1
|
Stalidzans E, Zanin M, Tieri P, Castiglione F, Polster A, Scheiner S, Pahle J, Stres B, List M, Baumbach J, Lautizi M, Van Steen K, Schmidt HH. Mechanistic Modeling and Multiscale Applications for Precision Medicine: Theory and Practice. NETWORK AND SYSTEMS MEDICINE 2020. [DOI: 10.1089/nsm.2020.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Egils Stalidzans
- Computational Systems Biology Group, University of Latvia, Riga, Latvia
- Latvian Biomedical Reasearch and Study Centre, Riga, Latvia
| | - Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | | | - Stefan Scheiner
- Institute for Mechanics of Materials and Structures, Vienna University of Technology, Vienna, Austria
| | - Jürgen Pahle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Blaž Stres
- Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Markus List
- Big Data in BioMedicine Research Group, Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manuela Lautizi
- Computational Systems Medicine Research Group, Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kristel Van Steen
- BIO-Systems Genetics, GIGA-R, University of Liège, Liège, Belgium
- BIO3—Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Harald H.H.W. Schmidt
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Breschi G, Fontelos MA. A note on the self-similar solutions to the spontaneous fragmentation equation. Proc Math Phys Eng Sci 2017; 473:20160740. [PMID: 28588398 DOI: 10.1098/rspa.2016.0740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/10/2017] [Indexed: 11/12/2022] Open
Abstract
We provide a method to compute self-similar solutions for various fragmentation equations and use it to compute their asymptotic behaviours. Our procedure is applied to specific cases: (i) the case of mitosis, where fragmentation results into two identical fragments, (ii) fragmentation limited to the formation of sufficiently large fragments, and (iii) processes with fragmentation kernel presenting a power-like behaviour.
Collapse
Affiliation(s)
- Giancarlo Breschi
- Instituto de Ciencias Matemáticas (ICMAT, CSIC-UAM-UC3M-UCM), C/ Nicolás Cabrera 15, 28049 Madrid, Spain
| | - Marco A Fontelos
- Instituto de Ciencias Matemáticas (ICMAT, CSIC-UAM-UC3M-UCM), C/ Nicolás Cabrera 15, 28049 Madrid, Spain
| |
Collapse
|
3
|
Ben Amar M, Bianca C. Towards a unified approach in the modeling of fibrosis: A review with research perspectives. Phys Life Rev 2016; 17:61-85. [DOI: 10.1016/j.plrev.2016.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
|
4
|
Chiacchio F, Motta S. Combining bottom-up and top-down approaches for knowledge discovery: Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca. Phys Life Rev 2016; 17:105-7. [PMID: 27185313 DOI: 10.1016/j.plrev.2016.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Ferdinando Chiacchio
- Dipartimento di Ingegneria Industriale, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Santo Motta
- Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
5
|
Castiglione F, Pappalardo F, Bianca C, Russo G, Motta S. Modeling biology spanning different scales: an open challenge. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902545. [PMID: 25143952 PMCID: PMC4124842 DOI: 10.1155/2014/902545] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 02/03/2023]
Abstract
It is coming nowadays more clear that in order to obtain a unified description of the different mechanisms governing the behavior and causality relations among the various parts of a living system, the development of comprehensive computational and mathematical models at different space and time scales is required. This is one of the most formidable challenges of modern biology characterized by the availability of huge amount of high throughput measurements. In this paper we draw attention to the importance of multiscale modeling in the framework of studies of biological systems in general and of the immune system in particular.
Collapse
Affiliation(s)
- Filippo Castiglione
- Institute for Applied Mathematics, National Research Council of Italy, Rome, Italy
| | | | - Carlo Bianca
- Theoretical Physics of Condensed Matter, Sorbonne Universities, UPMC Univ Paris 6, 75252 Paris Cedex 05, France
- UMR 7600 LPTMC, CNRS, 75252 Paris Cedex 05, France
| | - Giulia Russo
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | - Santo Motta
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| |
Collapse
|
6
|
Existence of limit cycles in the Solow model with delayed-logistic population growth. ScientificWorldJournal 2014; 2014:207806. [PMID: 24592147 PMCID: PMC3925589 DOI: 10.1155/2014/207806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/01/2013] [Indexed: 11/18/2022] Open
Abstract
This paper is devoted to the existence and stability analysis of limit cycles in a delayed mathematical model for the economy growth. Specifically the Solow model is further improved by inserting the time delay into the logistic population growth rate. Moreover, by choosing the time delay as a bifurcation parameter, we prove that the system loses its stability and a Hopf bifurcation occurs when time delay passes through critical values. Finally, numerical simulations are carried out for supporting the analytical results.
Collapse
|
7
|
Controllability in hybrid kinetic equations modeling nonequilibrium multicellular systems. ScientificWorldJournal 2013; 2013:274719. [PMID: 24191137 PMCID: PMC3804480 DOI: 10.1155/2013/274719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022] Open
Abstract
This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation.
Collapse
|
8
|
Bianca C, Chiacchio F, Pappalardo F, Pennisi M. Mathematical modeling of the immune system recognition to mammary carcinoma antigen. BMC Bioinformatics 2012; 13 Suppl 17:S21. [PMID: 23281916 PMCID: PMC3521211 DOI: 10.1186/1471-2105-13-s17-s21] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The definition of artificial immunity, realized through vaccinations, is nowadays a practice widely developed in order to eliminate cancer disease. The present paper deals with an improved version of a mathematical model recently analyzed and related to the competition between immune system cells and mammary carcinoma cells under the action of a vaccine (Triplex). The model describes in detail both the humoral and cellular response of the immune system to the tumor associate antigen and the recognition process between B cells, T cells and antigen presenting cells. The control of the tumor cells growth occurs through the definition of different vaccine protocols. The performed numerical simulations of the model are in agreement with in vivo experiments on transgenic mice.
Collapse
Affiliation(s)
- Carlo Bianca
- Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
| | | | | | | |
Collapse
|
10
|
Thermostatted kinetic equations as models for complex systems in physics and life sciences. Phys Life Rev 2012; 9:359-99. [DOI: 10.1016/j.plrev.2012.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/31/2022]
|
11
|
Motta S. From immune system to semiconductors--what next?: comment on "Thermostatted kinetic equations as models for complex systems in physics and life sciences" by Carlo Bianca. Phys Life Rev 2012; 9:406-9; discussion 418-25. [PMID: 23058812 DOI: 10.1016/j.plrev.2012.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Santo Motta
- Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|