1
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
2
|
Haddad B, Khalil J, Al Khashali H, Ray R, Goel S, Darweesh B, Coleman KL, Wozniak C, Ranzenberger R, Lopo B, Guthrie J, Heyl D, Evans HG. The role of leptin in regulation of the soluble amyloid precursor protein α (sAPPα) levels in lung cancer cell media. Sci Rep 2024; 14:4921. [PMID: 38418632 PMCID: PMC10901813 DOI: 10.1038/s41598-024-55717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Previously, we found that the levels of soluble amyloid precursor protein α (sAPPα) are regulated, in part, by acetylcholinesterase (AChE) in human A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell lines. In this study, we found regulation of sAPPα levels in the media by leptin, a widely recognized obesity-associated adipokine that has recently been shown to play a possible role in cancer signaling. Increased levels of sAPPα, that were accompanied by lower Aβ40/42 levels in the media of A549 and H1299 cells, were detected upon cell incubation with leptin. Conversely, knockdown of leptin or its receptor led to reduced levels of sAPPα and increased levels of Aβ40/42 in the media of A549 and H1299 cells, suggesting that leptin likely shifts APP processing toward the non-amyloidogenic pathway. A549 cell treatment with leptin increased acetylcholine levels and blocked the activities of AChE and p53. Treatment with leptin resulted in increased activation of PKC, ERK1/2, PI3K, and the levels of sAPPα, effects that were reversed by treatment with kinase inhibitors and/or upon addition of AChE to A549 and H1299 cell media. Cell viability increased by treatment of A549 and H1299 cells with leptin and decreased upon co-treatment with AChE and/or inhibitors targeting PKC, ERK1/2, and PI3K. This study is significant as it provides evidence for a likely carcinogenic role of leptin in NSCLC cells via upregulation of sAPPα levels in the media, and highlights the importance of targeting leptin as a potential therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Ben Haddad
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeneen Khalil
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hind Al Khashali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Ravel Ray
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Stuti Goel
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Ban Darweesh
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Kai-Ling Coleman
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Caroline Wozniak
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Robert Ranzenberger
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Brooke Lopo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
3
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
4
|
Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Int J Mol Sci 2022; 24:ijms24010507. [PMID: 36613951 PMCID: PMC9820491 DOI: 10.3390/ijms24010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors expressed in the central nervous system mediate various functions, including cognition, memory, or reward. Therefore, muscarinic receptors represent potential pharmacological targets for various diseases and conditions, such as Alzheimer's disease, schizophrenia, addiction, epilepsy, or depression. Muscarinic receptors are allosterically modulated by neurosteroids and steroid hormones at physiologically relevant concentrations. In this review, we focus on the modulation of muscarinic receptors by neurosteroids and steroid hormones in the context of diseases and disorders of the central nervous system. Further, we propose the potential use of neuroactive steroids in the development of pharmacotherapeutics for these diseases and conditions.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Nikolai Chetverikov
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| |
Collapse
|
5
|
Neuroprotective effects of donepezil against Aβ25-35-induced neurotoxicity. Eur J Med Res 2022; 27:219. [PMID: 36307893 PMCID: PMC9617393 DOI: 10.1186/s40001-022-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the neuroprotective effect of donepezil against β-amyloid25-35 (Aβ25-35)-induced neurotoxicity and the possible mechanism. Methods PC12 cells were conventionally cultured. Serial concentrations of Aβ25-35 and donepezil (0, 0.5, 1, 5, 10, 20 and 50 μmol/L) were added to the PC12 cells, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) staining was performed to detect the effects of these treatments on PC 12 viability. The PC 12 cells were pretreated with 1, 5, 10, 20 or 50 μmol/L donepezil two hours before 20 μmol/L Aβ25-35 was added to pretreatment groups A, B, C, D and E. Normal control group I and the 20 μmol/L Aβ25-35-treated group were selected. An MTT assay was used to detect PC12 cell viability, and the level of lactate dehydrogenase (LDH) was determined. PC12 cells were pretreated with 10 μmol/L GF109203X (a protein kinase C [PKC] antagonist) 30 min before 10 μmol/L donepezil was added to pretreatment group F, and normal control group II, the 10 μmol/L GF109203X-treated group and the 10 μmol/L donepezil-treated group were chosen. The expression of phosphorylation-PKC (P-PKC) and its major substrate phosphorylated myristoylated alanine-rich protein C kinase substrate (P-MARCKS) was measured by Western blotting. The effects of donepezil on the subcellular distribution of the PKCα and PKCε isoforms were detected by immunofluorescence staining. Results Treatment with Aβ25-35 (5, 10, 20 or 50 μmol/L) for 24 h significantly (P < 0.05) decreased PC 12 cell viability in a dose-dependent manner. Compared with the PC12 cells in the control group, those in the 20 μmol/L Aβ25-35-treated group exhibited lower viability but higher LDH release. Compared with the 20 μmol/L Aβ25–35-treated group, pretreatment groups B, C, D and E exhibited significantly (P < 0.05) increased cell viability but significantly (P < 0.05) decreased LDH release. Western blotting demonstrated that compared with control, 10 μmol/L donepezil promoted PKC and MARCKS phosphorylation and that the expression of P-PKC and P-MARCKS in pretreatment group F was significantly (P < 0.05) lower than that in the donepezil-treated group. Immunofluorescence staining revealed that the PKCα and PKCε isoforms were located mainly in the cytoplasm of PC12 control cells, whereas donepezil increased the expression of the PKCα and PKCε isoforms in the membrane fraction. The Western blot results showed that donepezil altered the subcellular distribution of the PKCα and PKCε isoforms by decreasing their expression in the cytosolic fraction but increasing their expression in the membrane fraction. Conclusion Donepezil can antagonize Aβ25–350-induced neurotoxicity in PC 12 cells, and PKC activation may account for the neuroprotective effect of donepezil.
Collapse
|
6
|
Regulation of the Soluble Amyloid Precursor Protein α (sAPPα) Levels by Acetylcholinesterase and Brain-Derived Neurotrophic Factor in Lung Cancer Cell Media. Int J Mol Sci 2022; 23:ijms231810746. [PMID: 36142659 PMCID: PMC9500850 DOI: 10.3390/ijms231810746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
In comparing two human lung cancer cells, we previously found lower levels of acetylcholinesterase (AChE) and intact amyloid-β40/42 (Aβ), and higher levels of mature brain-derived neurotrophic factor (mBDNF) in the media of H1299 cells as compared to A549 cell media. In this study, we hypothesized that the levels of soluble amyloid precursor protein α (sAPPα) are regulated by AChE and mBDNF in A549 and H1299 cell media. The levels of sAPPα were higher in the media of H1299 cells. Knockdown of AChE led to increased sAPPα and mBDNF levels and correlated with decreased levels of intact Aβ40/42 in A549 cell media. AChE and mBDNF had opposite effects on the levels of Aβ and sAPPα and were found to operate through a mechanism involving α-secretase activity. Treatment with AChE decreased sAPPα levels and simultaneously increased the levels of intact Aβ40/42 suggesting a role of the protein in shifting APP processing away from the non-amyloidogenic pathway and toward the amyloidogenic pathway, whereas treatment with mBDNF led to opposite effects on those levels. We also show that the levels of sAPPα are regulated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)1/2, phosphoinositide 3 Kinase (PI3K), but not by protein kinase A (PKA).
Collapse
|
7
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
8
|
OUP accepted manuscript. Brain 2022; 145:2250-2275. [DOI: 10.1093/brain/awac096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/13/2022] Open
|
9
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 595] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
10
|
Hwang J, Youn K, Lim G, Lee J, Kim DH, Jun M. Discovery of Natural Inhibitors of Cholinesterases from Hydrangea: In Vitro and In Silico Approaches. Nutrients 2021; 13:nu13010254. [PMID: 33477276 PMCID: PMC7830924 DOI: 10.3390/nu13010254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease conceptualized as a clinical-biological neurodegenerative construct where amyloid-beta pathophysiology is supposed to play a role. The loss of cognitive functions is mostly characterized by the rapid hydrolysis of acetylcholine by cholinesterases including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Moreover, both enzymes are responsible for non-catalytic actions such as interacting with amyloid β peptide (Aβ) which further leads to promote senile plaque formation. In searching for a natural cholinesterase inhibitor, the present study focused on two isocoumarines from hydrangea, thunberginol C (TC) and hydrangenol 8-O-glucoside pentaacetate (HGP). Hydrangea-derived compounds were demonstrated to act as dual inhibitors of both AChE and BChE. Furthermore, the compounds exerted selective and non-competitive mode of inhibition via hydrophobic interaction with peripheral anionic site (PAS) of the enzymes. Overall results demonstrated that these natural hydrangea-derived compounds acted as selective dual inhibitors of AChE and BChE, which provides the possibility of potential source of new type of anti-cholinesterases with non-competitive binding property with PAS.
Collapse
Affiliation(s)
- Jayeong Hwang
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea; (J.H.); (K.Y.)
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea; (J.H.); (K.Y.)
| | - Gyutae Lim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (G.L.); (J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Sciences and Technology, Daejeon 34113, Korea
| | - Jinhyuk Lee
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (G.L.); (J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Sciences and Technology, Daejeon 34113, Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, Dong-A University, Busan 49315, Korea;
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea; (J.H.); (K.Y.)
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Correspondence: ; Tel.: +82-51-200-7323; Fax: +82-51-200-7535
| |
Collapse
|
11
|
Substrate-Specific Activation of α-Secretase by 7-Deoxy-Trans-Dihydronarciclasine Increases Non-Amyloidogenic Processing of β-Amyloid Protein Precursor. Molecules 2020; 25:molecules25030646. [PMID: 32028607 PMCID: PMC7037359 DOI: 10.3390/molecules25030646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/04/2023] Open
Abstract
Accumulation of β-amyloid (Aβ) in the brain has been implicated in the pathology of Alzheimer’s disease (AD). Aβ is produced from the Aβ precursor protein (APP) through the amyloidogenic pathway by β-, and γ-secretase. Alternatively, APP can be cleaved by α-, and γ-secretase, precluding the production of Aβ. Thus, stimulating α-secretase mediated APP processing is considered a therapeutic option not only for decreasing Aβ production but for increasing neuroprotective sAPPα. We have previously reported that 7-deoxy-trans-dihydronarciclasine (E144), the active component of Lycoris chejuensis, decreases Aβ production by attenuating APP level, and retarding APP maturation. It can also improve cognitive function in the AD model mouse. In this study, we further analyzed the activating effect of E144 on α-secretase. Treatment of E144 increased sAPPα, but decreased β-secretase products from HeLa cells stably transfected with APP. E144 directly activated ADAM10 and ADAM17 in a substrate-specific manner both in cell-based and in cell-free assays. The Lineweaver–Burk plot analysis revealed that E144 enhanced the affinities of A Disintegrin and Metalloproteinases (ADAMs) towards the substrate. Consistent with this result, immunoprecipitation analysis showed that interactions of APP with ADAM10 and ADAM17 were increased by E144. Our results indicate that E144 might be a novel agent for AD treatment as a substrate-specific activator of α-secretase.
Collapse
|
12
|
Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain 2019; 141:1917-1933. [PMID: 29850777 DOI: 10.1093/brain/awy132] [Citation(s) in RCA: 937] [Impact Index Per Article: 187.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Cholinergic synapses are ubiquitous in the human central nervous system. Their high density in the thalamus, striatum, limbic system, and neocortex suggest that cholinergic transmission is likely to be critically important for memory, learning, attention and other higher brain functions. Several lines of research suggest additional roles for cholinergic systems in overall brain homeostasis and plasticity. As such, the brain's cholinergic system occupies a central role in ongoing research related to normal cognition and age-related cognitive decline, including dementias such as Alzheimer's disease. The cholinergic hypothesis of Alzheimer's disease centres on the progressive loss of limbic and neocortical cholinergic innervation. Neurofibrillary degeneration in the basal forebrain is believed to be the primary cause for the dysfunction and death of forebrain cholinergic neurons, giving rise to a widespread presynaptic cholinergic denervation. Cholinesterase inhibitors increase the availability of acetylcholine at synapses in the brain and are one of the few drug therapies that have been proven clinically useful in the treatment of Alzheimer's disease dementia, thus validating the cholinergic system as an important therapeutic target in the disease. This review includes an overview of the role of the cholinergic system in cognition and an updated understanding of how cholinergic deficits in Alzheimer's disease interact with other aspects of disease pathophysiology, including plaques composed of amyloid-β proteins. This review also documents the benefits of cholinergic therapies at various stages of Alzheimer's disease and during long-term follow-up as visualized in novel imaging studies. The weight of the evidence supports the continued value of cholinergic drugs as a standard, cornerstone pharmacological approach in Alzheimer's disease, particularly as we look ahead to future combination therapies that address symptoms as well as disease progression.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - M-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ezio Giacobini
- Department of Internal Medicine, Rehabilitation and Geriatrics, University of Geneva Hospitals, Geneva, Switzerland
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Ara S Khachaturian
- The Campaign to Prevent Alzheimer's Disease by 2020 (PAD2020), Potomac, MD, USA
| | - Andrea Vergallo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Enrica Cavedo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI USA.,Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
13
|
Kim JE, Park JJ, Lee MR, Choi JY, Song BR, Park JW, Kang MJ, Son HJ, Hong JT, Hwang DY. Constipation in Tg2576 mice model for Alzheimer's disease associated with dysregulation of mechanism involving the mAChR signaling pathway and ER stress response. PLoS One 2019; 14:e0215205. [PMID: 30978260 PMCID: PMC6461235 DOI: 10.1371/journal.pone.0215205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/28/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although constipation has been researched in various neurological disorders, including Parkinson's disease (PD) and spinal cord injury (SCI), the pathological mechanism of this symptom has not been investigated in Alzheimer's disease (AD) associated with loss of nerve cells in the brain. This study was undertaken to gain scientific evidences for a molecular correlation between constipation and AD. METHODS To understand the etiology, we measured alterations in various constipation parameters, muscarinic acetylcholine receptors (mAChRs) and endoplasmic reticulum (ER) stress response, in 11-month-old Tg2576 transgenic (Tg) mice showing AD-like phenotypes. RESULTS A high accumulation of amyloid beta (Aβ) peptides, a key marker of AD pathology, were detected in the cortex and hippocampus of Tg mice. Furthermore, significant alterations were observed in various constipation parameters including stool weight, histological structure, cytological structure and mucin secretion in Tg2576 mice. Moreover, M2 and M3 expression and the downstream signaling pathways of mAChRs were decreased in the Tg group, as compared with non-Tg (NT) group. Furthermore, activation of ER stress proteins and alteration of ER structure were also detected in the same group. CONCLUSIONS The results of the present study provide strong novel evidence that the neuropathological constipation detected in Tg2576 mice is linked to dysregulation of the mAChR signaling pathways and ER stress response.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hong Joo Son
- Department of Life Science and Environmental Biochemistry, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
14
|
Welt T, Kulic L, Hoey SE, McAfoose J, Späni C, Chadha AS, Fisher A, Nitsch RM. Acute Effects of Muscarinic M1 Receptor Modulation on AβPP Metabolism and Amyloid-β Levels in vivo: A Microdialysis Study. J Alzheimers Dis 2016; 46:971-82. [PMID: 25881909 DOI: 10.3233/jad-150152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Indirect modulation of cholinergic activity by cholinesterase inhibition is currently a widely established symptomatic treatment for Alzheimer's disease (AD). Selective activation of certain muscarinic receptor subtypes has emerged as an alternative cholinergic-based amyloid-lowering strategy for AD, as selective muscarinic M1 receptor agonists can reduce amyloid-β (Aβ) production by shifting endoproteolytic amyloid-β protein precursor (AβPP) processing toward non-amyloidogenic pathways. In this study, we addressed the hypothesis that acute stimulation of muscarinic M1 receptors can inhibit Aβ production in awake and freely moving AβPP transgenic mice. By combining intracerebral microdialysis with retrodialysis, we determined hippocampal Aβ concentrations during simultaneous pharmacological modulation of brain M1 receptor function. Infusion with a M1 receptor agonist AF102B resulted in a rapid reduction of interstitial fluid (ISF) Aβ levels while treatment with the M1 antagonist dicyclomine increased ISF Aβ levels reaching significance within 120 minutes of treatment. The reduction in Aβ levels was associated with PKCα and ERK activation resulting in increased levels of the α-secretase ADAM17 and a shift in AβPP processing toward the non-amyloidogenic processing pathway. In contrast, treatment with the M1 receptor antagonist dicyclomine caused a decrease in levels of phosphorylated ERK that was independent of PKCα, and led to an elevation of β-secretase levels associated with increased amyloidogenic AβPP processing. The results of this study demonstrate rapid effects of in vivo M1 receptor modulation on the ISF pool of Aβ and suggest that intracerebral microdialysis with retrodialysis is a useful technical approach for monitoring acute treatment effects of muscarinic receptor modulators on AβPP/Aβ metabolism.
Collapse
Affiliation(s)
- Tobias Welt
- Division of Psychiatry Research, University of Zürich Campus Schlieren, Switzerland
| | - Luka Kulic
- Division of Psychiatry Research, University of Zürich Campus Schlieren, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Sarah E Hoey
- Division of Psychiatry Research, University of Zürich Campus Schlieren, Switzerland
| | - Jordan McAfoose
- Division of Psychiatry Research, University of Zürich Campus Schlieren, Switzerland
| | - Claudia Späni
- Division of Psychiatry Research, University of Zürich Campus Schlieren, Switzerland
| | | | - Abraham Fisher
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Roger M Nitsch
- Division of Psychiatry Research, University of Zürich Campus Schlieren, Switzerland
| |
Collapse
|
15
|
Fisher JR, Wallace CE, Tripoli DL, Sheline YI, Cirrito JR. Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo. Mol Neurodegener 2016; 11:45. [PMID: 27315796 PMCID: PMC4912779 DOI: 10.1186/s13024-016-0112-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aggregation of amyloid-β (Aβ) into insoluble plaques is a hallmark pathology of Alzheimer's disease (AD). Previous work has shown increasing serotonin levels with selective serotonin re-uptake inhibitor (SSRI) compounds reduces Aβ in the brain interstitial fluid (ISF) in a mouse model of AD and in the cerebrospinal fluid of humans. We investigated which serotonin receptor (5-HTR) subtypes and downstream effectors were responsible for this reduction. RESULTS Agonists of 5-HT4R, 5-HT6R, and 5-HT7R significantly reduced ISF Aβ, but agonists of other receptor subtypes did not. Additionally, inhibition of Protein Kinase A (PKA) blocked the effects of citalopram, an SSRI, on ISF Aβ levels. Serotonin signaling does not appear to change gene expression to reduce Aβ levels in acute timeframes, but likely acts within the cytoplasm to increase α-secretase enzymatic activity. Broad pharmacological inhibition of putative α-secretases increased ISF Aβ and blocked the effects of citalopram. CONCLUSIONS In total, these studies map the major signaling components linking serotonin receptors to suppression of brain ISF Aβ. These results suggest the reduction in ISF Aβ is mediated by a select group of 5-HTRs and open future avenues for targeted therapy of AD.
Collapse
Affiliation(s)
- Jonathan R Fisher
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Clare E Wallace
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle L Tripoli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Yvette I Sheline
- Departments of Psychiatry, Radiology, and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John R Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA. .,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA. .,Present Address: Washington University, Neurology, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Qian M, Shen X, Wang H. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:471-82. [PMID: 26119306 DOI: 10.1007/s10571-015-0232-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.
Collapse
Affiliation(s)
- Meng Qian
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Xiaoqiang Shen
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Huanhuan Wang
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China.
| |
Collapse
|
17
|
Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol 2016; 119:149-60. [PMID: 27001133 DOI: 10.1111/bcpt.12581] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Huang M, Suk DH, Cho NC, Bhattarai D, Kang SB, Kim Y, Pae AN, Rhim H, Keum G. Synthesis and biological evaluation of isoxazoline derivatives as potent M1 muscarinic acetylcholine receptor agonists. Bioorg Med Chem Lett 2015; 25:1546-51. [DOI: 10.1016/j.bmcl.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/15/2015] [Accepted: 02/07/2015] [Indexed: 01/25/2023]
|
19
|
Jiang S, Li Y, Zhang C, Zhao Y, Bu G, Xu H, Zhang YW. M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neurosci Bull 2014; 30:295-307. [PMID: 24590577 DOI: 10.1007/s12264-013-1406-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/28/2013] [Indexed: 01/31/2023] Open
Abstract
The degeneration of cholinergic neurons and cholinergic hypofunction are pathologies associated with Alzheimer's disease (AD). Muscarinic acetylcholine receptors (mAChRs) mediate acetylcholine-induced neurotransmission and five mAChR subtypes (M1-M5) have been identified. Among them, M1 mAChR is widely expressed in the central nervous system and has been implicated in many physiological and pathological brain functions. In addition, M1 mAChR is postulated to be an important therapeutic target for AD and several other neurodegenerative diseases. In this article, we review recent progress in understanding the functional involvement of M1 mAChR in AD pathology and in developing M1 mAChR agonists for AD treatment.
Collapse
Affiliation(s)
- Shangtong Jiang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Yacoub D, Benslimane N, Al-Zoobi L, Hassan G, Nadiri A, Mourad W. CD154 is released from T-cells by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ADAM17 in a CD40 protein-dependent manner. J Biol Chem 2013; 288:36083-93. [PMID: 24189063 DOI: 10.1074/jbc.m113.506220] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD154 (CD40 ligand) is a type II transmembrane protein that belongs to the tumor necrosis factor superfamily. The soluble form of CD154 (sCD154), which results from the shedding of membrane-bound CD154, plays a key role in the production of proinflammatory cytokines and has been linked to various autoimmune and vascular disorders. Therefore, elucidating the mechanisms by which CD154 is released from the cell surface following its interaction with its various receptors is of primordial importance. Using co-culture experiments, we show that CD154 is shed predominantly upon its engagement with CD40. Indeed, only CD40 (both membrane-bound and soluble) and not α5β1 or αMβ2 is involved in the cleavage and release of CD154 from Jurkat E6.1 T-cells. Interestingly, CD154 is cleaved independently of the formation of cell surface CD40 homodimers and independently of its association into lipid rafts. In contrast, we found that the protein kinase C (PKC) signaling family and the matrix metalloproteinases ADAM10 and ADAM17 are intimately involved in this process. In conclusion, our data indicate that CD154 is released from T-cells by ADAM10 and ADAM17 upon CD40 ligation. These findings add significant insights into the mechanisms by which CD154 is down-regulated and may lead to the generation of novel therapeutic targets for the treatment of CD154-associated disorders.
Collapse
Affiliation(s)
- Daniel Yacoub
- From the Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l'Université de Montréal, Hôpital St-Luc, Montréal, Quebec H2X 1P1, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Lahmy V, Meunier J, Malmström S, Naert G, Givalois L, Kim SH, Villard V, Vamvakides A, Maurice T. Blockade of Tau hyperphosphorylation and Aβ₁₋₄₂ generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and σ₁ receptor agonist, in a nontransgenic mouse model of Alzheimer's disease. Neuropsychopharmacology 2013; 38:1706-23. [PMID: 23493042 PMCID: PMC3717544 DOI: 10.1038/npp.2013.70] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/21/2012] [Accepted: 01/26/2013] [Indexed: 11/09/2022]
Abstract
The main objective of the present study was to establish whether the mixed σ₁/muscarinic ligand ANAVEX2-73, shown to be neuroprotective in Alzheimer's disease (AD) models in vivo and currently in clinical phase I/IIa, could have the ability to reduce the appearance of hyperphosphorylated Tau and amyloid-β₁₋₄₂ (Aβ₁₋₄₂ in the Aβ₂₅₋₃₅ mouse model of AD. We therefore first confirmed that Aβ₂₅₋₃₅ injection induced hyperphosphorylation of Tau protein, by showing that it rapidly decreased Akt activity and activated glycogen synthase kinase-3β (GSK-3β) in the mouse hippocampus. Second, we showed that the kinase activation, and resulting Tau alteration, directly contributed to the amyloid toxicity, as co-administration of the selective GSK-3β inhibitor 2-thio(3-iodobenzyl)-5-(1-pyridyl)-[1,3,4]-oxidiazole blocked both Tau phosphorylation and Aβ₂₅₋₃₅-induced memory impairments. Third, we analyzed the ANAVEX2-73 effect on Tau phosphorylation and activation of the related kinase pathways (Akt and GSK-3β). And fourth, we also addressed the impact of the drug on Aβ₂₅₋₃₅-induced Aβ₁₋₄₂ seeding and observed that the compound significantly blocked the increase in Aβ₁₋₄₂ and C99 levels in the hippocampus, suggesting that it may alleviate amyloid load in AD models. The comparison with PRE-084, a selective and reference σ₁ receptor agonist, and xanomeline, a muscarinic ligand presenting similar profile as ANAVEX2-73 on M1 and M2 subtypes, confirmed that both muscarinic and σ₁ targets are involved in the ANAVEX2-73 effects. The drug, acting synergistically on both targets, but with moderate affinity, presents a promising pharmacological profile.
Collapse
Affiliation(s)
- Valentine Lahmy
- INSERM U710, Montpellier, France,University of Montpellier 2, Montpellier, France,Ecole Pratique des Hautes Etudes, Paris, France,Amylgen, Clapiers, France
| | | | | | - Gaelle Naert
- INSERM U710, Montpellier, France,University of Montpellier 2, Montpellier, France,Ecole Pratique des Hautes Etudes, Paris, France
| | - Laurent Givalois
- INSERM U710, Montpellier, France,University of Montpellier 2, Montpellier, France,Ecole Pratique des Hautes Etudes, Paris, France
| | - Seung Hyun Kim
- Department of Neurology, Institute of Biomedical Science, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Korea
| | | | | | - Tangui Maurice
- INSERM U710, Montpellier, France,University of Montpellier 2, Montpellier, France,Ecole Pratique des Hautes Etudes, Paris, France,Inserm U710, University of Montpellier 2, cc 105, place Eugène Bataillon, 34095, Montpellier cedex 5, France, Tel: +33 4 67 14 36 23, Fax: +33 4 67 14 33 86, E-mail:
| |
Collapse
|
22
|
Anastasio TJ. Exploring the contribution of estrogen to amyloid-Beta regulation: a novel multifactorial computational modeling approach. Front Pharmacol 2013; 4:16. [PMID: 23459573 PMCID: PMC3585711 DOI: 10.3389/fphar.2013.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/31/2013] [Indexed: 11/23/2022] Open
Abstract
According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ). Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal-logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα), and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that non-steroidal anti-inflammatory drugs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value.
Collapse
Affiliation(s)
- Thomas J Anastasio
- Computational Neurobiology Laboratory, Beckman Institute, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
23
|
Claeysen S, Cochet M, Donneger R, Dumuis A, Bockaert J, Giannoni P. Alzheimer culprits: cellular crossroads and interplay. Cell Signal 2012; 24:1831-40. [PMID: 22627093 DOI: 10.1016/j.cellsig.2012.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in the elderly and one of the major health problems worldwide. Since its first description by Alois Alzheimer in 1907, noticeable but insufficient scientific comprehension of this complex pathology has been achieved. All the research that has been pursued takes origin from the identification of the pathological hallmarks in the forms of amyloid-β (Aβ) deposits (plaques), and aggregated hyperphosphorylated tau protein filaments (named neurofibrillary tangles). Since this discovery, many hypotheses have been proposed to explain the origin of the pathology. The "amyloid cascade hypothesis" is the most accredited theory. The mechanism suggested to be one of the initial causes of AD is an imbalance between the production and the clearance of Aβ peptides. Therefore, Amyloid Precursor Protein (APP) synthesis, trafficking and metabolism producing either the toxic Aβ peptide via the amyloidogenic pathway or the sAPPα fragment via the non amyloidogenic pathway have become appealing subjects of study. Being able to reduce the formation of the toxic Aβ peptides is obviously an immediate approach in the trial to prevent AD. The following review summarizes the most relevant discoveries in the field of the last decades.
Collapse
Affiliation(s)
- Sylvie Claeysen
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
24
|
Summanen M, Granqvist N, Tuominen RK, Yliperttula M, Verrips CT, Boonstra J, Blanchetot C, Ekokoski E. Kinetics of PKCε activating and inhibiting llama single chain antibodies and their effect on PKCε translocation in HeLa cells. PLoS One 2012; 7:e35630. [PMID: 22536418 PMCID: PMC3334965 DOI: 10.1371/journal.pone.0035630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/19/2012] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of PKCε is involved in several serious diseases such as cancer, type II diabetes and Alzheimer's disease. Therefore, specific activators and inhibitors of PKCε hold promise as future therapeutics, in addition to being useful in research into PKCε regulated pathways. We have previously described llama single chain antibodies (VHHs) that specifically activate (A10, C1 and D1) or inhibit (E6 and G8) human recombinant PKCε. Here we report a thorough kinetic analysis of these VHHs. The inhibiting VHHs act as non-competitive inhibitors of PKCε activity, whereas the activating VHHs have several different modes of action, either increasing Vmax and/or decreasing Km values. We also show that the binding of the VHHs to PKCε is conformation-dependent, rendering the determination of affinities difficult. Apparent affinities are in the micromolar range based on surface plasmon resonance studies. Furthermore, the VHHs have no effect on the activity of rat PKCε nor can they bind the rat form of the protein in immunoprecipitation studies despite the 98% identity between the human and rat PKCε proteins. Finally, we show for the first time that the VHHs can influence PKCε function also in cells, since an activating VHH increases the rate of PKCε translocation in response to PMA in HeLa cells, whereas an inhibiting VHH slows down the translocation. These results give insight into the mechanisms of PKCε activity modulation and highlight the importance of protein conformation on VHH binding.
Collapse
Affiliation(s)
- Milla Summanen
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Niko Granqvist
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Raimo K. Tuominen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - C. Theo Verrips
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | - Johannes Boonstra
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Christophe Blanchetot
- Cell Biology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | - Elina Ekokoski
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Checler F. Two-steps control of cellular prion physiology by the extracellular regulated kinase-1 (ERK1). Prion 2012; 6:23-5. [PMID: 22453173 DOI: 10.4161/pri.6.1.18004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular prion (PrP(c)) undergoes a regulated α-secretase-like cleavage by the disintegrin ADAM17 similar to the one taking place on β-amyloid precursor protein (βAPP). Because these cleavages give rise to biologically active fragments, understanding their regulation could be of importance. We have established that the Extracellular Regulated Kinase-1 (ERK1) controls PrPc processing by modulating ADAM17 phosphorylation in a protein kinase C-dependent manner. Strikingly, we also demonstrated that ERK1 acts upstream to increase PrP(c) promoter transactivation in an AP-1 dependent manner. Therefore, ERK1 exerts a dual control of both PrP(c) metabolism and expression. Interestingly, α-secretase cleavage of βAPP appears to be independent of ERK1. I describe here similarities and differences in α-secretase-mediated PrP(c) and βAPP processing pathways and discuss putative physiopathological implications.
Collapse
Affiliation(s)
- Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, Equipe labellisée Fondation pour la Recherche Médicale, Valbonne, France.
| |
Collapse
|
26
|
Dissociation of ERK signalling inhibition from the anti-amyloidogenic action of synthetic ceramide analogues. Clin Sci (Lond) 2012; 122:409-19. [PMID: 22103431 PMCID: PMC3259697 DOI: 10.1042/cs20110257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inhibition of GSL (glycosphingolipid) synthesis reduces Aβ (amyloid β-peptide) production in vitro. Previous studies indicate that GCS (glucosylceramide synthase) inhibitors modulate phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) and that the ERK pathway may regulate some aspects of Aβ production. It is not clear whether there is a causative relationship linking GSL synthesis inhibition, ERK phosphorylation and Aβ production. In the present study, we treated CHO cells (Chinese-hamster ovary cells) and SH-SY5Y neuroblastoma cells, that both constitutively express human wild-type APP (amyloid precursor protein) and process this to produce Aβ, with GSL-modulating agents to explore this relationship. We found that three related ceramide analogue GSL inhibitors, based on the PDMP (D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) structure, reduced cellular Aβ production and in all cases this was correlated with inhibition of pERK (phosphorylated ERK) formation. Importantly, the L-threo enantiomers of these compounds (that are inferior GSL synthesis inhibitors compared with the D-threo-enantiomers) also reduced ERK phosphorylation to a similar extent without altering Aβ production. Inhibition of ERK activation using either PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] or U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) had no impact on Aβ production, and knockdown of endogenous GCS using small interfering RNA reduced cellular GSL levels without suppressing Aβ production or pERK formation. Our data suggest that the alteration in pERK levels following treatment with these ceramide analogues is not the principal mechanism involved in the inhibition of Aβ generation and that the ERK signalling pathway does not play a crucial role in processing APP through the amyloidogenic pathway.
Collapse
|
27
|
Guillot-Sestier MV, Checler F. a-Secretase-Derived Cleavage of Cellular Prion Yields Biologically Active Catabolites with Distinct Functions. NEURODEGENER DIS 2012; 10:294-7. [DOI: 10.1159/000333804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
|
28
|
Guillot-Sestier MV, Sunyach C, Ferreira ST, Marzolo MP, Bauer C, Thevenet A, Checler F. α-Secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid β (Aβ)-associated cell death. J Biol Chem 2011; 287:5021-32. [PMID: 22184125 DOI: 10.1074/jbc.m111.323626] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In physiological conditions, both β-amyloid precursor protein (βAPP) and cellular prion (PrP(c)) undergo similar disintegrin-mediated α-secretase cleavage yielding N-terminal secreted products referred to as soluble amyloid precursor protein-α (sAPPα) and N1, respectively. We recently demonstrated that N1 displays neuroprotective properties by reducing p53-dependent cell death both in vitro and in vivo. In this study, we examined the potential of N1 as a neuroprotector against amyloid β (Aβ)-mediated toxicity. We first show that both recombinant sAPPα and N1, but not its inactive parent fragment N2, reduce staurosporine-stimulated caspase-3 activation and TUNEL-positive cell death by lowering p53 promoter transactivation and activity in human cells. We demonstrate that N1 also lowers toxicity, cell death, and p53 pathway exacerbation triggered by Swedish mutated βAPP overexpression in human cells. We designed a CHO cell line overexpressing the London mutated βAPP (APP(LDN)) that yields Aβ oligomers. N1 protected primary cultured neurons against toxicity and cell death triggered by oligomer-enriched APP(LDN)-derived conditioned medium. Finally, we establish that N1 also protects neurons against oligomers extracted from Alzheimer disease-affected brain tissues. Overall, our data indicate that a cellular prion catabolite could interfere with Aβ-associated toxicity and that its production could be seen as a cellular protective mechanism aimed at compensating for an sAPPα deficit taking place at the early asymptomatic phase of Alzheimer disease.
Collapse
Affiliation(s)
- Marie-Victoire Guillot-Sestier
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097 CNRS/Université de Nice-Sophia-Antipolis (UNSA), 660 route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Fisher A. Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 2011; 120 Suppl 1:22-33. [DOI: 10.1111/j.1471-4159.2011.07507.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Abstract
'Secretase' is a generic term coined more than 20 years ago to refer to a group of proteases responsible for the cleavage of a vast number of membrane proteins. These endoproteolytic events result in the extracellular or intracellular release of soluble metabolites associated with a broad range of intrinsic physiological functions. α-Secretase refers to the activity targeting the amyloid precursor protein (APP) and generating sAPPα, a soluble extracellular fragment potentially associated with neurotrophic and neuroprotective functions. Several proteases from the a disintegrin and metalloproteinase (ADAM) family, including ADAM10 and ADAM17, have been directly or indirectly associated with the constitutive and regulated α-secretase activities. Recent evidence in primary neuronal cultures indicates that ADAM10 may represent the genuine constitutive α-secretase. Mainly because α-secretase cleaves APP within the sequence of Aβ, the core component of the cerebral amyloid plaques in Alzheimer's disease, α-secretase activation is considered to be of therapeutic value. In this article, we will provide a historical perspective on the characterization of α-secretase and review the recent literature on the identification and biology of the current α-secretase candidates.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
31
|
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Campus, Cantoblanco, 28049 Madrid, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
32
|
Cissé M, Duplan E, Guillot-Sestier MV, Rumigny J, Bauer C, Pagès G, Orzechowski HD, Slack BE, Checler F, Vincent B. The extracellular regulated kinase-1 (ERK1) controls regulated alpha-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein. J Biol Chem 2011; 286:29192-29206. [PMID: 21586567 DOI: 10.1074/jbc.m110.208249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The α-secretases A disintegrin and metalloprotease 10 (ADAM10) and ADAM17 trigger constitutive and regulated processing of the cellular prion protein (PrP(c)) yielding N1 fragment. The latter depends on protein kinase C (PKC)-coupled M1/M3 muscarinic receptor activation and subsequent phosphorylation of ADAM17 on its intracytoplasmic threonine 735. Here we show that regulated PrP(c) processing and ADAM17 phosphorylation and activation are controlled by the extracellular-regulated kinase-1/MAP-ERK kinase (ERK1/MEK) cascade. Thus, reductions of ERK1 or MEK activities by dominant-negative analogs, pharmacological inhibition, or genetic ablation all impair N1 secretion, whereas constitutively active proteins increase N1 recovery in the conditioned medium. Interestingly, we also observed an ERK1-mediated enhanced expression of PrP(c). We demonstrate that the ERK1-associated increase in PrP(c) promoter transactivation and mRNA levels involve transcription factor AP-1 as a downstream effector. Altogether, our data identify ERK1 as an important regulator of PrP(c) cellular homeostasis and indicate that this kinase exerts a dual control of PrP(c) levels through transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Marie-Victoire Guillot-Sestier
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Joaquim Rumigny
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Charlotte Bauer
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Gilles Pagès
- Institute of Developmental Biology and Cancer, Unité Mixte de Recherche, 6543 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Centre Antoine Lacassagne, 06189 Nice, France
| | - Hans-Dieter Orzechowski
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitaetsmedizin Berlin, Campus Mitte, Luisenstrasse 10-11, 10117 Berlin, Germany, and
| | - Barbara E Slack
- Boston University School of Medicine, Boston, Massachusetts 02118
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France,.
| | - Bruno Vincent
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France,.
| |
Collapse
|