1
|
Zhan X, Zhong CM, Tang H, Xiao H, Guo Y, Zhang C, Qu C, Wang X, Huang C. microRNA-18a-5p promotes vascular smooth muscle cell phenotypic switch by targeting Notch2 as therapeutic targets in vein grafts restenosis. Eur J Pharmacol 2024; 985:177097. [PMID: 39522684 DOI: 10.1016/j.ejphar.2024.177097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Vascular smooth muscle cells (VSMCs) phenotype switching plays a crucial role in vein graft restenosis following coronary artery bypass grafting (CABG) surgery. To discover novel clinically relevant therapeutic targets for vein graft restenosis after CABG, we therefore investigated whether miRNA-18a-5p mediated phenotype switching plays a critical role in the development of vein graft restenosis. We studied miRNA-18a-5p expression in plasma samples of patients with or without vein graft restenosis at 1, 3 and 5 years after coronary artery bypass graft surgery, and in normal vs. atherosclerotic human femoral artery samples, to prove its role in VSMC phenotype switching. We found that the expression of miRNA-18a-5p significantly increased in vein grafts restenosis rat model after bypass surgery at 7, 14, 28 days and human blood specimens with vein grafts failure after grafting surgery. Through gain- and loss-of-function approaches, we determined that miRNA-18a-5p affects VSMC proliferation, migration, differentiation, and contractility. Notch2 was found to be a direct target of miRNA-18a-5p, which is critical for VSMC phenotype switching. Finally, miRNA-18a-5p knockdown used miRNA sponge via AAV6 locally delivery in vivo, miRNA-18a-5p sponge gene transfer therapy reduced the neointimal area, neointimal thickness, and intimal/media area ratio in vein grafts compared with the controls and improved vein graft hemodynamics. miRNA-18a-5p is a critical modulator of VSMC phenotypic switch during development of vein graft restenosis by downregulating Notch2, therefore targeting miRNA-18a-5p may be a helpful strategy for the treatment of vein grafts restenosis or failure after CABG surgery.
Collapse
Affiliation(s)
- Xu Zhan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chang-Ming Zhong
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hao Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hansong Xiao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Can Qu
- Division of Pharmacology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chun Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Zeng RY, Jin HY, Peng YB, Wang WJ, Cao YP, Peng HZ, Qiu ZC, Lai SQ, Wan L. miR-200a-3p inhibits the PDGF-BB-induced proliferation of VSMCs by affecting their phenotype-associated proteins. J Biochem Mol Toxicol 2024; 38:e23675. [PMID: 38488158 DOI: 10.1002/jbt.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.
Collapse
Affiliation(s)
- Rui-Yuan Zeng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hong-Yi Jin
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong-Bo Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan-Ping Cao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Han-Zhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Cong Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Mylonas KS, Peroulis M, Kapetanakis EI, Kapelouzou A. Myocardial Expression of Pluripotency, Longevity, and Proinflammatory Genes in the Context of Hypercholesterolemia and Statin Treatment. J Clin Med 2024; 13:1994. [PMID: 38610757 PMCID: PMC11012955 DOI: 10.3390/jcm13071994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Background: This study sought to assess the effect of statin therapy on myocardial inflammation in a White New Zealand rabbit model of atherogenesis. Methods: The mRNA expression levels of pro-inflammatory, pluripotency, and aging-related markers were quantified following a controlled feeding protocol and statin treatments. Results: Following high-cholesterol diet induction, we observed significant upregulation in the myocardial mRNA levels of MYD88, NF-κB, chemokines (CCL4, CCL20, and CCR2), IFN-γ, interleukins (IL-1β, IL-2, IL-4, IL-8, IL-10, and IL-18), and novel markers (klotho, KFL4, NANOG, and HIF1α). In contrast, HOXA5 expression was diminished following a hyperlipidemic diet. Both statin treatments significantly influenced the markers studied. Nevertheless, rosuvastatin administration resulted in a greater reduction in MYD88, NF-kB, chemokines (CCL4, CCL20, and CCR2), and interleukins IL-1β, IL-8, KLF4, NANOG, and HIF1α than fluvastatin. Fluvastatin, on the other hand, led to a stronger decrease in IL-4. Downregulation of IL-2 and IL-18 and upregulation of IFNβ and HOXA5 were comparable between the two statins. Notably, rosuvastatin had a stronger effect on the upregulation of klotho and IL-10. Conclusion: Overall, statin therapy significantly attenuated inflammatory, pluripotency, and klotho expression in myocardial tissue under atherogenic conditions. Our findings also highlight the differential efficacy of rosuvastatin over fluvastatin in curtailing proatherogenic inflammation, which could have profound implications for the clinical management of cardiovascular disease.
Collapse
Affiliation(s)
- Konstantinos S Mylonas
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, 356 Leof. Andreas Syngros, 17674 Athens, Greece
| | - Michail Peroulis
- Vascular Surgery Unit, Department of Surgery, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Emmanouil I Kapetanakis
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Wang L, Sun H, Cao L, Wang J. Role of HOXA1-4 in the development of genetic and malignant diseases. Biomark Res 2024; 12:18. [PMID: 38311789 PMCID: PMC10840290 DOI: 10.1186/s40364-024-00569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
The HOXA genes, belonging to the HOX family, encompass 11 members (HOXA1-11) and exert critical functions in early embryonic development, as well as various adult processes. Furthermore, dysregulation of HOXA genes is implicated in genetic diseases, heart disease, and various cancers. In this comprehensive overview, we primarily focused on the HOXA1-4 genes and their associated functions and diseases. Emphasis was placed on elucidating the impact of abnormal expression of these genes and highlighting their significance in maintaining optimal health and their involvement in the development of genetic and malignant diseases. Furthermore, we delved into their regulatory mechanisms, functional roles, and underlying biology and explored the therapeutic potential of targeting HOXA1-4 genes for the treatment of malignancies. Additionally, we explored the utility of HOXA1-4 genes as biomarkers for monitoring cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
5
|
Zhou Y, Wu Q, Guo Y. Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review). Int J Mol Med 2024; 53:17. [PMID: 38131178 PMCID: PMC10781420 DOI: 10.3892/ijmm.2023.5341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Atherosclerosis, a dominant driving force underlying multiple cardiovascular events, is an intertwined and chronic inflammatory disease characterized by lipid deposition in the arterial wall, which leads to diverse cardiovascular problems. Despite unprecedented advances in understanding the pathogenesis of atherosclerosis and the substantial decline in cardiovascular mortality, atherosclerotic cardiovascular disease remains a global public health issue. Understanding the molecular landscape of atherosclerosis is imperative in the field of molecular cardiology. Recently, compelling evidence has shown that an important family of homeobox (HOX) genes endows causality in orchestrating the interplay between various cardiovascular biological processes and atherosclerosis. Despite seemingly scratching the surface, such insight into the realization of biology promises to yield extraordinary breakthroughs in ameliorating atherosclerosis. Primarily recapitulated herein are the contributions of HOX in atherosclerosis, including diverse cardiovascular biology, knowledge gaps, remaining challenges and future directions. A snapshot of other cardiovascular biological processes was also provided, including cardiac/vascular development, cardiomyocyte pyroptosis/apoptosis, cardiac fibroblast proliferation and cardiac hypertrophy, which are responsible for cardiovascular disorders. Further in‑depth investigation of HOX promises to provide a potential yet challenging landscape, albeit largely undetermined to date, for partially pinpointing the molecular mechanisms of atherosclerosis. A plethora of new targeted therapies may ultimately emerge against atherosclerosis, which is rapidly underway. However, translational undertakings are crucially important but increasingly challenging and remain an ongoing and monumental conundrum in the field.
Collapse
Affiliation(s)
- Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yingchu Guo
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
6
|
Long X, Wei J, Fang Q, Yuan X, Du J. Single-cell RNA sequencing reveals the transcriptional heterogeneity of Tbx18-positive cardiac cells during heart development. Funct Integr Genomics 2024; 24:18. [PMID: 38265516 DOI: 10.1007/s10142-024-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The T-box family transcription factor 18 (Tbx18) has been found to play a critical role in regulating the development of the mammalian heart during the primary stages of embryonic development while the cellular heterogeneity and landscape of Tbx18-positive (Tbx18+) cardiac cells remain incompletely characterized. Here, we analyzed prior published single-cell RNA sequencing (scRNA-seq) mouse heart data to explore the heterogeneity of Tbx18+ cardiac cell subpopulations and provide a comprehensive transcriptional landscape of Tbx18+ cardiac cells during their development. Bioinformatic analysis methods were utilized to identify the heterogeneity between cell groups. Based on the gene expression characteristics, Tbx18+ cardiac cells can be classified into a minimum of two distinct cell populations, namely fibroblast-like cells and cardiomyocytes. In terms of temporal heterogeneity, these cells exhibit three developmental stages, namely the MEM stage, ML_P0 stage, and P stage Tbx18+ cardiac cells. Furthermore, Tbx18+ cardiac cells encompass several cell types, including cardiac progenitor-like cells, cardiomyocytes, and epicardial/stromal cells, as determined by specific transcriptional regulatory networks. The scRNA-seq results revealed the involvement of extracellular matrix (ECM) signals and epicardial epithelial-to-mesenchymal transition (EMT) in the development of Tbx18+ cardiac cells. The utilization of a lineage-tracing model served to validate the crucial function of Tbx18 in the differentiation of cardiac cells. Consequently, these findings offer a comprehensive depiction of the cellular heterogeneity within Tbx18+ cardiac cells.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jiangjun Wei
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
7
|
Li J, Yu C, Yu K, Chen Z, Xing D, Zha B, Xie W, Ouyang H. SPINT2 is involved in the proliferation, migration and phenotypic switching of aortic smooth muscle cells: Implications for the pathogenesis of thoracic aortic dissection. Exp Ther Med 2023; 26:546. [PMID: 37928510 PMCID: PMC10623238 DOI: 10.3892/etm.2023.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
Thoracic aortic dissection (TAD) is a severe and extremely dangerous cardiovascular disease. Proliferation, migration and phenotypic switching of vascular smooth muscle cells (SMCs) are major pathogenetic mechanisms involved in the development of TAD. The present study was designed to investigate the expression and potential function of serine peptidase inhibitor Kunitz type 2 (SPINT2) in TAD. The gene expression profile data for ascending aorta from patients with TAD were downloaded from the GEO database with the accession number GSE52093. Bioinformatics analysis using GEO2R indicated that the differentially expressed SPINT2 was prominently decreased in TAD. The expression levels of SPINT2 mRNA and protein in aortic dissection specimens and normal aorta tissues were measured using reverse transcription-quantitative PCR and western blotting. SPINT2 expression was downregulated in clinical samples from aortic dissection specimens of patients with TAD compared with the corresponding expression noted in tissues derived from patients without TAD. In vitro, platelet-derived growth factor BB (PDGF-BB) was applied to induce the isolated primary mouse aortic SMC phenotypic modulation (a significant upregulation in the expression levels of synthetic markers), and the SMCs were infected with the adenoviral vector, Ad-SPINT2, to construct SPINT2-overexpressed cell lines. SMC viability was detected by an MTT assay and SMC proliferation was detected via the presence of Ki-67-positive cells (immunofluorescence staining). To explore the effects of SPINT2 on SMC migration, a wound healing assay was conducted. ELISA and western blotting assays were used to measure the content and expression levels of MMP-2 and MMP-9. The expression levels of vimentin, collagen I, α-SMA and SM22α were measured using western blotting. The PDGF-BB-induced proliferation and migration of SMCs were recovered by SPINT2 overexpression. The increase in the expression levels of SPINT2 reduced the expression levels of active matrix metalloproteinases (MMPs), MMP-2 and MMP-9. Overexpression of SPINT2 suppressed SMC switching from a contractile to a synthetic type, as evidenced by decreased vimentin and collagen I expression levels along with increased α-smooth muscle actin and smooth muscle protein 22-α expression levels. Furthermore, activation of ERK was inhibited in SPINT2-overexpressing SMCs. A specific ERK agonist, 12-O-tetradecanoylphorbol-13-acetate, reversed the SPINT2-mediated inhibition of SMC migration and the phenotypic switching. Collectively, the data indicated that SPINT2 was implicated in the proliferation, migration and phenotypic switching of aortic SMCs, suggesting that it may be involved in TAD progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kangmin Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhiyong Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dan Xing
- Department of Medical Record Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Binshan Zha
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wentao Xie
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huan Ouyang
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
8
|
Mylonas KS, Peroulis M, Kapelouzou A. Transfection of Vein Grafts with Early Growth Response Factor-1 Oligodeoxynucleotide Decoy: Effects on Stem-Cell Genes and Toll-like Receptor-Mediated Inflammation. Int J Mol Sci 2023; 24:15866. [PMID: 37958848 PMCID: PMC10647335 DOI: 10.3390/ijms242115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The long-term patency of vein grafts is challenged by intimal hyperplasia. We sought to explore the intricate relationships between the transcription factor Egr-1, toll-like receptors (TLRs), and stem cell genes and also assessed oligodeoxynucleotide decoys (ODNs) as a strategy to prevent vein graft failures. A total of 42 New Zealand white rabbits were fed hyperlipidemic chow and classified into three groups. A double-stranded Egr-1 ODN was synthesized and infused in vein grafts prior to anastomosis with the common carotid artery. All vein grafts were retrieved at the conclusion of the predefined experimental period. Real-time quantitative polymerase chain reaction was performed to estimate expression patterns for several genes of interest. MYD88, TLR2-4, TLR8, NF-kB, TNF-α, IFNβ, and IFNγ; chemokines CCL4, CCL20, CCR2; numerous interleukins; and stem cell genes KFL4, NANOG, HOXA5, and HIF1α were universally downregulated in the ODN arm compared with the controls. By understanding these multifaceted interactions, our study offers actionable insights that may pave the way for innovative interventions in vascular reconstructions.
Collapse
Affiliation(s)
| | - Michail Peroulis
- Department of Surgery, Vascular Surgery Unit, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
9
|
Bai Y, Zhang L, Zheng B, Zhang X, Zhang H, Zhao A, Yu J, Yang Z, Wen J. circACTA2 inhibits NLRP3 inflammasome-mediated inflammation via interacting with NF-κB in vascular smooth muscle cells. Cell Mol Life Sci 2023; 80:229. [PMID: 37498354 PMCID: PMC10374705 DOI: 10.1007/s00018-023-04840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023]
Abstract
circACTA2 derived from the smooth muscle α-actin gene plays an important role in the regulation of vascular smooth muscle cell (VSMC) phenotype. The activation of NLRP3 inflammasome is involved in VSMC phenotypic switching. However, the mechanistic relationship between circACTA2 and NLRP3 inflammasome during vascular remodeling remains poorly understood. Here, we showed that circACTA2 was down-regulated in human intimal hyperplasia. circACTA2 overexpression in circACTA2 transgenic mice significantly decreased the neointimal hyperplasia induced by vascular injury, which is concomitant with a decrease in IL-18, IL-1β, TNF-α, and IL-6 levels. Gain- and loss-of-function studies revealed that circACTA2 alleviated VSMC inflammation by suppressing the activation of NLRP3 inflammasome. Mechanistically, circACTA2 inhibited the expression of NF-κB p65 and p50 subunits and interacted with p50, which impedes the formation of the p50/p65 heterodimer and nuclear translocation induced by TNF-α, thus resulting in the suppression of NLRP3 gene transcription and inflammasome activation. Furthermore, circACTA2 overexpression mitigated inflammation via repressing NLRP3 inflammasome-mediated VSMC pyroptosis. Importantly, employing a decoy oligonucleotide to compete with circACTA2 for binding to p50 could attenuate the expression of NLRP3, ASC, and caspase-1. These findings provide a novel insight into the functional roles of circACTA2 in VSMCs, and targeting the circACTA2-NF-κB-NLRP3 axis represents a promising therapeutic strategy for vascular remodeling.
Collapse
Affiliation(s)
- Yang Bai
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Long Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
- Institution of Chinese Integrative Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Hong Zhang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Anning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jing Yu
- Department of Respiratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jinkun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| |
Collapse
|
10
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
11
|
Fu X, Fu P, Yang T, Niu T. Homeobox A9 is a novel mediator of vascular smooth muscle cell phenotypic switching and proliferation by regulating methyl-CpG binding protein 2. Cell Signal 2023; 108:110695. [PMID: 37127144 DOI: 10.1016/j.cellsig.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Aberrant proliferation and phenotypic switching of vascular smooth muscle cells (VSMCs) are considered to be the main pathological processes of atherosclerotic plaque formation. Methyl-CpG binding protein 2 (MECP2) affects cell differentiation via modulating VSMC-specific gene expression and acts as a driver for the development of atherosclerosis (AS). Here, we aimed to elucidate (Rafieian-Kopaei et al., 2014 [1]) the role of homeobox A9 (HOXA9) on aberrant VSMCs upon injury or AS, and (Rana et al., 2021 [2]) whether HOXA9-mediated VSMC injury was associated with MECP2. Adeno-associated virus serotype 8-mediated knockdown of HOXA9 rescued aortic pathological injury of apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (HFD), characterized by the reduction of lipid accumulation and foam cell formation. Further in vitro evidence suggested that proliferation and migration of primary mouse VSMCs (mVSMCs) stimulated by oxidized low-density lipoprotein (ox-LDL) were inhibited after HOXA9 silencing. In addition, HOXA9 silencing blocked VSMC phenotypic switching from contractile to a pathological synthetic state. HOXA9 overexpression caused opposite alterations in ox-LDL-stimulated mVSMCs. Mechanistically, MECP2 was transcriptionally activated by HOXA9. Forced expression of MECP2 impaired the anti-proliferation, anti-migration, and phenotypic switching abilities of HOXA9 silencing in VSMCs upon ox-LDL stimulation. Collectively, our findings reveal that the role of HOXA9 in pathological vascular remodeling may attribute to transcriptional regulation of MECP2.
Collapse
Affiliation(s)
- Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Peng Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Tiesheng Niu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
12
|
Apolipoprotein J Attenuates Vascular Restenosis by Promoting Autophagy and Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. J Cardiovasc Transl Res 2022; 15:1086-1099. [PMID: 35244876 DOI: 10.1007/s12265-022-10227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
This research investigated the mechanism of CLU in vascular restenosis by regulating vascular smooth muscle cell (VSMC) proliferation and migration. Firstly, rat models of balloon injury (BI) were established, followed by the assessment of the injury to the common carotid artery. The effect of CLU on the intimal hyperplasia of BI rats was measured after the intervention in CLU, in addition to the evaluation of proliferation, migration, and autophagy of VSMCs. Moreover, the interaction between ATG and LC3 was analyzed, followed by validation of the role of autophagy in CLU's regulation on the proliferation and migration of VSMCs. It was found that CLU was highly expressed in BI rats. Altogether, our findings indicated that CLU was highly expressed in vascular restenosis, and CLU over-expression promoted the binding between ATG3 and LC3, thus facilitating VSMC autophagy and eventually attenuating intimal hyperplasia and vascular restenosis.
Collapse
|
13
|
Song T, Chen WD. Berberine inhibited carotid atherosclerosis through PI3K/AKTmTOR signaling pathway. Bioengineered 2021; 12:8135-8146. [PMID: 34592881 PMCID: PMC8806982 DOI: 10.1080/21655979.2021.1987130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis, a multifactorial vascular disease resulting from lipid metabolism disorders, features chronic inflammatory damage resulting from endothelial dysfunction, which usually affects multiple arteries. The carotid artery is a common site for clinical atherosclerosis evaluation. The aortic root is the standard site for quantifying atherosclerosis in mice. Due to the adverse reactions of first-line drugs, it is necessary to discover new drugs to prevent and treat atherosclerosis. Berberine (BBR) is one of the most promising natural products derived from herbal medicine Coptidis Rhizoma (Huanglian) that features significant anti-atherosclerosis properties. However, overall BBR mechanism against carotid atherosclerosis has not been clearly discovered. Our work aimed to investigate potential BBR mechanism in improving carotid atherosclerosis in ApoE knockout mice. Here, we proved that in ApoE -/- mice receiving high-fat diet for 12 weeks, BBR can reduce serum lipid levels, improve intimal hyperplasia, and antagonize carotid lipid accumulation, which may be achieved through regulating the PI3K/AKT/mTOR signaling pathway, regulating autophagy, promoting cell proliferation and inhibiting cell apoptosis. In summary, these data indicate that BBR can ameliorate carotid atherosclerosis. Therefore, it could be a promisingly therapeutic alternative for atherosclerosis.
Collapse
Affiliation(s)
- Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Wei Da Chen
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| |
Collapse
|