1
|
Zhang L, Elkahal J, Wang T, Rimmer R, Genzelinakh A, Bassat E, Wang J, Perez D, Kain D, Lendengolts D, Winkler R, Bueno-Levy H, Umansky KB, Mishaly D, Shakked A, Miyara S, Sarusi-Portuguez A, Goldfinger N, Prior A, Morgenstern D, Levin Y, Addadi Y, Li B, Rotter V, Katz U, Tanaka EM, Krizhanovsky V, Sarig R, Tzahor E. Egr1 regulates regenerative senescence and cardiac repair. NATURE CARDIOVASCULAR RESEARCH 2024; 3:915-932. [PMID: 39196027 DOI: 10.1038/s44161-024-00493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Senescence plays a key role in various physiological and pathological processes. We reported that injury-induced transient senescence correlates with heart regeneration, yet the multi-omics profile and molecular underpinnings of regenerative senescence remain obscure. Using proteomics and single-cell RNA sequencing, here we report the regenerative senescence multi-omic signature in the adult mouse heart and establish its role in neonatal heart regeneration and agrin-mediated cardiac repair in adult mice. We identified early growth response protein 1 (Egr1) as a regulator of regenerative senescence in both models. In the neonatal heart, Egr1 facilitates angiogenesis and cardiomyocyte proliferation. In adult hearts, agrin-induced senescence and repair require Egr1, activated by the integrin-FAK-ERK-Akt1 axis in cardiac fibroblasts. We also identified cathepsins as injury-induced senescence-associated secretory phenotype components that promote extracellular matrix degradation and potentially assist in reducing fibrosis. Altogether, we uncovered the molecular signature and functional benefits of regenerative senescence during heart regeneration, with Egr1 orchestrating the process.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tianzhen Wang
- Department of Bimolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Racheli Rimmer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Genzelinakh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Dahlia Perez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Winkler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanna Bueno-Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Veterinary Resource, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Mishaly
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shoval Miyara
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avital Sarusi-Portuguez
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Prior
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uriel Katz
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Hoorn QA, Zayas GA, Rodriguez EE, Jensen LM, Mateescu RG, Hansen PJ. Identification of quantitative trait loci and associated candidate genes for pregnancy success in Angus-Brahman crossbred heifers. J Anim Sci Biotechnol 2023; 14:137. [PMID: 37932831 PMCID: PMC10629031 DOI: 10.1186/s40104-023-00940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/10/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND In beef cattle, more than 50% of the energy input to produce a unit of beef is consumed by the female that produced the calf. Development of genomic tools to identify females with high genetic merit for reproductive function could increase the profitability and sustainability of beef production. RESULTS Genome-wide association studies (GWAS) were performed using a single-step genomic best linear unbiased prediction approach on pregnancy outcome traits from a population of Angus-Brahman crossbred heifers. Furthermore, a validation GWAS was performed using data from another farm. Heifers were genotyped with the Bovine GGP F250 array that contains 221,077 SNPs. In the discovery population, heifers were bred in winter breeding seasons involving a single round of timed artificial insemination (AI) followed by natural mating for 3 months. Two phenotypes were analyzed: pregnancy outcome to first-service AI (PAI; n = 1,481) and pregnancy status at the end of the breeding season (PEBS; n = 1,725). The heritability was estimated as 0.149 and 0.122 for PAI and PEBS, respectively. In the PAI model, one quantitative trait locus (QTL), located between 52.3 and 52.5 Mb on BTA7, explained about 3% of the genetic variation, in a region containing a cluster of γ-protocadherin genes and SLC25A2. Other QTLs explaining between 0.5% and 1% of the genetic variation were found on BTA12 and 25. In the PEBS model, a large QTL on BTA7 was synonymous with the QTL for PAI, with minor QTLs located on BTA5, 9, 10, 11, 19, and 20. The validation population for pregnancy status at the end of the breeding season were Angus-Brahman crossbred heifers bred by natural mating. In concordance with the discovery population, the large QTL on BTA7 and QTLs on BTA10 and 12 were identified. CONCLUSIONS In summary, QTLs and candidate SNPs identified were associated with pregnancy outcomes in beef heifers, including a large QTL associated with a group of protocadherin genes. Confirmation of these associations with larger populations could lead to the development of genomic predictions of reproductive function in beef cattle. Moreover, additional research is warranted to study the function of candidate genes associated with QTLs.
Collapse
Affiliation(s)
- Quinn A Hoorn
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Gabriel A Zayas
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Eduardo E Rodriguez
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Laura M Jensen
- Present address: School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Raluca G Mateescu
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
FSH Regulates YAP-TEAD Transcriptional Activity in Bovine Granulosa Cells to Allow the Future Dominant Follicle to Exert Its Augmented Estrogenic Capacity. Int J Mol Sci 2022; 23:ijms232214160. [PMID: 36430640 PMCID: PMC9693326 DOI: 10.3390/ijms232214160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that drive the granulosa cells' (GC) differentiation into a more estrogenic phenotype during follicular divergence and establishment of follicle dominance have not been completely elucidated. The main Hippo signaling effector, YAP, has, however, emerged as a potential key player to explain such complex processes. Studies using rat and bovine GC demonstrate that, in conditions where the expression of the classic YAP-TEAD target gene tissue growth factor (CTGF) is augmented, CYP19A1 expression and activity and, consequently, estradiol (E2) secretion are reduced. These findings led us to hypothesize that, during ovarian follicular divergence in cattle, FSH downregulates YAP-TEAD-dependent transcriptional activity in GC to allow the future dominant follicle to exert its augmented estrogenic capacity. To address this, we performed a series of experiments employing distinct bovine models. Our in vitro and ex vivo experiments indicated that indeed FSH downregulates, in a concentration-dependent manner, mRNA levels not only for CTGF but also for the other classic YAP-TEAD transcriptional target genes ANKRD1 and CYR61 by a mechanism that involves increased YAP phosphorylation. To better elucidate the functional importance of such FSH-induced YAP activity regulation, we then cultured GC in the presence of verteporfin (VP) or peptide 17 (P17), two pharmacological inhibitors known to interfere with YAP binding to TEADs. The results showed that both VP and P17 increased CYP19A1 basal mRNA levels in a concentration-dependent manner. Most interestingly, by using GC samples obtained in vivo from dominant vs. subordinate follicles, we found that mRNA levels for CTGF, CYR61, and ANKRD1 are higher in subordinate follicles following the follicular divergence. Taken together, our novel results demonstrate that YAP transcriptional activity is regulated in bovine granulosa cells to allow the increased estrogenic capacity of the selected dominant follicle.
Collapse
|
4
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|