1
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
2
|
Zhang XL, Zhou JY, Zhang P, Lin L, Mei R, Zhang FL, Chen YM, Li R. Clptm1, a new target in suppressing epileptic seizure by regulating GABA A R-mediated inhibitory synaptic transmission in a PTZ-induced epilepsy model. Kaohsiung J Med Sci 2023; 39:61-69. [PMID: 36519412 DOI: 10.1002/kjm2.12629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Disruption of gamma-amino butyric acid type A receptors (GABAA Rs) synaptic clustering and a decrease in the number of GABAA Rs in the plasma membrane are thought to contribute to alteration of the balance between excitatory and inhibitory neurotransmission, which promotes seizure induction and propagation. The multipass transmembrane protein cleft lip and palate transmembrane protein 1 (Clptm1) controls the forward trafficking of GABAA R, thus decaying miniature inhibitory postsynaptic current (mIPSC) of inhibitory synapses. In this study, using a pentylenetetrazol (PTZ)-induced epilepsy rat model, we found that Clptm1 regulates epileptic seizures by modulating GABAA R-mediated inhibitory synaptic transmission. First, we showed that Clptm1 expression was elevated in the PTZ-induced epileptic rats. Subsequently, we found that downregulation of Clptm1 expression protected against PTZ-induced seizures, which was attributed to an increase in the number of GABAA Rγ2s in the plasma membrane and the amplitude of mIPSC. Taken together, our findings identify a new anti-seizure target that provides a theoretical basis for the development of novel strategies for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Xiao-Lin Zhang
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jin-Yu Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Lin
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Feng-Li Zhang
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang-Mei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Li
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Minguez-Viñas T, Nielsen BE, Shoemark DK, Gotti C, Sessions RB, Mulholland AJ, Bouzat C, Wonnacott S, Gallagher T, Bermudez I, Oliveira AS. A conserved arginine with non-conserved function is a key determinant of agonist selectivity in α7 nicotinic ACh receptors. Br J Pharmacol 2021; 178:1651-1668. [PMID: 33506493 DOI: 10.1111/bph.15389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The α7 and α4β2* ("*" denotes possibly assembly with another subunit) nicotinic acetylcholine receptors (nAChRs) are the most abundant nAChRs in the mammalian brain. These receptors are the most targeted nAChRs in drug discovery programmes for brain disorders. However, the development of subtype-specific agonists remains challenging due to the high degree of sequence homology and conservation of function in nAChRs. We have developed C(10) variants of cytisine, a partial agonist of α4β2 nAChR that has been used for smoking cessation. The C(10) methyl analogue used in this study displays negligible affinity for α7 nAChR, while retaining high affinity for α4β2 nAChR. EXPERIMENTAL APPROACH The structural underpinning of the selectivity of 10-methylcytisine for α7 and α4β2 nAChRs was investigated using molecular dynamic simulations, mutagenesis and whole-cell and single-channel current recordings. KEY RESULTS We identified a conserved arginine in the β3 strand that exhibits a non-conserved function in nAChRs. In α4β2 nAChR, the arginine forms a salt bridge with an aspartate residue in loop B that is necessary for receptor expression, whereas in α7 nAChR, this residue is not stabilised by electrostatic interactions, making its side chain highly mobile. This lack of constrain produces steric clashes with agonists and affects the dynamics of residues involved in agonist binding and the coupling network. CONCLUSION AND IMPLICATIONS We conclude that the high mobility of the β3-strand arginine in the α7 nAChR influences agonist binding and possibly gating network and desensitisation. The findings have implications for rational design of subtype-selective nAChR agents.
Collapse
Affiliation(s)
- Teresa Minguez-Viñas
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Beatriz E Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | | | - Cecilia Gotti
- CNR, Institute of Neuroscience, Biometra Department, University of Milan, Milan, Italy
| | | | | | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Ana Sofia Oliveira
- School of Biochemistry, University of Bristol, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Hannan S, Affandi AHB, Minere M, Jones C, Goh P, Warnes G, Popp B, Trollmann R, Nizetic D, Smart TG. Differential Coassembly of α1-GABA ARs Associated with Epileptic Encephalopathy. J Neurosci 2020; 40:5518-5530. [PMID: 32513829 PMCID: PMC7363476 DOI: 10.1523/jneurosci.2748-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/18/2023] Open
Abstract
GABAA receptors (GABAARs) are profoundly important for controlling neuronal excitability. Spontaneous and familial mutations to these receptors feature prominently in excitability disorders and neurodevelopmental deficits following disruption to GABA-mediated inhibition. Recent genotyping of an individual with severe epilepsy and Williams-Beuren syndrome identified a frameshifting de novo variant in a major GABAAR gene, GABRA1 This truncated the α1 subunit between the third and fourth transmembrane domains and introduced 24 new residues forming the mature protein, α1Lys374Serfs*25 Cell surface expression of mutant murine GABAARs is severely impaired compared with WT, due to retention in the endoplasmic reticulum. Mutant receptors were differentially coexpressed with β3, but not with β2, subunits in mammalian cells. Reduced surface expression was reflected by smaller IPSCs, which may underlie the induction of seizures. The mutant does not have a dominant-negative effect on native neuronal GABAAR expression since GABA current density was unaffected in hippocampal neurons, although mutant receptors exhibited limited GABA sensitivity. To date, the underlying mechanism is unique for epileptogenic variants and involves differential β subunit expression of GABAAR populations, which profoundly affected receptor function and synaptic inhibition.SIGNIFICANCE STATEMENT GABAARs are critical for controlling neural network excitability. They are ubiquitously distributed throughout the brain, and their dysfunction underlies many neurologic disorders, especially epilepsy. Here we report the characterization of an α1-GABAAR variant that results in severe epilepsy. The underlying mechanism is structurally unusual, with the loss of part of the α1 subunit transmembrane domain and part-replacement with nonsense residues. This led to compromised and differential α1 subunit cell surface expression with β subunits resulting in severely reduced synaptic inhibition. Our study reveals that disease-inducing variants can affect GABAAR structure, and consequently subunit assembly and cell surface expression, critically impacting on the efficacy of synaptic inhibition, a property that will orchestrate the extent and duration of neuronal excitability.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Aida H B Affandi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Marielle Minere
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Charlotte Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Pollyanna Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Gary Warnes
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Bernt Popp
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, 04103, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Dean Nizetic
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Durisic N, Keramidas A, Dixon CL, Lynch JW. SAHA (Vorinostat) Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABA A Receptor γ2 Subunit. Front Mol Neurosci 2018; 11:89. [PMID: 29628874 PMCID: PMC5876238 DOI: 10.3389/fnmol.2018.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022] Open
Abstract
The GABAA receptor (GABAAR) α1 subunit A295D epilepsy mutation reduces the surface expression of α1A295Dβ2γ2 GABAARs via ER-associated protein degradation. Suberanilohydroxamic acid (SAHA, also known as Vorinostat) was recently shown to correct the misfolding of α1A295D subunits and thereby enhance the functional surface expression of α1A295Dβ2γ2 GABAARs. Here we investigated whether SAHA can also restore the surface expression of γ2 GABAAR subunits that incorporate epilepsy mutations (N40S, R43Q, P44S, R138G) known to reduce surface expression via ER-associated protein degradation. As a control, we also investigated the γ2K289M epilepsy mutation that impairs gating without reducing surface expression. Effects of mutations were evaluated on inhibitory postsynaptic currents (IPSCs) mediated by the major synaptic α1β2γ2 GABAAR isoform. Recordings were performed in neuron-HEK293 cell artificial synapses to minimise contamination by GABAARs of undefined subunit composition. Transfection with α1β2γ2N40S, α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G subunits produced IPSCs with decay times slower than those of unmutated α1β2γ2 GABAARs due to the low expression of mutant γ2 subunits and the correspondingly high expression of slow-decaying α1β2 GABAARs. SAHA pre-treatment significantly accelerated the decay time constants of IPSCs consistent with the upregulation of mutant γ2 subunit expression. This increase in surface expression was confirmed by immunohistochemistry. SAHA had no effect on either the IPSC kinetics or surface expression levels of α1β2γ2K289M GABAARs, confirming its specificity for ER-retained mutant γ2 subunits. We also found that α1β2γ2K289M GABAARs and SAHA-treated α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G GABAARs all mediated IPSCs that decayed at significantly faster rates than wild type receptors as temperature was increased from 22 to 40°C. This may help explain why these mutations cause febrile seizures (FS). Given that SAHA is approved by therapeutic regulatory agencies for human use, we propose that it may be worth investigating as a treatment for epilepsies caused by the N40S, R43Q, P44S and R138G mutations. Although SAHA has already been proposed as a therapeutic for patients harbouring the α1A295D epilepsy mutation, the present study extends its potential utility to a new subunit and four new mutations.
Collapse
Affiliation(s)
- Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine L Dixon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacol Rev 2018; 70:142-173. [PMID: 29263209 DOI: 10.1124/pr.117.014456] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies.
Collapse
Affiliation(s)
- Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Samuel F Berkovic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| |
Collapse
|
7
|
Lachance-Touchette P, Choudhury M, Stoica A, Di Cristo G, Cossette P. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner. Front Cell Neurosci 2014; 8:317. [PMID: 25352779 PMCID: PMC4196543 DOI: 10.3389/fncel.2014.00317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/21/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1−/− GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic generalized epilepsy syndromes.
Collapse
Affiliation(s)
- Pamela Lachance-Touchette
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - Mayukh Choudhury
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal Montréal, QC, Canada
| | - Ana Stoica
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - Graziella Di Cristo
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal Montréal, QC, Canada
| | - Patrick Cossette
- Centre d'Excellence en Neuromique de l'Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
8
|
Huang X, Hernandez CC, Hu N, Macdonald RL. Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis 2014; 68:167-79. [PMID: 24798517 PMCID: PMC4169075 DOI: 10.1016/j.nbd.2014.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 11/23/2022] Open
Abstract
We compared the effects of three missense mutations in the GABAA receptor γ2 subunit on GABAA receptor assembly, trafficking and function in HEK293T cells cotransfected with α1, β2, and wildtype or mutant γ2 subunits. The mutations R82Q and P83S were identified in families with genetic epilepsy with febrile seizures plus (GEFS+), and N79S was found in a single patient with generalized tonic-clonic seizures (GTCS). Although all three mutations were located in an N-terminal loop that contributes to the γ+/β- subunit-subunit interface, we found that each mutation impaired GABAA receptor assembly to a different extent. The γ2(R82Q) and γ2(P83S) subunits had reduced α1β2γ2 receptor surface expression due to impaired assembly into pentamers, endoplasmic reticulum (ER) retention and degradation. In contrast, γ2(N79S) subunits were efficiently assembled into GABAA receptors with only minimally altered receptor trafficking, suggesting that N79S was a rare or susceptibility variant rather than an epilepsy mutation. Increased structural variability at assembly motifs was predicted by R82Q and P83S, but not N79S, substitution, suggesting that R82Q and P83S substitutions were less tolerated. Membrane proteins with missense mutations that impair folding and assembly often can be "rescued" by decreased temperatures. We coexpressed wildtype or mutant γ2 subunits with α1 and β2 subunits and found increased surface and total levels of both wildtype and mutant γ2 subunits after decreasing the incubation temperature to 30°C for 24h, suggesting that lower temperatures increased GABAA receptor stability. Thus epilepsy-associated mutations N79S, R82Q and P83S disrupted GABAA receptor assembly to different extents, an effect that could be potentially rescued by facilitating protein folding and assembly.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ciria C Hernandez
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert L Macdonald
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
9
|
Todd E, Gurba KN, Botzolakis EJ, Stanic AK, Macdonald RL. GABAA receptor biogenesis is impaired by the γ2 subunit febrile seizure-associated mutation, GABRG2(R177G). Neurobiol Dis 2014; 69:215-24. [PMID: 24874541 DOI: 10.1016/j.nbd.2014.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/08/2014] [Accepted: 05/17/2014] [Indexed: 01/17/2023] Open
Abstract
A missense mutation in the GABAA receptor γ2L subunit, R177G, was reported in a family with complex febrile seizures (FS). To gain insight into the mechanistic basis for these genetic seizures, we explored how the R177G mutation altered the properties of recombinant α1β2γ2L GABAA receptors expressed in HEK293T cells. Using a combination of electrophysiology, flow cytometry, and immunoblotting, we found that the R177G mutation decreased GABA-evoked whole-cell current amplitudes by decreasing cell surface expression of α1β2γ2L receptors. This loss of receptor surface expression resulted from endoplasmic reticulum (ER) retention of mutant γ2L(R177G) subunits, which unlike wild-type γ2L subunits, were degraded by ER-associated degradation (ERAD). Interestingly, when compared to the condition of homozygous γ2L(R177G) subunit expression, disproportionately low levels of γ2L(R177G) subunits reached the cell surface with heterozygous expression, indicating that wild-type γ2L subunits possessed a competitive advantage over mutant γ2L(R177G) subunits for receptor assembly and/or forward trafficking. Inhibiting protein synthesis with cycloheximide demonstrated that the R177G mutation primarily decreased the stability of an intracellular pool of unassembled γ2L subunits, suggesting that the mutant γ2L(R177G) subunits competed poorly with wild-type γ2L subunits due to impaired subunit folding and/or oligomerization. Molecular modeling confirmed that the R177G mutation could disrupt intrasubunit salt bridges, thereby destabilizing secondary and tertiary structure of γ2L(R177G) subunits. These findings support an emerging body of literature implicating defects in GABAA receptor biogenesis in the pathogenesis of genetic epilepsies (GEs) and FS.
Collapse
Affiliation(s)
- Emily Todd
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Katharine N Gurba
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | - Robert L Macdonald
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Ishii A, Kanaumi T, Sohda M, Misumi Y, Zhang B, Kakinuma N, Haga Y, Watanabe K, Takeda S, Okada M, Ueno S, Kaneko S, Takashima S, Hirose S. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res 2014; 108:420-32. [PMID: 24480790 DOI: 10.1016/j.eplepsyres.2013.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 12/07/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Mutations in GABRG2, which encodes the γ2 subunit of GABAA receptors, can cause both genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Most GABRG2 truncating mutations associated with Dravet syndrome result in premature termination codons (PTCs) and are stably translated into mutant proteins with potential dominant-negative effects. This study involved search for mutations in candidate genes for Dravet syndrome, namely SCN1A, 2A, 1B, 2B, GABRA1, B2, and G2. A heterozygous nonsense mutation (c.118C>T, p.Q40X) in GABRG2 was identified in dizygotic twin girls with Dravet syndrome and their apparently healthy father. Electrophysiological studies with the reconstituted GABAA receptors in HEK cells showed reduced GABA-induced currents when mutated γ2 DNA was cotransfected with wild-type α1 and β2 subunits. In this case, immunohistochemistry using antibodies to the α1 and γ2 subunits of GABAA receptor showed granular staining in the soma. In addition, microinjection of mutated γ2 subunit cDNA into HEK cells severely inhibited intracellular trafficking of GABAA receptor subunits α1 and β2, and retention of these proteins in the endoplasmic reticulum. The mutated γ2 subunit-expressing neurons also showed impaired axonal transport of the α1 and β2 subunits. Our findings suggested that different phenotypes of epilepsy, e.g., GEFS+ and Dravet syndrome (which share similar abnormalities in causative genes) are likely due to impaired axonal transport associated with the dominant-negative effects of GABRG2.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Takeshi Kanaumi
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Miwa Sohda
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshio Misumi
- Department of Cell Biology, Fukuoka University, Fukuoka, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University, Fukuoka, Japan
| | - Naoto Kakinuma
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yoshiko Haga
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Watanabe
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Motohiro Okada
- Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Shinya Ueno
- Rehabilitation Medicine, Institute of Brain Science, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, Hirosaki University, Hirosaki, Japan; North Tohoku Epilepsy Center, Minato Hospital, Hachinohe, Japan
| | - Sachio Takashima
- Yanagawa Institute for Developmental Disabilities, Child Neurology, International University of Health and Welfare, Yanagawa, Japan
| | - Shinichi Hirose
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
11
|
Abstract
The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system. GABAA receptors function mainly as pentamers containing α, β, and either γ or δ subunits. A number of antiepileptic drugs have agonistic effects on GABAA receptors. Hence, dysfunctions of GABAA receptors have been postulated to play important roles in the etiology of epilepsy. In fact, mutations or genetic variations of the genes encoding the α1, α6, β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and GABRD, respectively) have been associated with human epilepsy, both with and without febrile seizures. Epilepsy resulting from mutations is commonly one of following, genetic (idiopathic) generalized epilepsy (e.g., juvenile myoclonic epilepsy), childhood absence epilepsy, genetic epilepsy with febrile seizures, or Dravet syndrome. Recently, mutations of GABRA1, GABRB2, and GABRB3 were associated with infantile spasms and Lennox-Gastaut syndrome. These mutations compromise hyperpolarization through GABAA receptors, which is believed to cause seizures. Interestingly, most of the insufficiencies are not caused by receptor gating abnormalities, but by complex mechanisms, including endoplasmic reticulum (ER)-associated degradation, nonsense-mediated mRNA decay, intracellular trafficking defects, and ER stress. Thus, GABAA receptor subunit mutations are now thought to participate in the pathomechanisms of epilepsy, and an improved understanding of these mutations should facilitate our understanding of epilepsy and the development of new therapies.
Collapse
|
12
|
Wang YJ, Han DY, Tabib T, Yates JR, Mu TW. Identification of GABA(C) receptor protein homeostasis network components from three tandem mass spectrometry proteomics approaches. J Proteome Res 2013; 12:5570-86. [PMID: 24079818 DOI: 10.1021/pr400535z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
γ-Amino butyric acid type C (GABA(C)) receptors inhibit neuronal firing primarily in retina. Maintenance of GABA(C) receptor protein homeostasis in cells is essential for its function. However, a systematic study of GABA(C) receptor protein homeostasis (proteostasis) network components is absent. Here coimmunoprecipitation of human GABA(C)-ρ1-receptor complexes was performed in HEK293 cells overexpressing ρ1 receptors. To enhance the coverage and reliability of identified proteins, immunoisolated ρ1-receptor complexes were subjected to three tandem mass spectrometry (MS)-based proteomic analyses, namely, gel-based tandem MS (GeLC-MS/MS), solution-based tandem MS (SoLC-MS/MS), and multidimensional protein identification technology (MudPIT). From the 107 identified proteins, we assembled GABA(C)-ρ1-receptor proteostasis network components, including proteins with protein folding, degradation, and trafficking functions. We studied representative individual ρ1-receptor-interacting proteins, including calnexin, a lectin chaperone that facilitates glycoprotein folding, and LMAN1, a glycoprotein trafficking receptor, and global effectors that regulate protein folding in cells based on bioinformatics analysis, including HSF1, a master regulator of the heat shock response, and XBP1, a key transcription factor of the unfolded protein response. Manipulating selected GABA(C) receptor proteostasis network components is a promising strategy to regulate GABA(C) receptor folding, trafficking, degradation and thus function to ameliorate related retinal diseases.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Center for Proteomics and Bioinformatics and Department of Epidemiology and Biostatistics and ‡Department of Physiology and Biophysics, Case Western Reserve University School of Medicine , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
13
|
Greenfield LJ. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 2013; 22:589-600. [PMID: 23683707 PMCID: PMC3766376 DOI: 10.1016/j.seizure.2013.04.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 02/09/2023] Open
Abstract
The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, led to the development of ganaxolone. Other agents modulate GABAergic "tone" by regulating the synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane chloride gradient, which changes during development and in chronic epilepsy. This may provide an additional target for "GABAergic" ASDs. GABAAR subunit changes occur both acutely during status epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs. Manipulation of subunit expression patterns or novel ASDs targeting the altered receptors may provide a novel approach for seizure prevention.
Collapse
Affiliation(s)
- L John Greenfield
- Dept. of Neurology, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 500, Little Rock, AR 72205, United States.
| |
Collapse
|
14
|
Chaumont S, André C, Perrais D, Boué-Grabot E, Taly A, Garret M. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem 2013; 288:28254-65. [PMID: 23935098 DOI: 10.1074/jbc.m113.470807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.
Collapse
Affiliation(s)
- Severine Chaumont
- From the Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, F-33000 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
15
|
Reid CA, Kim T, Phillips AM, Low J, Berkovic SF, Luscher B, Petrou S. Multiple molecular mechanisms for a single GABAA mutation in epilepsy. Neurology 2013; 80:1003-8. [PMID: 23408872 DOI: 10.1212/wnl.0b013e3182872867] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To understand the molecular basis and differential penetrance of febrile seizures and absence seizures in patients with the γ2(R43Q) GABA receptor mutation. METHODS Spike-and-wave discharges and thermal seizure susceptibility were measured in heterozygous GABA γ2 knock-out and GABA γ2(R43Q) knock-in mice models crossed to different mouse strains. RESULTS By comparing the GABA γ2 knock-out with the GABA γ2(R43Q) knock-in mouse model we show that haploinsufficiency underlies the genesis of absence seizures but cannot account for the thermal seizure susceptibility. Additionally, while the expression of the absence seizure phenotype was very sensitive to mouse background genetics, the thermal seizure phenotype was not. CONCLUSIONS Our results show that a single gene mutation can cause distinct seizure phenotypes through independent molecular mechanisms. A lack of effect of genetic background on thermal seizure susceptibility is consistent with the higher penetrance of febrile seizures compared to absence seizures seen in family members with the mutation. These mouse studies help to provide a conceptual framework within which clinical heterogeneity seen in genetic epilepsy can be explained.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Macdonald RL, Kang JQ. mRNA surveillance and endoplasmic reticulum quality control processes alter biogenesis of mutant GABAA receptor subunits associated with genetic epilepsies. Epilepsia 2013; 53 Suppl 9:59-70. [PMID: 23216579 DOI: 10.1111/epi.12035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies from our and other groups have demonstrated that the majority of γ-aminobutyric acid (GABA)(A) receptor subunit mutations produce mutant subunits with impaired biogenesis and trafficking. These GABA(A) receptor mutations include missense, nonsense, deletion, or insertion mutations that result in a frameshift with premature translation-termination codons (PTCs) and splice-site mutations. Frameshift or splice-site mutations produce mutant proteins with PTCs, thus generating nonfunctional truncated proteins. All of these mutant GABA(A) receptor subunits are subject to cellular quality control at the messenger RNA (mRNA) or protein level. These quality-control checkpoints shape the cell's response to the presence of the mutant subunits and attempt to reduce the impact of the mutant subunit on GABA(A) receptor expression and function. The check points prevent nonfunctioning or malfunctioning GABA(A) receptor subunits from trafficking to the cell surface or to synapses, and help to ensure that the receptor channels trafficked to the membrane and synapses are indeed functional. However, if and how these quality control or check points impact the posttranslational modifications of functional GABA(A) receptor channels such as receptor phosphorylation and ubiquitination and their involvement in mediating GABAergic inhibitory synaptic strength needs to be investigated in the near future.
Collapse
Affiliation(s)
- Robert L Macdonald
- Department of Neurology Molecular Physiology and Biophysics Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-8552, USA.
| | | |
Collapse
|
17
|
Salam SMA, Rahman HMA, Karam RA. GABRG2 gene polymorphisms in Egyptian children with simple febrile seizures. Indian J Pediatr 2012; 79:1514-6. [PMID: 21983990 DOI: 10.1007/s12098-011-0564-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
Mutations in the gamma-aminobutyric acid type A receptor (GABRG2) gene have been associated with generalized epilepsy, childhood absence epilepsy and febrile seizures. In the present study the authors investigated the association of polymorphism of the GABRG2 with simple febrile seizures (FS) in Egyptian children. Polymorphism at GABRG2 (SNP211037, Asn196Asn), on chromosome 5q33 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 100 Egyptian children with simple FS, and 120 healthy controls. The frequency of CC genotype of GABRG2 gene was significantly higher in children with simple FS compared to healthy children (p ≤ 0.0001). The C allele of GABRG2 was associated with increased risk for developing simple FS (OR: 2.15. 95% CI, 1.4-3.2. p ≤ 0.0001). The present findings suggested that the GABRG2 (SNP211037)-C allele could be a suitable genetic marker for prediction of susceptibility to simple FS in Egyptian children.
Collapse
Affiliation(s)
- Sanaa M Abdel Salam
- Department of Pediatrics, Faculty of medicine, Zagazig University, Zagazig, Egypt.
| | | | | |
Collapse
|
18
|
Tian M, Mei D, Freri E, Hernandez CC, Granata T, Shen W, Macdonald RL, Guerrini R. Impaired surface αβγ GABA(A) receptor expression in familial epilepsy due to a GABRG2 frameshift mutation. Neurobiol Dis 2012; 50:135-41. [PMID: 23069679 DOI: 10.1016/j.nbd.2012.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
The purpose of the study was to explore the pathogenic mechanisms underlying generalized epilepsy and febrile seizures plus (GEFS+) in a family with a novel γ2 subunit gene (GABRG2) frameshift mutation. Four affected and one unaffected individuals carried a c.1329delC GABRG2 mutation resulting in a subunit [γ2S(S443delC)] with a modified and elongated carboxy-terminus that is different from that of the wildtype γ2S subunit. We expressed the wildtype γ2S subunit and the predicted mutant γ2S(S443delC) subunit cDNAs in HEK293T cells and performed immunoblotting, flow cytometry and electrophysiology studies. The mutant subunit was translated as a stable protein that was larger than the wildtype γ2S subunit and was retained in the ER and not expressed on the cell surface membrane, suggesting GABRG2 haploinsufficiency. Peak GABA-evoked currents recorded from cells cotransfected with wildtype α1 and β2 subunits and mutant γ2S subunits were significantly decreased and were comparable to α1β2 receptor currents. S443delC is the first GABR epilepsy mutation predicted to abolish the natural stop codon and produce a stop codon in the 3' UTR that leads to translation of an extended peptide. The GEFS+ phenotype observed in this family is likely caused by γ2S subunit loss-of-function and possibly to dominant-negative suppression of α1β2γ2 receptors. Many GABRG2 truncation mutations result in GEFS+, but the spectrum of phenotypic severity is wider, ranging from asymptomatic individuals to the Dravet syndrome. Mechanisms influencing the severity of the phenotype are therefore complex and difficult to correlate with its demonstrable functional effects.
Collapse
Affiliation(s)
- Mengnan Tian
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
The intronic GABRG2 mutation, IVS6+2T->G, associated with childhood absence epilepsy altered subunit mRNA intron splicing, activated nonsense-mediated decay, and produced a stable truncated γ2 subunit. J Neurosci 2012; 32:5937-52. [PMID: 22539854 DOI: 10.1523/jneurosci.5332-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The intronic GABRG2 mutation, IVS6+2T→G, was identified in an Australian family with childhood absence epilepsy and febrile seizures (Kananura et al., 2002). The GABRG2 intron 6 splice donor site was found to be mutated from GT to GG. We generated wild-type and mutant γ2 subunit bacterial artificial chromosomes (BACs) driven by a CMV promoter and expressed them in HEK293T cells and expressed wild-type and mutant γ2 subunit BACs containing the endogenous hGABRG2 promoter in transgenic mice. Wild-type and mutant GABRG2 mRNA splicing patterns were determined in both BAC-transfected HEK293T cells and transgenic mouse brain, and in both, the mutation abolished intron 6 splicing at the donor site, activated a cryptic splice site, generated partial intron 6 retention, and produced a frameshift in exon 7 that created a premature translation termination codon (PTC). The resultant mutant mRNA was either degraded partially by nonsense-mediated mRNA decay or translated to a stable, truncated subunit (the γ2-PTC subunit) containing the first six GABRG2 exons and a novel frameshifted 29 aa C-terminal tail. The γ2-PTC subunit was homologous to the mollusk AChBP (acetylcholine binding protein) but was not secreted from cells. It was retained in the ER and not expressed on the surface membrane, but it did oligomerize with α1 and β2 subunits. These results suggested that the GABRG2 mutation, IVS6+2T→G, reduced surface αβγ2 receptor levels, thus reducing GABAergic inhibition, by reducing GABRG2 transcript level and producing a stable, nonfunctional truncated subunit that had a dominant-negative effect on αβγ2 receptor assembly.
Collapse
|
20
|
Gurba KN, Hernandez CC, Hu N, Macdonald RL. GABRB3 mutation, G32R, associated with childhood absence epilepsy alters α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor expression and channel gating. J Biol Chem 2012; 287:12083-97. [PMID: 22303015 DOI: 10.1074/jbc.m111.332528] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A GABA(A) receptor β3 subunit mutation, G32R, has been associated with childhood absence epilepsy. We evaluated the possibility that this mutation, which is located adjacent to the most N-terminal of three β3 subunit N-glycosylation sites, might reduce GABAergic inhibition by increasing glycosylation of β3 subunits. The mutation had three major effects on GABA(A) receptors. First, coexpression of β3(G32R) subunits with α1 or α3 and γ2L subunits in HEK293T cells reduced surface expression of γ2L subunits and increased surface expression of β3 subunits, suggesting a partial shift from ternary αβ3γ2L receptors to binary αβ3 and homomeric β3 receptors. Second, β3(G32R) subunits were more likely than β3 subunits to be N-glycosylated at Asn-33, but increases in glycosylation were not responsible for changes in subunit surface expression. Rather, both phenomena could be attributed to the presence of a basic residue at position 32. Finally, α1β3(G32R)γ2L receptors had significantly reduced macroscopic current density. This reduction could not be explained fully by changes in subunit expression levels (because γ2L levels decreased only slightly) or glycosylation (because reduction persisted in the absence of glycosylation at Asn-33). Single channel recording revealed that α1β3(G32R)γ2L receptors had impaired gating with shorter mean open time. Homology modeling indicated that the mutation altered salt bridges at subunit interfaces, including regions important for subunit oligomerization. Our results suggest both a mechanism for mutation-induced hyperexcitability and a novel role for the β3 subunit N-terminal α-helix in receptor assembly and gating.
Collapse
Affiliation(s)
- Katharine N Gurba
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
21
|
Hernandez CC, Gurba KN, Hu N, Macdonald RL. The GABRA6 mutation, R46W, associated with childhood absence epilepsy, alters 6β22 and 6β2 GABA(A) receptor channel gating and expression. J Physiol 2011; 589:5857-78. [PMID: 21930603 DOI: 10.1113/jphysiol.2011.218883] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A GABA(A) receptor α6 subunit mutation, R46W, was identified as a susceptibility gene that may contribute to the pathogenesis of childhood absence epilepsy (CAE), but the molecular basis for alteration of GABA(A) receptor function is unclear. The R46W mutation is located in a region homologous to a GABA(A) receptor γ2 subunit missense mutation, R82Q, that is associated with CAE and febrile seizures in humans. To determine how this mutation reduces GABAergic inhibition, we expressed wild-type (α6β2γ2L and α6β2δ) and mutant (α6(R46W)β2γ2L and α6(R46W)β2δ) receptors in HEK 293T cells and characterize their whole-cell and single-channel currents, and surface and total levels. We demonstrated that gating and assembly of both α6(R46W)β2γ2L and α6(R46W)β2δ receptors were impaired. Compared to wild-type currents, α6(R46W)β2γ2L and α6(R46W)β2δ receptors had a reduced current density, α6(R46W)β2γ2L currents desensitized to a greater extent and deactivated at a slower rate, α6(R46W)β2δ receptors did not desensitize but deactivated faster and both α6(R46W)β2γ2L and α6(R46W)β2δ single-channel current mean open times and burst durations were reduced. Surface levels of coexpressed α6(R46W), β2 and δ, but not γ2L, subunits were decreased. 'Heterozygous' coexpression of α6(R46W) and α6 subunits with β2 and γ2L subunits produced intermediate macroscopic current amplitudes by increasing incorporation of wild-type and decreasing incorporation of mutant subunits into receptors trafficked to the surface. Finally, these findings suggest that similar to the γ2(R82Q) mutation, the CAE-associated α6(R46W) mutation could cause neuronal disinhibition and thus increase susceptibility to generalized seizures through a reduction of αβγ and αβδ receptor function and expression.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
22
|
Use of multicomponent reactions in developing small-molecule tools to study GABAA receptor mechanism and function. Future Med Chem 2011; 3:243-50. [PMID: 21428818 DOI: 10.4155/fmc.10.302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We discuss the potential use of multicomponent reactions in developing small-molecule probes of GABA(A) receptor function. Two examples that illustrate this approach are presented: the synthesis of a class of compounds that specifically modulate the function of GABA(A) receptors containing the δ-subunit, and also 'caged' GABA derivatives. A caged GABA is a photolabile precursor of GABA that releases GABA upon photolysis.
Collapse
|
23
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
24
|
|
25
|
Macdonald RL, Kang JQ. Molecular pathology of genetic epilepsies associated with GABAA receptor subunit mutations. Epilepsy Curr 2010; 9:18-23. [PMID: 19396344 DOI: 10.1111/j.1535-7511.2008.01278.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mutations in ligand-gated ion channel genes associated with idiopathic generalized epilepsies have been reported in excitatory acetylcholine receptor alpha4 and beta2 subunit genes linked to autosomal dominant nocturnal frontal lobe epilepsy and in inhibitory GABA(A) receptor alpha1, beta3, gamma2, and delta subunit genes associated with childhood absence epilepsy, juvenile myoclonic epilepsy, pure febrile seizures, generalized epilepsy with febrile seizures plus, and generalized epilepsy with tonic-clonic seizures. Recent studies suggest that these mutations alter receptor function or biogenesis, including impaired receptor subunit messenger RNA stability, receptor subunit protein folding and stability, receptor assembly, and receptor trafficking.
Collapse
Affiliation(s)
- Robert L Macdonald
- Departments of Neurology, Vanderbilt University, Nashville, Tennessee, USA.
| | | |
Collapse
|
26
|
Ding L, Feng HJ, Macdonald RL, Botzolakis EJ, Hu N, Gallagher MJ. GABA(A) receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABA(A) receptors. J Biol Chem 2010; 285:26390-405. [PMID: 20551311 DOI: 10.1074/jbc.m110.142299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A GABA(A) receptor (GABA(A)R) alpha1 subunit mutation, A322D (AD), causes an autosomal dominant form of juvenile myoclonic epilepsy (ADJME). Previous studies demonstrated that the mutation caused alpha1(AD) subunit misfolding and rapid degradation, reducing its total and surface expression substantially. Here, we determined the effects of the residual alpha1(AD) subunit expression on wild type GABA(A)R expression to determine whether the AD mutation conferred a dominant negative effect. We found that although the alpha1(AD) subunit did not substitute for wild type alpha1 subunits on the cell surface, it reduced the surface expression of alpha1beta2gamma2 and alpha3beta2gamma2 receptors by associating with the wild type subunits within the endoplasmic reticulum and preventing them from trafficking to the cell surface. The alpha1(AD) subunit reduced surface expression of alpha3beta2gamma2 receptors by a greater amount than alpha1beta2gamma2 receptors, thus altering cell surface GABA(A)R composition. When transfected into cultured cortical neurons, the alpha1(AD) subunit altered the time course of miniature inhibitory postsynaptic current kinetics and reduced miniature inhibitory postsynaptic current amplitudes. These findings demonstrated that, in addition to causing a heterozygous loss of function of alpha1(AD) subunits, this epilepsy mutation also elicited a modest dominant negative effect that likely shapes the epilepsy phenotype.
Collapse
Affiliation(s)
- Li Ding
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
27
|
Eshaq RS, Stahl LD, Stone R, Smith SS, Robinson LC, Leidenheimer NJ. GABA acts as a ligand chaperone in the early secretory pathway to promote cell surface expression of GABAA receptors. Brain Res 2010; 1346:1-13. [PMID: 20580636 DOI: 10.1016/j.brainres.2010.05.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in brain. The fast inhibitory effect of GABA is mediated through the GABA(A) receptor, a postsynaptic ligand-gated chloride channel. We propose that GABA can act as a ligand chaperone in the early secretory pathway to facilitate GABA(A) receptor cell surface expression. Forty-two hours of GABA treatment increased the surface expression of recombinant receptors expressed in HEK 293 cells, an effect accompanied by an increase in GABA-gated chloride currents. In time-course experiments, a 1h GABA exposure, followed by a 5h incubation in GABA-free medium, was sufficient to increase receptor surface expression. A shorter GABA exposure could be used in HEK 293 cells stably transfected with the GABA transporter GAT-1. In rGAT-1HEK 293 cells, the GABA effect was blocked by the GAT-1 inhibitor NO-711, indicating that GABA was acting intracellularly. The effect of GABA was prevented by brefeldin A (BFA), an inhibitor of early secretory pathway trafficking. Coexpression of GABA(A) receptors with the GABA synthetic enzyme glutamic acid decarboxylase 67 (GAD67) also resulted in an increase in receptor surface levels. GABA treatment failed to promote the surface expression of GABA binding site mutant receptors, which themselves were poorly expressed at the surface. Consistent with an intracellular action of GABA, we show that GABA does not act by stabilizing surface receptors. Furthermore, GABA treatment rescued the surface expression of a receptor construct that was retained within the secretory pathway. Lastly, the lipophilic competitive antagonist (+)bicuculline promoted receptor surface expression, including the rescue of a secretory pathway-retained receptor. Our results indicate that a neurotransmitter can act as a ligand chaperone in the early secretory pathway to regulate the surface expression of its receptor. This effect appears to rely on binding site occupancy, rather than agonist-induced structural changes, since chaperoning is observed with both an agonist and a competitive antagonist.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
28
|
The short splice variant of the gamma 2 subunit acts as an external modulator of GABA(A) receptor function. J Neurosci 2010; 30:4895-903. [PMID: 20371809 DOI: 10.1523/jneurosci.5039-09.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GABA(A) receptors (GABA(A)Rs) regulate the majority of fast inhibition in the mammalian brain and are the target for multiple drug types, including sleep aids, anti-anxiety medication, anesthetics, alcohol, and neurosteroids. A variety of subunits, including the highly distributed gamma2, allow for pharmacologic and kinetic differences in particular brain regions. The two common splice variants gamma2S (short) and gamma2L (long) show different patterns of regional distribution both in adult brain and during the course of development, but show few notable differences when incorporated into pentameric receptors. However, results presented here show that the gamma2S variant can strongly affect both GABA(A)R pharmacology and kinetics by acting as an external modulator of fully formed receptors. Mutation of one serine residue can confer gamma2S-like properties to gamma2L subunits, and addition of a modified gamma2 N-terminal polypeptide to the cell surface recapitulates the pharmacological effect. Thus, rather than incorporation of a separate accessory protein as with voltage-gated channels, this is an example of an ion channel using a common subunit for dual purposes. The modified receptor properties conferred by accessory gamma2S have implications for understanding GABA(A)R pharmacology, receptor kinetics, stoichiometry, GABAergic signaling in the brain during development, and altered function in disease states such as epilepsy.
Collapse
|
29
|
Galanopoulou AS. Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch 2010; 460:505-23. [PMID: 20352446 DOI: 10.1007/s00424-010-0816-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 02/02/2023]
Abstract
The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Room 306, Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Macdonald RL, Kang JQ, Gallagher MJ. Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol 2010; 588:1861-9. [PMID: 20308251 DOI: 10.1113/jphysiol.2010.186999] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations in inhibitory GABAA receptor subunit genes (GABRA1, GABRB3, GABRG2 and GABRD) have been associated with genetic epilepsy syndromes including childhood absence epilepsy (CAE), juvenile myoclonic epilepsy (JME), pure febrile seizures (FS), generalized epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome (DS)/severe myoclonic epilepsy in infancy (SMEI). These mutations are found in both translated and untranslated gene regions and have been shown to affect the GABAA receptors by altering receptor function and/or by impairing receptor biogenesis by multiple mechanisms including reducing subunit mRNA transcription or stability, impairing subunit folding, stability, or oligomerization and by inhibiting receptor trafficking.
Collapse
Affiliation(s)
- Robert L Macdonald
- Department of Neurology, Vanderbilt University, 6140 Medical Research Building III, 465 21st Avenue, Nashville, TN 37232-8552, USA.
| | | | | |
Collapse
|
31
|
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system playing critical roles in basal synaptic transmission and mechanisms of learning and memory. Under normal conditions, glutamate is sequestered within synaptic vesicles (approximately 100 mM) with extracellular glutamate concentrations being limited (<1 microM), via retrieval by plasma-membrane transporters on neuronal and glial cells. In the case of central nervous system trauma, stroke, epilepsy, and in certain neurodegenerative diseases, increased concentrations of extracellular glutamate (by vesicular release, cell lysis and/or decreased glutamate transporter uptake/reversal) stimulate the overactivation of local ionotropic glutamate receptors that trigger neuronal cell death (excitotoxicity). Other natural agonists, such as domoic acid, alcohol and auto-antibodies, have also been reported to induce excitotoxicity.
Collapse
|
32
|
Siniatchkin M, Koepp M. Neuroimaging and neurogenetics of epilepsy in humans. Neuroscience 2009; 164:164-73. [DOI: 10.1016/j.neuroscience.2009.08.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 08/13/2009] [Accepted: 08/19/2009] [Indexed: 11/24/2022]
|
33
|
Goldschen-Ohm MP, Wagner DA, Petrou S, Jones MV. An epilepsy-related region in the GABA(A) receptor mediates long-distance effects on GABA and benzodiazepine binding sites. Mol Pharmacol 2009; 77:35-45. [PMID: 19846749 DOI: 10.1124/mol.109.058289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The GABA(A) receptor mutation gamma(2)R43Q causes absence epilepsy in humans. Homology modeling suggests that gamma(2)Arg43, gamma(2)Glu178, and beta(2)Arg117 participate in a salt-bridge network linking the gamma(2) and beta(2) subunits. Here we show that several mutations at these locations exert similar long-distance effects on other intersubunit interfaces involved in GABA and benzodiazepine binding. These mutations alter GABA-evoked receptor kinetics by slowing deactivation, enhancing desensitization, or both. Kinetic modeling and nonstationary noise analysis for gamma(2)R43Q reveal that these effects are due to slowed GABA unbinding and slowed recovery from desensitization. Both gamma(2)R43Q and beta(2)R117K also speed diazepam dissociation from the receptor's benzodiazepine binding interface, as assayed by the rate of decay of diazepam-induced potentiation of GABA-evoked currents. These data demonstrate that gamma(2)Arg43 and beta(2)Arg117 similarly regulate the stability of both the GABA and benzodiazepine binding sites at the distant beta/alpha and alpha/gamma intersubunit interfaces, respectively. A simple explanation for these results is that gamma(2)Arg43 and beta(2)Arg117 participate in interactions between the gamma(2) and beta(2) subunits, disruptions of which alter the neighboring intersubunit binding sites in a similar fashion. In addition, gamma(2)Arg43 and gamma(2)Glu178 regulate desensitization, probably mediated within the transmembrane domains near the pore. Therefore, mutations at the gamma/beta intersubunit interface have specific long-distance effects that are propagated widely throughout the GABA(A) receptor protein.
Collapse
|
34
|
Kang JQ, Macdonald RL. Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 2009; 15:430-8. [PMID: 19717338 DOI: 10.1016/j.molmed.2009.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
Abstract
Nonsense mutations that generate premature translation-termination codons (PTCs) are responsible for approximately one- third of human genetic diseases. PTCs in both voltage- and ligand-gated ion channel genes, including those for sodium, potassium, nicotinic cholinergic receptor and GABA(A) receptor channels, have been associated with genetic epilepsies but the epilepsy syndromes they cause are variable. It was recently proposed that two well-established molecular pathways, nonsense-mediated decay (NMD) and endoplasmic reticulum-associated degradation (ERAD), determine the effects of PTCs in GABA(A) receptor subunit genes associated with genetic epilepsies on the cellular fates of mutant subunit mRNAs and proteins. Activation of these different molecular mechanisms might contribute in part to different clinical phenotypes in patients with GABA(A) receptor subunit gene PTCs and thus different approaches for treatment of their genetic epilepsies might be required.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552, USA.
| | | |
Collapse
|
35
|
|
36
|
|
37
|
Mechanisms of human inherited epilepsies. Prog Neurobiol 2009; 87:41-57. [DOI: 10.1016/j.pneurobio.2008.09.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/25/2008] [Accepted: 09/29/2008] [Indexed: 12/19/2022]
|
38
|
Lo WY, Botzolakis EJ, Tang X, Macdonald RL. A conserved Cys-loop receptor aspartate residue in the M3-M4 cytoplasmic loop is required for GABAA receptor assembly. J Biol Chem 2008; 283:29740-52. [PMID: 18723504 DOI: 10.1074/jbc.m802856200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Members of the Cys-loop superfamily of ligand-gated ion channels, which mediate fast synaptic transmission in the nervous system, are assembled as heteropentamers from a large repertoire of neuronal subunits. Although several motifs in subunit N-terminal domains are known to be important for subunit assembly, increasing evidence points toward a role for C-terminal domains. Using a combination of flow cytometry, patch clamp recording, endoglycosidase H digestion, brefeldin A treatment, and analytic centrifugation, we identified a highly conserved aspartate residue at the boundary of the M3-M4 loop and the M4 domain that was required for binary and ternary gamma-aminobutyric acid type A receptor surface expression. Mutation of this residue caused mutant and partnering subunits to be retained in the endoplasmic reticulum, reflecting impaired forward trafficking. Interestingly although mutant and partnering wild type subunits could be coimmunoprecipitated, analytic centrifugation studies demonstrated decreased formation of pentameric receptors, suggesting that this residue played an important role in later steps of subunit oligomerization. We thus conclude that C-terminal motifs are also important determinants of Cys-loop receptor assembly.
Collapse
Affiliation(s)
- Wen-yi Lo
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
39
|
The promiscuous role of the epsilon subunit in GABAA receptor biogenesis. Mol Cell Neurosci 2008; 37:610-21. [DOI: 10.1016/j.mcn.2007.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/21/2007] [Accepted: 12/06/2007] [Indexed: 11/18/2022] Open
|
40
|
Ragsdale DS. How do mutant Nav1.1 sodium channels cause epilepsy? ACTA ACUST UNITED AC 2008; 58:149-59. [PMID: 18342948 DOI: 10.1016/j.brainresrev.2008.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/28/2022]
Abstract
Voltage-gated sodium channels comprise pore-forming alpha subunits and auxiliary beta subunits. Nine different alpha subtypes, designated Nav1.1-Nav1.9 have been identified in excitable cells. Nav1.1, 1.2 and 1.6 are major subtypes in the adult mammalian brain. More than 200 mutations in the Nav1.1 alpha subtype have been linked to inherited epilepsy syndromes, ranging in severity from the comparatively mild disorder Generalized Epilepsy with Febrile Seizures Plus to the epileptic encephalopathy Severe Myoclonic Epilepsy of Infancy. Studies using heterologous expression and functional analysis of recombinant Nav1.1 channels suggest that epilepsy mutations in Nav1.1 may cause either gain-of-function or loss-of-function effects that are consistent with either increased or decreased neuronal excitability. How these diverse effects lead to epilepsy is poorly understood. This review summarizes the data on sodium channel mutations and epilepsy and builds a case for the hypothesis that most Nav1.1 mutations have their ultimate epileptogenic effects by reducing Nav1.1-mediated whole cell sodium currents in GABAergic neurons, resulting in widespread loss of brain inhibition, an ideal background for the genesis of epileptic seizures.
Collapse
Affiliation(s)
- David S Ragsdale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| |
Collapse
|
41
|
GABA(A) receptor gamma 2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci 2008; 27:14108-16. [PMID: 18094250 DOI: 10.1523/jneurosci.2618-07.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA acts on GABA(A) receptors to evoke both phasic inhibitory synaptic events and persistent, tonic currents. The gamma2 subunit of the GABA(A) receptor is involved in both phasic and tonic signaling in the hippocampus. Several mutations of this subunit are linked to human epileptic syndromes with febrile seizures, yet it is not clear how they perturb neuronal activity. Here, we examined the expression and functional impact of recombinant gamma2 in hippocampal neurons. We show that the K289M mutation has no effect on membrane trafficking and synaptic aggregation of recombinant gamma2, but accelerates the decay of synaptic currents. In contrast, the R43Q mutation primarily reduces surface expression of recombinant gamma2. However, it has no dominant effect on synaptic currents but instead reduces tonic GABA currents, at least in part by reducing surface expression of the alpha5 subunit. Our data suggests that the phenotypic specificity of mutations affecting the GABA(A) receptor gamma2 gene may result from different actions specific to distinct modes of GABAergic signaling.
Collapse
|
42
|
Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc Natl Acad Sci U S A 2007; 104:17536-41. [PMID: 17947380 DOI: 10.1073/pnas.0708440104] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the GABA(A) receptor gamma2 subunit are associated with childhood absence epilepsy and febrile seizures. To understand better the molecular basis of absence epilepsy in man, we developed a mouse model harboring a gamma2 subunit point mutation (R43Q) found in a large Australian family. Mice heterozygous for the mutation demonstrated behavioral arrest associated with 6-to 7-Hz spike-and-wave discharges, which are blocked by ethosuximide, a first-line treatment for absence epilepsy in man. Seizures in the mouse showed an abrupt onset at around age 20 days corresponding to the childhood nature of this disease. Reduced cell surface expression of gamma2(R43Q) was seen in heterozygous mice in the absence of any change in alpha1 subunit surface expression, ruling out a dominant-negative effect. GABA(A)-mediated synaptic currents recorded from cortical pyramidal neurons revealed a small but significant reduction that was not seen in the reticular or ventrobasal thalamic nuclei. We hypothesize that a subtle reduction in cortical inhibition underlies childhood absence epilepsy seen in humans harboring the R43Q mutation.
Collapse
|
43
|
Abstract
Neuronal inhibition is of paramount importance in maintaining the delicate and dynamic balance between excitatory and inhibitory influences in the central nervous system. GABA (gamma-aminobutyric acid), the primary inhibitory neurotransmitter in brain, exerts its fast inhibitory effects through ubiquitously expressed GABA(A) receptors. Activation of these heteropentameric receptors by GABA results in the gating of an integral chloride channel leading to membrane hyperpolarization and neuronal inhibition. To participate in neurotransmission, the receptor must reside on the cell surface. The trafficking of nascent receptors to the cell surface involves posttranslational modification and the interaction of the receptor with proteins that reside within the secretory pathway. The subsequent insertion of the receptor into specialized regions of the plasma membrane is dictated by receptor composition and other factors that guide insertion at synaptic or perisynaptic/extrasynaptic sites, where phasic and tonic inhibition are mediated, respectively. Once at the cell surface, the receptor is laterally mobile and subject to both constitutive and regulated endocytosis. Following endocytosis the receptor undergoes either recycling to the plasma membrane or degradation. These dynamic processes profoundly affect the strength of GABAergic signaling, neuronal inhibition, and presumably synaptic plasticity. Heritable channelopathies that affect receptor trafficking have been recently recognized and compelling evidence exists that mechanisms underlying acquired epilepsy involve GABA(A) receptor internalization. Additionally, GABA(A) receptor endocytosis has been identified as an early event in the ischemic response that leads to excitotoxicity and cell death. This chapter summarizes what is known regarding the regulation of receptor trafficking and cell surface expression and its impact on nervous system function from both cell biology and disease perspectives.
Collapse
Affiliation(s)
- Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
44
|
Krzywkowski K, Jensen AA, Connolly CN, Bräuner-Osborne H. Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet Genomics 2007; 17:255-66. [PMID: 17496724 DOI: 10.1097/fpc.0b013e3280117269] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The serotonin [5-hydroxytryptamine (5-HT)]-gated ion channel 5-HT3 is involved in the mediation of postoperative and radiotherapy/chemotherapy-induced nausea/emesis and in irritable bowel syndrome. It has also been suggested to play a role in various psychiatric diseases. Five naturally occurring single nucleotide polymorphisms leading to amino acid changes have been identified in the human 5-HT3A gene. METHODS AND RESULTS We investigated the functional effects of these polymorphisms on the 5-HT3A receptor using fluorescence-based cellular assays. Notably, variants A33T, S253N, and M257I displayed 5-HT-induced maximal responses of 3-64% of the wild-type response, whereas R344H and P391R exhibited wild-type-like function. All variants displayed wild-type-like potencies of 5-HT and three 5-HT3 antagonists. Furthermore, all variants displayed Kd values similar to that of the wild-type receptor in a [H]GR65630-binding assay. The surface expression of A33T, M257I, and R344H was reduced 2-4-fold compared with the wild-type, despite similar total expression levels. Finally, coexpression of wild-type 5-HT3A or 5-HT3B subunits with 5-HT3A variants A33T, S253N, or M257I resulted in mixed or heteromeric receptors, characterized by significantly reduced maximal responses to 5-HT compared with the wild-type receptors. CONCLUSIONS Three polymorphisms of the 5-HT3A gene gave rise to functionally impaired receptors whose function could not be rescued by either wild-type 5-HT3A or 5-HT3B. Three of the variant receptors were surface-expressed at reduced levels in spite of total expression levels similar to wild-type, indicating that these variants affect receptor biogenesis and/or trafficking. These severe single nucleotide polymorphism effects hold promise for identification of new 5-HT3A gene-disease causalities.
Collapse
Affiliation(s)
- Karen Krzywkowski
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
45
|
Avanzini G, Franceschetti S, Mantegazza M. Epileptogenic Channelopathies: Experimental Models of Human Pathologies. Epilepsia 2007; 48 Suppl 2:51-64. [PMID: 17571353 DOI: 10.1111/j.1528-1167.2007.01067.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The discovery of genetically determined epileptic syndromes associated with specific mutations of genes codifying for subunits of voltage or ligand-activated ion channels highlights the role of ion channels in epileptogenesis. In vitro and in vivo models of channel pathology have been used to define the functional consequence of the mutations identified in human epilepsies. The evaluation of gene-channel mutations based on molecular and physiological techniques have provided significant knowledge on the cellular mechanisms leading to inherited human epilepsies, and possibly to nongenetic human epilepsies due to "acquired" channel pathologies. We review some of the studies that have explored human epileptic disorders through experimental manipulations of these channels, highlighting some of the difficulties that have arisen using "in vitro" preparations or rodent models. These findings underscore the need for further studies to address the mechanisms involved in mutated-channel dysfunctions.
Collapse
Affiliation(s)
- Giuliano Avanzini
- Department ofNeurophysiopathology, Istituto Neurologico C. Besta, Milan, Italy.
| | | | | |
Collapse
|
46
|
Frugier G, Coussen F, Giraud MF, Odessa MF, Emerit MB, Boué-Grabot E, Garret M. A gamma 2(R43Q) mutation, linked to epilepsy in humans, alters GABAA receptor assembly and modifies subunit composition on the cell surface. J Biol Chem 2006; 282:3819-28. [PMID: 17148443 DOI: 10.1074/jbc.m608910200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic defects leading to epilepsy have been identified in gamma2 GABA(A) receptor subunit. A gamma2(R43Q) substitution is linked to childhood absence epilepsy and febrile seizure, and a gamma2(K289M) mutation is associated with generalized epilepsy with febrile seizures plus. To understand the effect of these mutations, surface targeting of GABA(A) receptors was analyzed by subunit-specific immunofluorescent labeling of living cells. We first transfected hippocampal neurons in culture with recombinant gamma2 constructs and showed that the gamma 2(R43Q) mutation prevented surface expression of the subunit, unlike gamma2(K289M) substitution. Several gamma2-subunit constructs, bearing point mutations within the Arg-43 domain, were expressed in COS-7 cells with alpha3- and beta3-subunits. R43Q and R43A substitutions dramatically reduced surface expression of the gamma2-subunit, whereas R43K, P44A, and D39A substitutions had a lesser, but still significant, impact and K289M substitution had no effect. Whereas the mutant gamma2(R43Q) was retained within intracellular compartments, alphabeta complexes were still targeted at the cell membrane. Coimmunoprecipitation experiments showed that gamma2(R43Q) was able to associate with alpha3- or beta3-subunits, although the stoichiometry of the complex with alpha3 was altered. Our data show that gamma2(R43Q) is not a dominant negative and that the mutation leads to a modification of GABA(A) receptor subunit composition on the cell surface that impairs the synaptic targeting in neurons. This study reveals an involvement of the gamma2-Arg-43 domain in the control of receptor assembly that may be relevant to the effect of the heterozygous gamma2(R43Q) mutation leading to childhood absence epilepsy and febrile seizure.
Collapse
Affiliation(s)
- Guillaume Frugier
- Laboratoire de Neurophysiologie, CNRS-UMR 5543, Université de Bordeaux II, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Mizielinska S, Greenwood S, Connolly CN. The role of GABAA receptor biogenesis, structure and function in epilepsy. Biochem Soc Trans 2006; 34:863-7. [PMID: 17052216 DOI: 10.1042/bst0340863] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.
Collapse
Affiliation(s)
- S Mizielinska
- Neuroscience Institute, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | | |
Collapse
|
48
|
Fedi M, Berkovic SF, Marini C, Mulligan R, Tochon-Danguy H, Reutens DC. A GABAA receptor mutation causing generalized epilepsy reduces benzodiazepine receptor binding. Neuroimage 2006; 32:995-1000. [PMID: 16875845 DOI: 10.1016/j.neuroimage.2006.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/22/2022] Open
Abstract
Understanding the consequences of newly discovered single gene mutations causing human epilepsy has the potential to yield new insights into the underlying mechanisms of this disorder. A mutation of the gamma2 subunit of the GABA(A) receptor, which substitutes glutamine for arginine at position 43 (R43Q) has been found in a familial generalized epilepsy. We tested the hypothesis that individuals affected by the GABRG2(R43Q) mutation have reduced binding to the GABA(A) receptor complex using positron emission tomography (PET) and the benzodiazepine receptor ligand [(11)C]-flumazenil. Fourteen subjects with the GABRG2(R43Q) mutation and 20 controls were studied. Benzodiazepine receptor binding was reduced in subjects with the mutation (mean whole brain binding potential for [(11)C]-flumazenil: GABA(A) mutation 0.66+/-0.1; controls 0.89+/-0.1; P<0.003). The greatest change in benzodiazepine binding occurred anteriorly, with peak differences in insular and anterior cingulate cortices revealed by statistical parametric mapping. Our findings provide in vivo evidence of reduced benzodiazepine receptor binding in subjects with the mutation. As synaptic inhibition in the human brain is largely mediated by the GABA(A) receptor, these findings are likely to represent an important clue to the mechanisms linking this gene defect and the epilepsy phenotype.
Collapse
Affiliation(s)
- Marco Fedi
- Department of Medicine, The University of Melbourne, Austin Health Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Hirose S. A new paradigm of channelopathy in epilepsy syndromes: Intracellular trafficking abnormality of channel molecules. Epilepsy Res 2006; 70 Suppl 1:S206-17. [PMID: 16860540 DOI: 10.1016/j.eplepsyres.2005.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 10/24/2022]
Abstract
Mutations in genes encoding ion channels in brain neurons have been identified in various epilepsy syndromes. In neuronal networks, "gain-of-function" of channels in excitatory neurotransmission could lead to hyper-excitation while "loss-of-function" in inhibitory transmission impairs neuronal inhibitory system, both of which can result in epilepsy. A working hypothesis to view epilepsy as a disorder of channel or "channelopathy" seems rational to explore the pathogenesis of epilepsy. However, the imbalance resulting from channel dysfunction is not sufficient to delineate the pathogenesis of all epilepsy syndromes of which the underlying channel abnormalities have been verified. Mutations identified in epilepsy, mainly in genes encoding subunits of GABA(A) receptors, undermine intracellular trafficking, thus leading to retention of channel molecules in the endoplasmic reticulum (ER). This process may cause ER stress followed by apoptosis, which is a known pathomechanism of certain neurodegenerative disorders. Thus, the pathomechanism of "channel trafficking abnormality" may provide a new paradigm to channelopathy to unsolved questions underlying epilepsy, such as differences between generalized epilepsy with febrile seizures plus and severe myoclonic epilepsy in infancy, which share the causative genetic abnormalities in the same genes and hence are so far considered to be within the spectrum of one disease entity or allelic variants.
Collapse
Affiliation(s)
- Shinichi Hirose
- Department of Pediatrics, Fukuoka University, 45-1,7-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
50
|
Feng HJ, Kang JQ, Song L, Dibbens L, Mulley J, Macdonald RL. Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of alpha4beta2delta GABAA receptors. J Neurosci 2006; 26:1499-506. [PMID: 16452673 PMCID: PMC6675478 DOI: 10.1523/jneurosci.2913-05.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most human idiopathic generalized epilepsies (IGEs) are polygenic, but virtually nothing is known of the molecular basis for any of the complex epilepsies. Recently, two GABAA receptor delta subunit variants (E177A, R220H) were proposed as susceptibility alleles for generalized epilepsy with febrile seizures plus and juvenile myoclonic epilepsy. In human embryonic kidney 293T cells, recombinant halpha1beta2delta(E177A) and halpha1beta2delta(R220H) receptor currents were reduced, but the basis for the current reduction was not determined. We examined the mechanistic basis for the current reduction produced by these variants using the halpha4beta2delta receptor, an isoform more physiologically relevant and linked to epileptogenesis, by characterizing the effects of these variants on receptor cell surface expression and single-channel gating properties. Expression of variant alpha4beta2delta(R220H) receptors resulted in a decrease in surface receptor proteins, and a smaller, but significant, reduction was observed for variant alpha4beta2delta(E177A) receptors. For both variants, no significant alterations of surface expression were observed for mixed population of wild-type and variant receptors. The mean open durations of alpha4beta2delta(E177A) and alpha4beta2delta(R220H) receptor single-channel currents were both significantly decreased compared to wild-type receptors. These data suggest that both delta(E177A) and delta(R220H) variants may result in disinhibition in IGEs by similar cellular and molecular mechanisms, and in heterozygously affected individuals, a reduction in channel open duration of delta subunit-containing GABAA receptors may be the major contributor to the epilepsy phenotypes.
Collapse
|