1
|
Dunn TW, Fan X, Lee J, Smith P, Gandhi R, Sossin WS. The role of specific isoforms of Ca V2 and the common C-terminal of Ca V2 in calcium channel function in sensory neurons of Aplysia. Sci Rep 2023; 13:20216. [PMID: 37980443 PMCID: PMC10657410 DOI: 10.1038/s41598-023-47573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
The presynaptic release apparatus can be specialized to enable specific synaptic functions. Habituation is the diminishing of a physiological response to a frequently repeated stimulus and in Aplysia, habituation to touch is mediated by a decrease in transmitter release from the sensory neurons that respond to touch even after modest rates of action potential firing. This synaptic depression is not common among Aplysia synaptic connections suggesting the presence of a release apparatus specialized for this depression. We found that specific splice forms of ApCaV2, the calcium channel required for transmitter release, are preferentially used in sensory neurons, consistent with a specialized release apparatus. However, we were not able to find a specific ApCaV2 splice uniquely required for synaptic depression. The C-terminus of ApCaV2 alpha1 subunit retains conserved binding to Aplysia rab-3 interacting molecule (ApRIM) and ApRIM-binding protein (ApRBP) and the C-terminus is required for full synaptic expression of ApCaV2. We also identified a splice form of ApRIM that did not interact with the ApCav2 alpha 1 subunit, but it was not preferentially used in sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jiwon Lee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Petranea Smith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Rushali Gandhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
2
|
Dunn TW, Fan X, Ase AR, Séguéla P, Sossin WS. The Ca V2α1 EF-hand F helix tyrosine, a highly conserved locus for GPCR inhibition of Ca V2 channels. Sci Rep 2018; 8:3263. [PMID: 29459734 PMCID: PMC5818475 DOI: 10.1038/s41598-018-21586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
The sensory neuron of Aplysia californica participates in several forms of presynaptic plasticity including homosynaptic depression, heterosynaptic depression, facilitation and the reversal of depression. The calcium channel triggering neurotransmitter release at most synapses is CaV2, consisting of the pore forming α1 subunit (CaV2α1), and auxiliary CaVβ, and CaVα2δ subunits. To determine the role of the CaV2 channel in presynaptic plasticity in Aplysia, we cloned Aplysia CaV2α1, CaVβ, and CaVα2δ and over-expressed the proteins in Aplysia sensory neurons (SN). We show expression of exogenous CaV2α1 in the neurites of cultured Aplysia SN. One proposed mechanism for heterosynaptic depression in Aplysia is through inhibition of CaV2. Here, we demonstrate that heterosynaptic depression of the CaV2 calcium current is inhibited when a channel with a Y-F mutation at the conserved Src phosphorylation site is expressed, showing the strong conservation of this mechanism over evolution. We also show that the Y-F mutation reduces heterosynaptic inhibition of neurotransmitter release, highlighting the physiological importance of this mechanism for the regulation of synaptic efficacy. These results also demonstrate our ability to replace endogenous CaV2 channels with recombinant channels allowing future examination of the structure function relationship of CaV2 in the regulation of transmitter release in this system.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ariel R Ase
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
3
|
Zhou L, Baxter DA, Byrne JH. Contribution of PKC to the maintenance of 5-HT-induced short-term facilitation at sensorimotor synapses of Aplysia. J Neurophysiol 2014; 112:1936-49. [PMID: 25031258 DOI: 10.1152/jn.00577.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aplysia sensorimotor synapses provide a useful model system for analyzing molecular processes that contribute to heterosynaptic plasticity. For example, previous studies demonstrated that multiple kinase cascades contribute to serotonin (5-HT)-induced short-term synaptic facilitation (STF), including protein kinase A (PKA) and protein kinase C (PKC). Moreover, the contribution of each kinase is believed to depend on the state of the synapse (e.g., depressed or nondepressed) and the time after application of 5-HT. Here, a previously unappreciated role for PKC-dependent processes was revealed to underlie the maintenance of STF at relatively nondepressed synapses. This PKC dependence was revealed when the synapse was stimulated repeatedly after application of 5-HT. The contributions of the PKA and PKC pathways were examined by blocking adenylyl cyclase-coupled 5-HT receptors with methiothepin and by blocking PKC with chelerythrine. STF was assessed 20 s after 5-HT application. The effects of PKC were consistent with enhanced mobilization of transmitter, as assessed by application of hypertonic sucrose solutions to measure the readily releasable pool of vesicles and recovery of the readily releasable pool after depletion. A computational model of transmitter release demonstrated that a PKC-dependent mobilization process was sufficient to explain the maintenance of STF at nondepressed synapses and the facilitation of depressed synapses.
Collapse
Affiliation(s)
- Lian Zhou
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas
| | - John H Byrne
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
4
|
Dunn TW, Sossin WS. Inhibition of the Aplysia sensory neuron calcium current with dopamine and serotonin. J Neurophysiol 2013; 110:2071-81. [DOI: 10.1152/jn.00217.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The inhibition of Aplysia pleural mechanosensory neuron synapses by dopamine and serotonin through activation of endogenous dopaminergic and expressed 5-HT1Apl(a)/b receptors, respectively, involves a reduction in action potential-associated calcium influx. We show that the inhibition of synaptic efficacy is downstream of the readily releasable pool, suggesting that inhibition is at the level of calcium secretion coupling, likely a result of the changes in the calcium current. Indeed, the inhibitory responses directly reduce a CaV2-like calcium current in isolated sensory neurons. The inhibition of the calcium current is voltage independent as it is not affected by a strong depolarizing prepulse, consistent with other invertebrate CaV2 calcium currents. Similar to voltage-independent inhibition of vertebrate nociceptors, inhibition was blocked with Src tyrosine kinase inhibitors. The data suggest a conserved mechanism by which G protein-coupled receptor activation can inhibit the CaV2 calcium current in nociceptive neurons.
Collapse
Affiliation(s)
- Tyler W. Dunn
- Department Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S. Sossin
- Department Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Peptide-induced modulation of synaptic transmission and escape response in Drosophila requires two G-protein-coupled receptors. J Neurosci 2010; 30:14724-34. [PMID: 21048131 DOI: 10.1523/jneurosci.3612-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptides are found in both mammals and invertebrates and can modulate neural function through activation of G-protein-coupled receptors (GPCRS). The precise mechanisms by which many of these GPCRs modulate specific signaling cascades to regulate neural function are not well defined. We used Drosophila melanogaster as a model to examine both the cellular and behavioral effects of DPKQDFMRFamide, the most abundant peptide encoded by the dFMRF gene. We show that DPKQDFMRFamide enhanced synaptic transmission through activation of two G-protein-coupled receptors, Fmrf Receptor (FR) and Dromyosupressin Receptor-2 (DmsR-2). The peptide increased both the presynaptic Ca(2+) response and the quantal content of released transmitter. Peptide-induced modulation of synaptic function could be abrogated by depleting intracellular Ca(2+) stores or by interfering with Ca(2+) release from the endoplasmic reticulum through disruption of either the ryanodine receptor or the inositol 1,4,5-trisphosphate receptor. The peptide also altered behavior. Exogenous DPKQDFMRFamide enhanced fictive locomotion; this required both the FR and DmsR-2. Likewise, both receptors were required for an escape response to intense light exposure. Thus, coincident detection of a peptide by two GPCRs modulates synaptic function through effects of Ca(2+)-induced Ca(2+) release, and we hypothesize that these mechanisms are involved in behavioral responses to environmental stress.
Collapse
|
6
|
Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J Neurosci 2010; 30:5781-91. [PMID: 20410130 DOI: 10.1523/jneurosci.4947-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity and learning involve different mechanisms depending on the following: (1) the stage of plasticity and (2) the history of plasticity, or metaplasticity. However, little is known about how these two factors are related. We have addressed that question by examining mechanisms of synaptic plasticity during short-term and intermediate-term behavioral sensitization and dishabituation in a semi-intact preparation of the Aplysia siphon-withdrawal reflex. Dishabituation differs from sensitization in that it is preceded by habituation, and is thus a paradigm for metaplasticity. We find that whereas facilitation during short-term sensitization by one tail shock involves presynaptic covalent modifications by protein kinase A (PKA) and CamKII, facilitation during intermediate-term sensitization by four shocks involves both presynaptic (PKA, CaMKII) and postsynaptic (Ca(2+), CaMKII) covalent modifications, as well as both presynaptic and postsynaptic protein synthesis. The facilitation also involves presynaptic spike broadening 2.5 min after either one or four shocks, but not at later times. Dishabituation by four shocks differs from sensitization in several ways. First, it does not involve PKA or CaMKII, but rather involves presynaptic PKC. In addition, unlike sensitization with the same shock, dishabituation by four shocks does not involve protein synthesis or presynaptic spike broadening, and it also does not involve postsynaptic Ca(2+). These results demonstrate that not only the mechanisms but also the site of plasticity depend on both the stage of plasticity and metaplasticity during memory formation.
Collapse
|