1
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
2
|
Galasso L, Cerrito L, Maccauro V, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Response in the Pathogenesis and Treatment of Hepatocellular Carcinoma: A Double-Edged Weapon. Int J Mol Sci 2024; 25:7191. [PMID: 39000296 PMCID: PMC11241080 DOI: 10.3390/ijms25137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent among primary liver tumors (90%) and one of the main causes of cancer-related death. It develops usually in a chronically inflamed environment, ranging from compensatory parenchymal regeneration to fibrosis and cirrhosis: carcinogenesis can potentially happen in each of these stages. Inflammation determined by chronic viral infection (hepatitis B, hepatitis C, and hepatitis delta viruses) represents an important risk factor for HCC etiology through both viral direct damage and immune-related mechanisms. The deregulation of the physiological liver immunological network determined by viral infection can lead to carcinogenesis. The recent introduction of immunotherapy as the gold-standard first-line treatment for HCC highlights the role of the immune system and inflammation as a double-edged weapon in both HCC carcinogenesis and treatment. In this review we highlight how the inflammation is the key for the hepatocarcinogenesis in viral, alcohol and metabolic liver diseases.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
3
|
Di Giorgio C, Morretta E, Lupia A, Bellini R, Massa C, Urbani G, Bordoni M, Marchianò S, Lachi G, Rapacciuolo P, Finamore C, Sepe V, Chiara Monti M, Moraca F, Natalizi N, Graziosi L, Distrutti E, Biagioli M, Catalanotti B, Donini A, Zampella A, Fiorucci S. Bile acids serve as endogenous antagonists of the Leukemia inhibitory factor (LIF) receptor in oncogenesis. Biochem Pharmacol 2024; 223:116134. [PMID: 38494064 DOI: 10.1016/j.bcp.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRβ subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.
Collapse
Affiliation(s)
| | - Elva Morretta
- University of Salerno, Department of Pharmacy, Salerno, Italy
| | - Antonio Lupia
- University of Cagliari, Department of Life and Environmental Sciences, Cagliari, Italy; Net4Science srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, Catanzaro 88100, Italy
| | - Rachele Bellini
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Carmen Massa
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Ginevra Urbani
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Martina Bordoni
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Silvia Marchianò
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Ginevra Lachi
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | | | - Claudia Finamore
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Valentina Sepe
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Federica Moraca
- Net4Science srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, Catanzaro 88100, Italy; University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | | | | | - Michele Biagioli
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Bruno Catalanotti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Annibale Donini
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Stefano Fiorucci
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy.
| |
Collapse
|
4
|
Joseph SC, Eugin Simon S, Bohm MS, Kim M, Pye ME, Simmons BW, Graves DG, Thomas-Gooch SM, Tanveer UA, Holt JR, Ponnusamy S, Sipe LM, Hayes DN, Cook KL, Narayanan R, Pierre JF, Makowski L. FXR Agonism with Bile Acid Mimetic Reduces Pre-Clinical Triple-Negative Breast Cancer Burden. Cancers (Basel) 2024; 16:1368. [PMID: 38611046 PMCID: PMC11011133 DOI: 10.3390/cancers16071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Bariatric surgery is associated with improved outcomes for several cancers, including breast cancer (BC), although the mechanisms mediating this protection are unknown. We hypothesized that elevated bile acid pools detected after bariatric surgery may be factors that contribute to improved BC outcomes. Patients with greater expression of the bile acid receptor FXR displayed improved survival in specific aggressive BC subtypes. FXR is a nuclear hormone receptor activated by primary bile acids. Therefore, we posited that activating FXR using an established FDA-approved agonist would induce anticancer effects. Using in vivo and in vitro approaches, we determined the anti-tumor potential of bile acid receptor agonism. Indeed, FXR agonism by the bile acid mimetic known commercially as Ocaliva ("OCA"), or Obeticholic acid (INT-747), significantly reduced BC progression and overall tumor burden in a pre-clinical model. The transcriptomic analysis of tumors in mice subjected to OCA treatment revealed differential gene expression patterns compared to vehicle controls. Notably, there was a significant down-regulation of the oncogenic transcription factor MAX (MYC-associated factor X), which interacts with the oncogene MYC. Gene set enrichment analysis (GSEA) further demonstrated a statistically significant downregulation of the Hallmark MYC-related gene set (MYC Target V1) following OCA treatment. In human and murine BC analyses in vitro, agonism of FXR significantly and dose-dependently inhibited proliferation, migration, and viability. In contrast, the synthetic agonism of another common bile acid receptor, the G protein-coupled bile acid receptor TGR5 (GPBAR1) which is mainly activated by secondary bile acids, failed to significantly alter cancer cell dynamics. In conclusion, agonism of FXR by primary bile acid memetic OCA yields potent anti-tumor effects potentially through inhibition of proliferation and migration and reduced cell viability. These findings suggest that FXR is a tumor suppressor gene with a high potential for use in personalized therapeutic strategies for individuals with BC.
Collapse
Affiliation(s)
- Sydney C. Joseph
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samson Eugin Simon
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Margaret S. Bohm
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Minjeong Kim
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Madeline E. Pye
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Boston W. Simmons
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dillon G. Graves
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stacey M. Thomas-Gooch
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ubaid A. Tanveer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jeremiah R. Holt
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suriyan Ponnusamy
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Laura M. Sipe
- Department of Biological Sciences, University of Mary Washinton, Fredericksburg, VI 22401, USA
| | - D. Neil Hayes
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA;
| | - Ramesh Narayanan
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joseph F. Pierre
- Department of Nutritional Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Liza Makowski
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Yu D, Lu Z, Wang R, Xiang Y, Li H, Lu J, Zhang L, Chen H, Li W, Luan X, Chen L. FXR agonists for colorectal and liver cancers, as a stand-alone or in combination therapy. Biochem Pharmacol 2023; 212:115570. [PMID: 37119860 DOI: 10.1016/j.bcp.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Farnesoid X receptor (FXR, NR1H4) is generally considered as a tumor suppressor of colorectal and liver cancers. The interaction between FXR, bile acids (BAs) and gut microbiota is closely associated with an increased risk of colorectal and liver cancers. Increasing evidence shows that FXR agonists may be potential therapeutic agents for colorectal and liver cancers. However, FXR agonists alone do not produce the desired results due to the complicated pathogenesis and single therapeutic mechanism, which suggests that effective treatments will require a multimodal approach. Based on the principle of improvingefficacy andreducingside effects, combination therapy is currently receiving considerable attention. In this review, colorectal and liver cancers are grouped together to discuss the effects of FXR agonists alone or in combination for combating the two cancers. We hope that this review will provide a theoretical basis for the clinical application of novel FXR agonists or combination with FXR agonists against colorectal and liver cancers.
Collapse
Affiliation(s)
- Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruyu Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yusen Xiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Guo Z, Liang J. Role of ubiquitin regulatory X domain‑containing protein 3B in the development of hepatocellular carcinoma (Review). Oncol Rep 2023; 49:57. [PMID: 36799187 PMCID: PMC9942258 DOI: 10.3892/or.2023.8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
The majority of new cases and fatalities from hepatocellular carcinoma (HCC) occur in China; however, the overall morbidity and mortality rates are decreasing. A major risk factor due to the evolving epidemiology is improper lipid metabolism. Although investigations on aberrant lipid metabolism are numerous, there are only a limited number of studies available on proteasomal degradation processes. The degradation process is mainly involved in endoplasmic reticulum stabilization, the balance of lipid metabolism, and physiological functions of Golgi apparatus, endoplasmic reticulum, lysosomes and other organelles, however, this process has been little studied in the development of tumorigenesis. In order to provide some theoretical support for future research on ubiquitin regulatory X domain‑containing protein 3B (UBXN3B), the present review focuses on the role of UBXN3B, which is involved in the stabilization of the endoplasmic reticulum and the maintenance of lipid homeostasis, as well as in the promotion and development of non‑alcoholic fatty liver disease and HCC.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Jun Liang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China,Correspondence to: Professor Jun Liang, Department of Medical Oncology, Peking University International Hospital, Life Park Road, Life Science Park of Zhong Guancun Chang Ping, Beijing 102206, P.R. China, E-mail:
| |
Collapse
|