1
|
Matsumoto Y, Tamaru S, Chen X, Shinozuka T, Sakumura Y, Sasai N. The transmembrane protein TMEM196 controls cell proliferation and determines the floor plate cell lineage. Dev Growth Differ 2025. [PMID: 39825804 DOI: 10.1111/dgd.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube. We also established the floor plate differentiation protocol of the mouse embryonic stem cells, and analyzed the function of TMEM196 with this system. Mutating the Tmem196 gene does not alter cell division and overall differentiation remains unchanged within the neural cells. However, TMEM196 inhibits Wnt signaling, and Tmem196 mutant cells exhibit aberrant paraxial mesoderm differentiation, suggesting that TMEM196 selects the floor plate cell fate at the binary decision of the neuromesodermal cells. These findings highlight TMEM196 as a key regulator of both cell proliferation and floor plate determination, contributing to proper regionalization during embryogenesis.
Collapse
Affiliation(s)
- Yumi Matsumoto
- Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Seiichi Tamaru
- Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Xing Chen
- Data-driven biology, NAIST Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takuma Shinozuka
- Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yuichi Sakumura
- Data-driven biology, NAIST Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
| | - Noriaki Sasai
- Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
2
|
Dhakal P, Strawn M, Samal A, Behura SK. Fetal Brain Elicits Sexually Conflicting Transcriptional Response to the Ablation of Uterine Forkhead Box A2 ( Foxa2) in Mice. Int J Mol Sci 2021; 22:ijms22189693. [PMID: 34575858 PMCID: PMC8468108 DOI: 10.3390/ijms22189693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the effects of ablation of uterine Forkhead Box A2 (Foxa2) on gene expression of fetal brain relative to placenta. Using a conditional knockout mouse model for uterine Foxa2, here we show that the lack of uterine Foxa2 elicits a sexually-conflicting transcriptional response in the fetal brain relative to placenta. The ablation of Foxa2 in the uterus altered expression of genes related to growth, nutrient sensing, aging, longevity and angiogenesis among others. In the wildtype mice, these genes were expressed higher in the fetal brain and placenta of males compared to females. However, in mice lacking uterine Foxa2, the same genes showed the opposite pattern i.e., higher expression in the fetal brain and placenta of females compared to males. Based on the known marker genes of mice placenta and fetal brain cells, we further predicted that the genes exhibiting the sexually conflicting expression were associated with vascular endothelial cells. Overall, our study suggests that uterine Foxa2 plays a role in the regulation of the brain-placental axis by influencing the fetoplacental vascular changes during pregnancy.
Collapse
Affiliation(s)
- Pramod Dhakal
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA; (P.D.); (M.S.); (A.S.)
| | - Monica Strawn
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA; (P.D.); (M.S.); (A.S.)
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA; (P.D.); (M.S.); (A.S.)
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA; (P.D.); (M.S.); (A.S.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-573-882-1722
| |
Collapse
|
3
|
Cañizares MA, Albors AR, Singer G, Suttie N, Gorkic M, Felts P, Storey KG. Multiple steps characterise ventricular layer attrition to form the ependymal cell lining of the adult mouse spinal cord central canal. J Anat 2019; 236:334-350. [PMID: 31670387 PMCID: PMC6956438 DOI: 10.1111/joa.13094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
The ventricular layer of the spinal cord is remodelled during embryonic development and ultimately forms the ependymal cell lining of the adult central canal, which retains neural stem cell potential. This anatomical transformation involves the process of dorsal collapse; however, accompanying changes in tissue organisation and cell behaviour as well as the precise origin of cells contributing to the central canal are not well understood. Here, we describe sequential localised cell rearrangements which accompany the gradual attrition of the spinal cord ventricular layer during development. This includes local breakdown of the pseudostratified organisation of the dorsal ventricular layer prefiguring dorsal collapse and evidence for a new phenomenon, ventral dissociation, during which the ventral‐most floor plate cells separate from a subset that are retained around the central canal. Using cell proliferation markers and cell‐cycle reporter mice, we further show that following dorsal collapse, ventricular layer attrition involves an overall reduction in cell proliferation, characterised by an intriguing increase in the percentage of cells in G1/S. In contrast, programmed cell death does not contribute to ventricular layer remodelling. By analysing transcript and protein expression patterns associated with key signalling pathways, we provide evidence for a gradual decline in ventral sonic hedgehog activity and an accompanying ventral expansion of initial dorsal bone morphogenetic protein signalling, which comes to dominate the forming the central canal lining. This study identifies multiple steps that may contribute to spinal cord ventricular layer attrition and adds to increasing evidence for the heterogeneous origin of the spinal cord ependymal cell population, which includes cells from the floor plate and the roof plate as well as ventral progenitor domains.
Collapse
Affiliation(s)
- Marco A Cañizares
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Aida Rodrigo Albors
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gail Singer
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicolle Suttie
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Metka Gorkic
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Paul Felts
- Centre for Anatomy & Human Identification, University of Dundee, Dundee, UK
| | - Kate G Storey
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
4
|
Peterson DJ, Marckini DN, Straight JL, King EM, Johnson W, Sarah SS, Chowdhary PK, DeLano-Taylor MK. The Basic Helix-Loop-Helix Gene Nato3 Drives Expression of Dopaminergic Neuron Transcription Factors in Neural Progenitors. Neuroscience 2019; 421:176-191. [PMID: 31672641 DOI: 10.1016/j.neuroscience.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
The floor plate of the developing midbrain gives rise to dopaminergic (DA) neurons, an important class of cells involved in Parkinson's disease (PD). Neural progenitors of the midbrain floor plate utilize key genes in transcriptional networks to drive dopamine neurogenesis. Identifying factors that promote dopaminergic neuron transcriptional networks can provide insight into strategies for therapies in PD. Using the chick embryo, we developed a quantitative PCR (qPCR) based method to assess the potential of a candidate factor to drive DA neuron gene expression, including the basic helix-loop-helix transcription factor Nato3 (Ferd3l). We then showed that overexpression of Nato3 in the developing chick mesencephalon produces a regionally dependent increase in genes associated with the DA neurogenesis, (such as Foxa2, Lmx1b and Shh) as well as DA neuron genes Nurr1 (an immature DA neuron marker) and mRNA expression of tyrosine hydroxylase (TH, a mature DA neuron marker). Interestingly, our data also showed that Nato3 is a potent regulator of Lmx1b by its broad induction of Lmx1b expression in neural progenitors of multiple regions of the CNS, including the midbrain and spinal cord. These data introduce a new, in vivo approach to identifying a gene that can drive DA transcriptional networks and provide the new insight that Nato3 can drive expression of key DA neuron genes, including Lmx1b, in neural progenitors.
Collapse
Affiliation(s)
- Doug J Peterson
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Darcy N Marckini
- Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Jordan L Straight
- Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Elizabeth M King
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - William Johnson
- Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Sarala S Sarah
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Puneet K Chowdhary
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., Grand Rapids MI 49506, USA
| | - Merritt K DeLano-Taylor
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., Grand Rapids MI 49506, USA.
| |
Collapse
|
5
|
Valensisi C, Andrus C, Buckberry S, Doni Jayavelu N, Lund RJ, Lister R, Hawkins RD. Epigenomic Landscapes of hESC-Derived Neural Rosettes: Modeling Neural Tube Formation and Diseases. Cell Rep 2018; 20:1448-1462. [PMID: 28793267 DOI: 10.1016/j.celrep.2017.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs.
Collapse
Affiliation(s)
- Cristina Valensisi
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Colin Andrus
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Sam Buckberry
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia; Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Riikka J Lund
- Turku Centre for Biotechnology, University of Turku, Turku, Finland; Åbo Akademi University, Turku, Finland
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia; Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Turku Centre for Biotechnology, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
Danesin C, Soula C. Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J Dev Biol 2017; 5:jdb5020004. [PMID: 29615562 PMCID: PMC5831764 DOI: 10.3390/jdb5020004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| |
Collapse
|
7
|
Gouti M, Metzis V, Briscoe J. The route to spinal cord cell types: a tale of signals and switches. Trends Genet 2015; 31:282-9. [PMID: 25823696 DOI: 10.1016/j.tig.2015.03.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/20/2023]
Abstract
Understanding the mechanisms that control induction and elaboration of the vertebrate central nervous system (CNS) requires an analysis of the extrinsic signals and downstream transcriptional networks that assign cell fates in the correct space and time. We focus on the generation and patterning of the spinal cord. We summarize evidence that the origin of the spinal cord is distinct from the anterior regions of the CNS. We discuss how this affects the gene regulatory networks and cell state transitions that specify spinal cord cell subtypes, and we highlight how the timing of extracellular signals and dynamic control of transcriptional networks contribute to the correct spatiotemporal generation of different neural cell types.
Collapse
Affiliation(s)
- Mina Gouti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Vicki Metzis
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
8
|
Hadas Y, Etlin A, Falk H, Avraham O, Kobiler O, Panet A, Lev-Tov A, Klar A. A 'tool box' for deciphering neuronal circuits in the developing chick spinal cord. Nucleic Acids Res 2014; 42:e148. [PMID: 25147209 PMCID: PMC4231727 DOI: 10.1093/nar/gku750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering 'tool box' for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick. We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmic motor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation.
Collapse
Affiliation(s)
- Yoav Hadas
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Alex Etlin
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Haya Falk
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Oshri Avraham
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Amos Panet
- Department of Biochemistry, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Aharon Lev-Tov
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Avihu Klar
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
9
|
Mansour AA, Khazanov-Zisman S, Netser Y, Klar A, Ben-Arie N. Nato3 plays an integral role in dorsoventral patterning of the spinal cord by segregating floor plate/p3 fates via Nkx2.2 suppression and Foxa2 maintenance. Development 2014; 141:574-84. [PMID: 24401371 DOI: 10.1242/dev.104372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During embryogenesis, the dorsal roof plate and the ventral floor plate (FP) act as organizing centers to pattern the developing neural tube. Organizer-secreted morphogens provide signals that are interpreted via the graded expression of transcription factors. These factors establish a combinatorial code, which subsequently determines the fate of neuronal progenitors along the dorsoventral axis. To further separate the fates and promote distinct identities of the neural progenitors, mutual repression takes place among transcription factors expressed in progenitors situated along the dorsoventral axis. The molecular mechanisms acting in the developing spinal cord and underlying the segregation of the progenitor pool containing cells with a mixed FP/p3 fate into separate FP cells and V3 neurons are not fully understood. Using in vivo ectopic expression in chick, we found that Nato3 induces ectopic Foxa2-positive cells and indirectly downregulates Nkx2.2 expression. To examine the role of Nato3 in the FP, Foxa2-Nato3 signaling was blocked in Nato3 null mice and to a greater extent in Nato3 null/Foxa2 heterozygous bigenic mutants. Complementary to the findings obtained by gain of function in chick, the loss of function in mouse indicated that the segregation of the FP/p3 population into its derivatives was interrupted. Together, the data suggest that Nato3 is a novel determinant factor regulating the segregation of the FP and p3 identities, which is an essential step for establishing a definitive FP fate in the embryonic spinal cord.
Collapse
Affiliation(s)
- Abed AlFatah Mansour
- Department of Cell and Developmental Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
10
|
Hadas Y, Nitzan N, Furley AJW, Kozlov SV, Klar A. Distinct cis regulatory elements govern the expression of TAG1 in embryonic sensory ganglia and spinal cord. PLoS One 2013; 8:e57960. [PMID: 23469119 PMCID: PMC3582508 DOI: 10.1371/journal.pone.0057960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/29/2013] [Indexed: 01/06/2023] Open
Abstract
Cell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1) and Neurofascin (Nfasc) are co-expressed in numerous neuronal cell types in the CNS and PNS – for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier. The genes encoding TAG1 and Nfasc are adjacent in the genome, an arrangement which is evolutionarily conserved. To study the transcriptional network that governs TAG1 and Nfasc expression in spinal motor and commissural neurons, we set out to identify cis elements that regulate their expression. Two evolutionarily conserved DNA modules, one located between the Nfasc and TAG1 genes and the second directly 5′ to the first exon and encompassing the first intron of TAG1, were identified that direct complementary expression to the CNS and PNS, respectively, of the embryonic hindbrain and spinal cord. Sequential deletions and point mutations of the CNS enhancer element revealed a 130bp element containing three conserved E-boxes required for motor neuron expression. In combination, these two elements appear to recapitulate a major part of the pattern of TAG1 expression in the embryonic nervous system.
Collapse
Affiliation(s)
- Yoav Hadas
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Noa Nitzan
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrew J. W. Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (AV); (SVK); (AJWF)
| | - Serguei V. Kozlov
- Center for Advanced Preclinical Research, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, United States of America
- * E-mail: (AV); (SVK); (AJWF)
| | - Avihu Klar
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail: (AV); (SVK); (AJWF)
| |
Collapse
|
11
|
Samusik N, Krukovskaya L, Meln I, Shilov E, Kozlov AP. PBOV1 is a human de novo gene with tumor-specific expression that is associated with a positive clinical outcome of cancer. PLoS One 2013; 8:e56162. [PMID: 23418531 PMCID: PMC3572036 DOI: 10.1371/journal.pone.0056162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/10/2013] [Indexed: 01/20/2023] Open
Abstract
PBOV1 is a known human protein-coding gene with an uncharacterized function. We have previously found that PBOV1 lacks orthologs in non-primate genomes and is expressed in a wide range of tumor types. Here we report that PBOV1 protein-coding sequence is human-specific and has originated de novo in the primate evolution through a series of frame-shift and stop codon mutations. We profiled PBOV1 expression in multiple cancer and normal tissue samples and found that it was expressed in 19 out of 34 tumors of various origins but completely lacked expression in any of the normal adult or fetal human tissues. We found that, unlike the cancer/testis antigens that are typically controlled by CpG island-containing promoters, PBOV1 was expressed from a GC-poor TATA-containing promoter which was not influenced by CpG demethylation and was inactive in testis. Our analysis of public microarray data suggests that PBOV1 activation in tumors could be dependent on the Hedgehog signaling pathway. Despite the recent de novo origin and the lack of identifiable functional signatures, a missense SNP in the PBOV1 coding sequence has been previously associated with an increased risk of breast cancer. Using publicly available microarray datasets, we found that high levels of PBOV1 expression in breast cancer and glioma samples were significantly associated with a positive outcome of the cancer disease. We also found that PBOV1 was highly expressed in primary but not in recurrent high-grade gliomas, suggesting the presence of a negative selection against PBOV1-expressing cancer cells. Our findings could contribute to the understanding of the mechanisms behind de novo gene origin and the possible role of tumors in this process.
Collapse
Affiliation(s)
- Nikolay Samusik
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany.
| | | | | | | | | |
Collapse
|
12
|
Nissim-Eliraz E, Zisman S, Schatz O, Ben-Arie N. Nato3 Integrates with the Shh-Foxa2 Transcriptional Network Regulating the Differentiation of Midbrain Dopaminergic Neurons. J Mol Neurosci 2012; 51:13-27. [DOI: 10.1007/s12031-012-9939-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/06/2012] [Indexed: 11/28/2022]
|
13
|
Metzakopian E, Lin W, Salmon-Divon M, Dvinge H, Andersson E, Ericson J, Perlmann T, Whitsett JA, Bertone P, Ang SL. Genome-wide characterization of Foxa2 targets reveals upregulation of floor plate genes and repression of ventrolateral genes in midbrain dopaminergic progenitors. Development 2012; 139:2625-34. [PMID: 22696295 DOI: 10.1242/dev.081034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factors Foxa1 and Foxa2 promote the specification of midbrain dopaminergic (mDA) neurons and the floor plate. Whether their role is direct has remained unclear as they also regulate the expression of Shh, which has similar roles. We characterized the Foxa2 cis-regulatory network by chromatin immunoprecipitation followed by high-throughput sequencing of mDA progenitors. This identified 9160 high-quality Foxa2 binding sites associated with 5409 genes, providing mechanistic insights into Foxa2-mediated positive and negative regulatory events. Foxa2 regulates directly and positively key determinants of mDA neurons, including Lmx1a, Lmx1b, Msx1 and Ferd3l, while negatively inhibiting transcription factors expressed in ventrolateral midbrain such as Helt, Tle4, Otx1, Sox1 and Tal2. Furthermore, Foxa2 negatively regulates extrinsic and intrinsic components of the Shh signaling pathway, possibly by binding to the same enhancer regions of co-regulated genes as Gli1. Foxa2 also regulates the expression of floor plate factors that control axon trajectories around the midline of the embryo, thereby contributing to the axon guidance function of the floor plate. Finally, this study identified multiple Foxa2-regulated enhancers that are active in the floor plate of the midbrain or along the length of the embryo in mouse and chick. This work represents the first comprehensive characterization of Foxa2 targets in mDA progenitors and provides a framework for elaborating gene regulatory networks in a functionally important progenitor population.
Collapse
|
14
|
Zechi-Ceide RM, Rodrigues MG, Jehee FS, Kokitsu-Nakata NM, Passos-Bueno MR, Guion-Almeida ML. Saethre-Chotzen phenotype with learning disability and hyper IgE phenotype in a patient due to complex chromosomal rearrangement involving chromosomes 3 and 7. Am J Med Genet A 2012; 158A:1680-5. [PMID: 22628249 DOI: 10.1002/ajmg.a.35367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/20/2012] [Indexed: 01/14/2023]
Abstract
The authors describe on a Brazilian girl with coronal synostosis, facial asymmetry, ptosis, brachydactyly, significant learning difficulties, recurrent scalp infections with marked hair loss, and elevated serum immunoglobulin E. Standard lymphocyte karyotype showed a small additional segment in 7p21[46,XX,add(7)(p21)]. Deletion of the TWIST1 gene, detected by Multiplex Ligation Probe-dependent Amplification (MPLA) and array-CGH, was consistent with phenotype of Saethre-Chotzen syndrome. Array CGH also showed deletion of four other genes at 7p21.1 (SNX13, PRPS1L1, HD9C9, and FERD3L) and the deletion of six genes (CACNA2D2, C3orf18, HEMK1, CISH, MAPKAPK3, and DOCK3) at 3p21.31. Our case reinforces FERD3L as candidate gene for intellectual disability and suggested that genes located in 3p21.3 can be related to hyper IgE phenotype.
Collapse
Affiliation(s)
- Roseli Maria Zechi-Ceide
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRCA-USP), Bauru, SP, Brazil.
| | | | | | | | | | | |
Collapse
|