1
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
2
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
3
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
4
|
Virili C, Stramazzo I, Bagaglini MF, Carretti AL, Capriello S, Romanelli F, Trimboli P, Centanni M. The relationship between thyroid and human-associated microbiota: A systematic review of reviews. Rev Endocr Metab Disord 2024; 25:215-237. [PMID: 37824030 PMCID: PMC10808578 DOI: 10.1007/s11154-023-09839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
In recent years, a growing number of studies have examined the relationship between thyroid pathophysiology and intestinal microbiota composition. The reciprocal influence between these two entities has been proven so extensive that some authors coined the term "gut-thyroid axis". However, since some papers reported conflicting results, several aspects of this correlation need to be clarified. This systematic review was conceived to achieve more robust information about: 1)the characteristics of gut microbiota composition in patients with the more common morphological, functional and autoimmune disorders of the thyroid; 2)the influence of gut microbial composition on micronutrients that are essential for the maintenance of thyroid homeostasis; 3)the effect of probiotics, prebiotics and synbiotics, some of the most popular over-the-counter products, on thyroid balance; 4)the opportunity to use specific dietary advice. The literature evaluation was made by three authors independently. A five steps strategy was a priori adopted. After duplicates removal, 1106 records were initially found and 38 reviews were finally included in the analysis. The systematic reviews of reviews found that: 1) some significant variations characterize the gut microbiota composition in patients with thyroid disorders. However, geographical clustering of most of the studies prevents drawing definitive conclusions on this topic; 2) the available knowledge about the effect of probiotics and synbiotics are not strong enough to suggest the routine use of these compounds in patients with thyroid disorders; 3) specific elimination nutrition should not be routine suggested to patients, which, instead have to be checked for possible micronutrients and vitamins deficiency, often owed to gastrointestinal autoimmune comorbidities.
Collapse
Affiliation(s)
- Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza" University of Rome, Corso Della Repubblica 79, Latina, Italy.
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy.
| | | | - Maria Flavia Bagaglini
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | - Anna Lucia Carretti
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | | | - Francesco Romanelli
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | - Pierpaolo Trimboli
- Clinic for Endocrinology and Diabetology, Lugano Regional Hospital, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana (USI), Lugano, Switzerland
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza" University of Rome, Corso Della Repubblica 79, Latina, Italy
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
| |
Collapse
|
5
|
Guo M, Li Q, Liu X, Wang Y, Yang Q, Li R, Zhao Y, Li C, Sheng S, Ma H, Li Z, Gao R. Mapping the path towards novel treatment strategies: a bibliometric analysis of Hashimoto's thyroiditis research from 1990 to 2023. Front Endocrinol (Lausanne) 2023; 14:1277739. [PMID: 38027117 PMCID: PMC10667915 DOI: 10.3389/fendo.2023.1277739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hashimoto's thyroiditis (HT), a common form of thyroid autoimmunity, is strongly associated with deteriorating clinical status and impaired quality of life. The escalating global prevalence, coupled with the complexity of disease mechanisms, necessitates a comprehensive, bibliometric analysis to elucidate the trajectory, hotspots, and future trends in HT research. Objective This study aims to illuminate the development, hotspots, and future directions in HT research through systematic analysis of publications, institutions, authors, journals, references, and keywords. Particular emphasis is placed on novel treatment strategies for HT and its complications, highlighting the potential role of genetic profiling and immunomodulatory therapies. Methods We retrieved 8,726 relevant documents from the Web of Science Core Collection database spanning from 1 January 1990 to 7 March 2023. Following the selection of document type, 7,624 articles were included for bibliometric analysis using CiteSpace, VOSviewer, and R software. Results The temporal evolution of HT research is categorized into three distinct phases: exploration (1990-1999), rapid development (1999-2000), and steady growth (2000-present). Notably, the United States, China, Italy, and Japan collectively contributed over half (54.77%) of global publications. Among the top 10 research institutions, four were from Italy (4/10), followed by China (2/10) and the United States (2/10). Recent hotspots, such as the roles of gut microbiota, genetic profiling, and nutritional factors in HT management, the diagnostic dilemmas between HT and Grave's disease, as well as the challenges in managing HT complicated by papillary thyroid carcinoma and type 1 diabetes mellitus, are discussed. Conclusion Although North America and Europe have a considerable academic impact, institutions from emerging countries like China are demonstrating promising potential in HT research. Future studies are anticipated to delve deeper into the differential diagnosis of HT and Grave's disease, the intricate relationship between gut microbiota and HT pathogenesis, clinical management of HT with papillary thyroid carcinoma or type 1 diabetes, and the beneficial effects of dietary modifications and micronutrients supplementation in HT. Furthermore, the advent of genetic profiling and advanced immunotherapies for managing HT offers promising avenues for future research.
Collapse
Affiliation(s)
- Manping Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Works Station, Yabao Pharmaceutical Group Co., Ltd., Yuncheng, Shanxi, China
| | - Qingna Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Yiming Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Rui Li
- Evidence Based Medicine Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yang Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Chenfei Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangkun Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenghong Li
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Rui Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
6
|
Alkader DAA, Asadi N, Solangi U, Singh R, Rasuli SF, Farooq MJ, Raheela FNU, Waseem R, Gilani SM, Abbas K, Ahmed M, Tanoh DB, Shah HH, Dulal A, Hussain MS, Talpur AS. Exploring the role of gut microbiota in autoimmune thyroid disorders: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1238146. [PMID: 37964972 PMCID: PMC10641821 DOI: 10.3389/fendo.2023.1238146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 11/16/2023] Open
Abstract
Background Autoimmune thyroid diseases (AITDs) are characterized by unique immune responses against thyroid antigens and persist over time. The most common types of AITDs are Graves' disease (GD) and Hashimoto's thyroiditis (HT). There is mounting evidence that changes in the microbiota may play a role in the onset and development of AITDs. Objective The purpose of this comprehensive literature study was to answer the following query: Is there a difference in microbiota in those who have AITDs? Methods According to the standards set out by the PRISMA statement, 16 studies met the requirements for inclusion after being screened for eligibility. Results The Simpson index was the only diversity measure shown to be considerably lower in patients with GD compared to healthy participants, whereas all other indices were found to be significantly greater in patients with HT. The latter group, however, showed a greater relative abundance of Bacteroidetes and Actinobacteria at the phylum level, and consequently of Prevotella and Bifidobacterium at the genus level. The strongest positive and negative relationships were seen for thyroid peroxidase antibodies and bacterial load. Conclusion Overall, both GD and HT patients showed significant changes in the gut microbiota's diversity and composition. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023432455.
Collapse
Affiliation(s)
| | | | - Uzma Solangi
- Department of Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| | - Ransherjit Singh
- Department of Medicine, Civil Hospital Karachi, Karachi, Pakistan
| | | | - Muhammad Jawad Farooq
- Department of Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| | - F. N. U. Raheela
- Department of Medicine, University of Toledo, Toledo, OH, United States
| | - Radeyah Waseem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Mujahid Gilani
- Department of Medicine, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Kiran Abbas
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Moiz Ahmed
- Department of Medicine, National Institute of Cardiovascular Diseases, Karachi, Pakistan
| | - Desmond Boakye Tanoh
- Department of Medicine, Insight Hospital and Medical Center Chicago, Chicago, IL, United States
| | - Hussain Haider Shah
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ayusha Dulal
- Department of Human Physiology, Nepalese Army Institute of Health Science, Kathmandu, Nepal
| | | | - Abdul Subhan Talpur
- Department of Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
7
|
Kun Y, Xiaodong W, Haijun W, Xiazi N, Dai Q. Exploring the oral-gut microbiota during thyroid cancer: Factors affecting the thyroid functions and cancer development. Food Sci Nutr 2023; 11:5657-5674. [PMID: 37823092 PMCID: PMC10563736 DOI: 10.1002/fsn3.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 10/13/2023] Open
Abstract
Thyroid cancer (TC) is categorized into papillary, follicular, medullary, and anaplastic. The TC is increasing in several countries, including China, the United States, the United Kingdom, Canada, France, Australia, Germany, Japan, Spain, and Italy. Thus, this review comprehensively covers the factors that affect thyroid gland function, TC types, risk factors, and symptoms. Lifestyle factors (such as nutrient consumption and smoking) and pollutants (such as chemicals and heavy metals) increased the thyroid-stimulating hormone (TSH) levels which are directly related to TC prevalence. The conventional and recent TC treatments are also highlighted. The role of the oral and gut microbiota as well as the application of probiotics on TC are also discussed. The variations in the composition of oral and gut microbes influence the thyroid function indirectly through alteration in metabolites (such as short-chain fatty acids) that are eminent for cellular energy metabolism. Maintenance of healthy gut and oral microbiota can help in regulating thyroid function by regulating iodine uptake. Oral or gut microbial dysbiosis can be considered as an early diagnosis factor or TC marker. High TSH during TC can increase the oral microbial diversity while disrupting the high ratio of Firmicutes and Bacteroidetes in the gut. Supplementation of probiotics as an adjuvant in TC treatment is beneficial. However, needs more extensive research to explore the direct effect of probiotics on thyroid function.
Collapse
Affiliation(s)
- Yao Kun
- Department of Nuclear MedicineGansu Provincial HospitalLanzhouChina
| | - Wei Xiaodong
- Emergency Department of Gansu Provincial HospitalLanzhouChina
| | - Wang Haijun
- Department of Nuclear MedicineGansu Provincial HospitalLanzhouChina
| | - Nie Xiazi
- Department of GynecologyGansu Provincial HospitalLanzhouChina
| | - Qiang Dai
- Department of RespiratoryGansu Provincial HospitalLanzhouChina
| |
Collapse
|
8
|
Costagliola S, Singh SP. Emerging technologies in thyroid biology: Pushing the frontiers of thyroid research. Mol Cell Endocrinol 2023; 566-567:111912. [PMID: 36894128 DOI: 10.1016/j.mce.2023.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Sabine Costagliola
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
| | - Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
9
|
Stramazzo I, Capriello S, Filardo S, Centanni M, Virili C. Microbiota and Thyroid Disease: An Updated Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [DOI: 10.1007/5584_2023_770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Sawicka-Gutaj N, Gruszczyński D, Zawalna N, Nijakowski K, Muller I, Karpiński T, Salvi M, Ruchała M. Microbiota Alterations in Patients with Autoimmune Thyroid Diseases: A Systematic Review. Int J Mol Sci 2022; 23:13450. [PMID: 36362236 PMCID: PMC9654225 DOI: 10.3390/ijms232113450] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 08/18/2023] Open
Abstract
Autoimmune thyroid diseases (AITDs) are chronic autoimmune disorders that cause impaired immunoregulation, leading to specific immune responses against thyroid antigens. Graves' disease (GD) and Hashimoto's thyroiditis (HT) are the major forms of AITDs. Increasing evidence suggests a possible role of microbiota alterations in the pathogenesis and progression of AITDs. This systematic review was designed to address the following question: "Is microbiota altered in patients with AITDs?" After screening the selected studies using the inclusion and exclusion criteria, 16 studies were included in this review (in accordance with PRISMA statement guidelines). A meta-analysis revealed that patients with HT showed significantly higher values of diversity indices (except for the Simpson index) and that patients with GD showed significant tendencies toward lower values of all assessed indices compared with healthy subjects. However, the latter demonstrated a higher relative abundance of Bacteroidetes and Actinobacteria at the phylum level and thus Prevotella and Bifidobacterium at the genus level, respectively. Thyroid peroxidase antibodies showed the most significant positive and negative correlations between bacterial levels and thyroid functional parameters. In conclusion, significant alterations in the diversity and composition of the intestinal microbiota were observed in both GD and HT patients.
Collapse
Affiliation(s)
- Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dawid Gruszczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Natalia Zawalna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Ilaria Muller
- Department of Endocrinology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Graves’ Orbitopathy Center, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Tomasz Karpiński
- Department of Medical Microbiology, Poznan University of Medical Sciences, 61-712 Poznan, Poland
| | - Mario Salvi
- Department of Endocrinology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Graves’ Orbitopathy Center, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
11
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. Pharmacol Res 2022; 183:106386. [PMID: 35933006 DOI: 10.1016/j.phrs.2022.106386] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Iron participates in myriad processes necessary to sustain life. During the past decades, great efforts have been made to understand iron regulation and function in health and disease. Indeed, iron is associated with both physiological (e.g., immune cell biology and function and hematopoiesis) and pathological (e.g., inflammatory and infectious diseases, ferroptosis and ferritinophagy) processes, yet few studies have addressed the potential functional link between iron, the aforementioned processes and extramedullary hematopoiesis, despite the obvious benefits that this could bring to clinical practice. Further investigation in this direction will shape the future development of individualized treatments for iron-linked diseases and chronic inflammatory disorders, including extramedullary hematopoiesis, metabolic syndrome, cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
12
|
Fernández-García V, González-Ramos S, Martín-Sanz P, García-Del Portillo F, Laparra JM, Boscá L. NOD1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacol Res 2021; 171:105775. [PMID: 34273489 DOI: 10.1016/j.phrs.2021.105775] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1), a pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals, has been linked to inflammatory pathologies. NOD1, which is expressed by immune and non-immune cells, is activated after recognizing microbe-associated molecular patterns (MAMPs). This recognition triggers host defense responses and both immune memory and tolerance can also be achieved during these processes. Since the gut microbiota is currently considered a master regulator of human physiology central in health and disease and the intestine metabolizes a wide range of nutrients, drugs and hormones, it is a fact that dysbiosis can alter tissues and organs homeostasis. These systemic alterations occur in response to gastrointestinal immune adaptations that are not yet fully understood. Even if previous evidence confirms the connection between the microbiota, the immune system and metabolic disorders, much remains to be discovered about the contribution of NOD1 to low-grade inflammatory pathologies such as obesity, diabetes and cardiovascular diseases. This review compiles the most recent findings in this area, while providing a dynamic and practical framework with future approaches for research and clinical applications on targeting NOD1. This knowledge can help to rate the consequences of the disease and to stratify the patients for therapeutic interventions.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - José Moisés Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra, Cantoblanco 8, 28049 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
13
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. NOD1-Targeted Immunonutrition Approaches: On the Way from Disease to Health. Biomedicines 2021; 9:biomedicines9050519. [PMID: 34066406 PMCID: PMC8148154 DOI: 10.3390/biomedicines9050519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Immunonutrition appears as a field with great potential in modern medicine. Since the immune system can trigger serious pathophysiological disorders, it is essential to study and implement a type of nutrition aimed at improving immune system functioning and reinforcing it individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1), one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its ligands. Since immunonutrition is a significant developing research area with much to discover, we propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in the context of immunonutrition and associated pathological conditions. Surgical or pharmacological treatments could clearly benefit from the synergy with specific and personalized nutrition that even considers the health status of each subject.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas (CIBERehd), 28029 Madrid, Spain
| | - José M. Laparra
- Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| |
Collapse
|