of CS-BMSCs via acting on the Wnt/β-catenin pathway. CONCLUSIONS Our study collectively indicates WISP2 knockdown blocks the osteogenic differentiation of BMSCs in CS by regulating Wnt/β-catenin signaling, thus providing new insights into the aetiology of CS.
Collapse
Affiliation(s)
- Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panyang Shen
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Tong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangchao Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengqing Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanyu Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingbing Cai
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Weibin Du
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Xing Zhao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shasha Yao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Renfu Quan
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China; Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Zhu J, Dai H, Li X, Guo L, Sun X, Zheng Z, Xu C. LncRNA TRG-AS1 inhibits bone metastasis of breast cancer by the miR-877-5p/WISP2 axis. Pathol Res Pract 2023; 243:154360. [PMID: 36801505 DOI: 10.1016/j.prp.2023.154360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
TRG-AS1 has been proved to inhibit cancer progression, whereas its effect on bone metastases of breast cancer is unknown. In this study, we determined breast cancer patients with disease free survival is longer in breast cancer patients with high TRG-AS1 expression. Moreover, TRG-AS1 was downregulated in breast cancer tissues and even lower in bone metastatic tumor tissues. Compared with parental breast cancer cell MDA-MB-231, TRG-AS1 expression was downregulated in MDA-MB-231-BO cells with strong bone-metastatic characteristics. Next, the binding sites of miR-877-5p on TRG-AS1 and WISP2 mRNA were predicted and result showed that miR-877-5p could bind to 3'UTR of TRG-AS1 and WISP2. Subsequently, BMMs and MC3T3-E1 cells were cultured in the conditioned media of MDA-MB-231 BO cells transfected with TRG-AS1 overexpression vector, shRNA and/or miR-877-5p mimics or inhibitor and/or overexpression vector and small interfering RNA of WISP2. TRG-AS1 silencing or miR-877-5p overexpression promoted MDA-MB-231 BO cell proliferation and invasion. TRG-AS1 overexpressing reduced TRAP positive cells, decreased TRAP, Cathepsin K, c-Fos, NFATc1 and AREG expression in BMMs, and promoted OPG, Runx2 and Bglap2 expression, and decreased RANKL expression in MC3T3-E1 cells. Silencing WISP2 rescued the effect of TRG-AS1 on BMMs and MC3T3-E1 cells. In vivo results showed that tumor volumes significantly decreased in mice injected with LV-TRG-AS1 transfected MDA-MB-231 cells. TRG-AS1 knockdown markedly reduced the number of TRAP+ cells and the percentage of Ki-67+ cells and decreased E-cadherin expression in xenograft tumor mice. In summary, TRG-AS1 acts an endogenous RNA, inhibited breast cancer bone metastasis by competitively binding with miR-877-5p to upregulate WISP2 expression.
Collapse
Affiliation(s)
- Jinxiang Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Department of General Surgery, Shaanxi Provincial Cancer Hospital, Xi'an 710000, Shaanxi Province, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Longwei Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xin Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zhiwei Zheng
- The Third Ward of General Surgery Department, Rizhao People's Hospital, Rizhao 276800, Shandong Province, China.
| | - Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
7
|
Lin K, Yang Y, Cao Y, Liang J, Qian J, Wang X, Han Q. Combining single-cell transcriptomics and CellTagging to identify differentiation trajectories of human adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2023; 14:14. [PMID: 36721241 PMCID: PMC9890798 DOI: 10.1186/s13287-023-03237-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have attracted great attention in the application of cell-based therapy because of their pluripotent differentiation and immunomodulatory ability. Due to the limited number of MSCs isolated from donor tissues, a large number of MSCs need to be expanded in a traditional two-dimensional cell culture device to obtain a sufficient therapeutic amount. However, long-term cultivation of MSCs in vitro has been proven to reduce their differentiation potential and change their immunomodulatory characteristics. We aimed to explore the cellular heterogeneity and differentiation potential of different MSCs expanded in vitro and reconstruct the complex cloning track of cells in the process of differentiation. METHODS Single cell transcriptome sequencing was combined with 'CellTagging', which is a composite barcode indexing method that can capture the cloning history and cell identity in parallel to track the differentiation process of the same cell over time. RESULTS Through the single-cell transcriptome and CellTagging, we found that the heterogeneity of human adipose tissue derived stem cells (hADSCs) in the early stage of culture was very limited. With the passage, the cells spontaneously differentiated during the process of division and proliferation, and the heterogeneity of the cells increased. By tracing the differentiation track of cells, we found most cells have the potential for multidirectional differentiation, while a few cells have the potential for unidirectional differentiation. One subpopulation of hADSCs with the specific osteoblast differentiation potential was traced from the early stage to the late stage, which indicates that the differentiation trajectories of the cells are determined in the early stages of lineage transformation. Further, considering that all genes related to osteogenic differentiation have not yet been determined, we identified that there are some genes that are highly expressed specifically in the hADSC subsets that can successfully differentiate into osteoblasts, such as Serpin Family E Member 2 (SERPINE2), Secreted Frizzled Related Protein 1 (SFRP1), Keratin 7 (KRT7), Peptidase Inhibitor 16 (PI16), and Carboxypeptidase E (CPE), which may be key regulatory genes for osteogenic induction, and finally proved that the SERPINE2 gene can promote the osteogenic process. CONCLUSION The results of this study contribute toward the exploration of the heterogeneity of hADSCs and improving our understanding of the influence of heterogeneity on the differentiation potential of cells. Through this study, we found that the SERPINE2 gene plays a decisive role in the osteogenic differentiation of hADSCs, which lays a foundation for establishing a more novel and complete induction system.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Yanlei Yang
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Junbo Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Qian
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China.
| | - Qin Han
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
The Pathophysiology of Osteoporosis after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22063057. [PMID: 33802713 PMCID: PMC8002377 DOI: 10.3390/ijms22063057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects approximately 300,000 people in the United States. Most individuals who sustain severe SCI also develop subsequent osteoporosis. However, beyond immobilization-related lack of long bone loading, multiple mechanisms of SCI-related bone density loss are incompletely understood. Recent findings suggest neuronal impairment and disability may lead to an upregulation of receptor activator of nuclear factor-κB ligand (RANKL), which promotes bone resorption. Disruption of Wnt signaling and dysregulation of RANKL may also contribute to the pathogenesis of SCI-related osteoporosis. Estrogenic effects may protect bones from resorption by decreasing the upregulation of RANKL. This review will discuss the current proposed physiological and cellular mechanisms explaining osteoporosis associated with SCI. In addition, we will discuss emerging pharmacological and physiological treatment strategies, including the promising effects of estrogen on cellular protection.
Collapse
|
9
|
Identification of Sclerostin as a Putative New Myokine Involved in the Muscle-to-Bone Crosstalk. Biomedicines 2021; 9:biomedicines9010071. [PMID: 33445754 PMCID: PMC7828203 DOI: 10.3390/biomedicines9010071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Bone and muscle have been recognized as endocrine organs since they produce and secrete “hormone-like factors” that can mutually influence each other and other tissues, giving rise to a “bone–muscle crosstalk”. In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell differentiation and we identified sclerostin as one of the myokines produced by muscle cells. Sclerostin is a secreted glycoprotein reportedly expressed by bone/cartilage cells and is considered a negative regulator of bone growth due to its role as an antagonist of the Wnt/β-catenin pathway. Given the inhibitory role of sclerostin in bone, we analyzed its expression by muscle cells and how it affects bone formation and homeostasis. Firstly, we characterized and quantified sclerostin synthesis by a myoblast cell line (C2C12) and by murine primary muscle cells by Western blotting, real-time PCR, immunofluorescence, and ELISA assay. Next, we investigated in vivo production of sclerostin in distinct muscle groups with different metabolic and mechanical loading characteristics. This analysis was done in mice of different ages (6 weeks, 5 and 18 months after birth) and revealed that sclerostin expression is dynamically modulated in a muscle-specific way during the lifespan. Finally, we transiently expressed sclerostin in the hind limb muscles of young mice (2 weeks of age) via in vivo electro-transfer of a plasmid containing the SOST gene in order to investigate the effects of muscle-specific overproduction of the protein. Our data disclosed an inhibitory role of the muscular sclerostin on the bones adjacent to the electroporated muscles. This observation suggests that sclerostin released by skeletal muscle might synergistically interact with osseous sclerostin and potentiate negative regulation of osteogenesis possibly by acting in a paracrine/local fashion. Our data point out a role for muscle as a new source of sclerostin.
Collapse
|