1
|
Khamaysa M, El Mendili M, Marchand V, Querin G, Pradat PF. Quantitative spinal cord imaging: Early ALS diagnosis and monitoring of disease progression. Rev Neurol (Paris) 2024:S0035-3787(24)00657-X. [PMID: 39547910 DOI: 10.1016/j.neurol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons in the cortex, brainstem, and spinal cord. This degeneration leads to muscular weakness, progressively impairing motor functions and ultimately resulting in respiratory failure. The clinical, genetic, and pathological heterogeneity of ALS, combined with the absence of reliable biomarkers, significantly challenge the efficacy of therapeutic trials. Despite these hurdles, neuroimaging, and particularly spinal cord imaging, has emerged as a promising tool. It provides insights into the involvement of both upper and lower motor neurons. Quantitative spinal imaging has the potential to facilitate early diagnosis, enable accurate monitoring of disease progression, and refine the design of clinical trials. In this review, we explore the utility of spinal cord imaging within the broader context of developing spinal imaging biomarkers in ALS. We focus on a both diagnostic and prognostic biomarker in ALS, highlighting its pivotal role in elucidating the disease's underlying pathology. We also discuss the existing limitations and future avenues for research, aiming to bridge the translational gap between academic research and its application in clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- M Khamaysa
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - M El Mendili
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - V Marchand
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - G Querin
- Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France
| | - P-F Pradat
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France; Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France.
| |
Collapse
|
2
|
Rodrigues RB, Orsini M, Neves SV, de Rezende Pinto WBV, da Silva Catarino AM, Pereira DA, Oliveira ASB. Differential Diagnosis or Etiology: A Case Report on Amyotrophic Lateral Sclerosis-like Neuropathy Associated with HIV Infection. Curr HIV Res 2023; 21:323-329. [PMID: 37711011 DOI: 10.2174/1570162x21666230914104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Retroviruses are described as a risk factor for chronic neuropathy. However, it is still unknown if they can work as amyotrophic lateral sclerosis triggers. Over the years, some cases of this association have been described with heterogenous disclosures. CASE REPRESENTATION This study aimed to report a case of HIV and ALS-like neuropathy and briefly discuss peculiarities of clinical aspects, such as physiopathology and treatment options. The patient underwent neurological examination associated with blood tests, electromyography, analysis of cerebrospinal fluid, and imaging studies. DISCUSSION A non-systematic review was performed in major databases regarding the topic. The case presented mixed upper and lower motor neuron signs and was framed as a probable case of ALS following the present criteria. CONCLUSION After a short follow-up and viral load cleansing, neurological stabilization was achieved.
Collapse
Affiliation(s)
| | - Marco Orsini
- Neurology Department, Iguaçu University, Nova Iguaçu, Brazil
- Neurology Department, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Zakharova MN, Abramova AA. Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:65-73. [PMID: 34100429 PMCID: PMC8451581 DOI: 10.4103/1673-5374.314289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle wasting, breathing and swallowing difficulties resulting in patient’s death in two to five years after disease onset. In amyotrophic lateral sclerosis, both upper and lower motor neurons of the corticospinal tracts are involved in the process of neurodegeneration, accounting for great clinical heterogeneity of the disease. Clinical phenotype has great impact on the pattern and rate of amyotrophic lateral sclerosis progression and overall survival prognosis. Creating more homogenous patient groups in order to study the effects of drug agents on specific manifestations of the disease is a challenging issue in amyotrophic lateral sclerosis clinical trials. Since amyotrophic lateral sclerosis has low incidence rates, conduction of multicenter trials requires certain standardized approaches to disease diagnosis and staging. This review focuses on the current approaches in amyotrophic lateral sclerosis classification and staging system based on clinical examination and additional instrumental methods, highlighting the role of upper and lower motor neuron involvement in different phenotypes of the disease. We demonstrate that both clinical and instrumental findings can be useful in evaluating severity of upper motor neuron and lower motor neuron involvement and predicting the following course of the disease. Addressing disease heterogeneity in amyotrophic lateral sclerosis clinical trials could lead to study designs that will assess drug efficacy in specific patient groups, based on the disease pathophysiology and spatiotemporal pattern. Although clinical evaluation can be a sufficient screening method for dividing amyotrophic lateral sclerosis patients into clinical subgroups, we provide proof that instrumental studies could provide valuable insights in the disease pathology.
Collapse
|
4
|
Harper E, Xie Y, Connolly L. Investigating the pre-lethal cytotoxic effects of bis(2,4-di-tert-butylphenyl)phosphate on Chinese hamster ovary cells using high content analysis. J Biotechnol 2021; 328:59-71. [PMID: 33453293 DOI: 10.1016/j.jbiotec.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Bis(2,4-di-tert-butylphenyl)Phosphate (bDtBPP) leaches out of polyethylene films used by the biopharmaceutical industry in single-use systems (SUS) for the culturing of drug producing cell lines. Previous studies found bDtBPP (0.025 - 0.110 mg/L) negatively affects Chinese hamster ovary (CHO) cell growth and productivity. Less information is known about the potential early stages of subtle pre-lethal cytotoxic effects of bDtBPP. This study aimed to investigate the pre-lethal cytotoxic effects in CHO-K1 cells of bDtBPP (0.005 - 0.25 μg/ml) at process relevant concentrations following 2, 24 and 48 h exposure, using high content analysis to investigate multiple pre-lethal cytotoxicity markers. After 48 h exposure, bDtBPP (0.005 - 0.25 μg/ml; P ≤ 0.001) increased nuclear intensity. A dose- and time-dependent reduction in mitochondrial mass was seen after exposure to bDtBPP. Reactive oxygen species increased after 2 h exposure to 0.25 μg/ml bDtBPP, 24 and 48 h exposure to 0.05 - 0.25 μg/ml bDtBPP (P ≤ 0.01 and P ≤ 0.001). BDtBPP induced subtle pre-lethal cytotoxic effects on CHO-K1 cellular health. This study highlights the cellular health benefits of the biopharmaceutical industry switching to alternative SUS plastics which do not leach bDtBPP, which may enhance CHO-K1 cell productivity.
Collapse
Affiliation(s)
- Emma Harper
- Institute for Global Food Security, School of Biological Sciences, 19 Chlorine Gardens, BT9 5DL, Queen's University Belfast, Northern Ireland, UK
| | - Yuling Xie
- Institute for Global Food Security, School of Biological Sciences, 19 Chlorine Gardens, BT9 5DL, Queen's University Belfast, Northern Ireland, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, 19 Chlorine Gardens, BT9 5DL, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
5
|
Galvão CRC, Cavalcante PMA, Olinda R, Graciani Z, Zatz M, Kok F, Santos S, Lancman S. Motor impairment in a rare form of spastic paraplegia (Spoan syndrome): a 10-year follow-up. BMC Neurol 2019; 19:256. [PMID: 31656170 PMCID: PMC6816190 DOI: 10.1186/s12883-019-1465-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/13/2019] [Indexed: 11/29/2022] Open
Abstract
Background Spastic paraplegia, optic atrophy and neuropathy (Spoan syndrome) is an autosomal recessive disease with approximately 70 cases recorded in Brazil and Egypt. Methods This is a prospective longitudinal study performed with 47 patients affected with Spoan syndrome of seven communities of Rio Grande do Norte (Brazil) to investigate changes in motor function based on comparative data obtained from a 10-year follow-up. Results The mean age of the participants was 47.21 ± 12.42 years old, and the mean age at loss of ambulation and hand function were 10.78 ± 5.55 and 33.58 ± 17.47 years old, respectively. Spearman’s correlation analysis between the score on the Modified Barthel Index and the investigated variables evidenced statistical significance for age (p < 0.001) and right- and left-hand grip strength (p = 0.042 and p = 0.021, respectively). Statistical significance was not evidenced for the remainder of the variables, including age at onset of symptoms (p = 0.634), age at loss of ambulation (p = 0.664) and age at loss of hand function (p = 0.118). Conclusions Our analysis allows asserting that the participants exhibited slight dependence until age 35. The greatest losses occurred from ages 35 to 41, and starting at 50, practically all patients become completely dependent. These findings are relevant for determining the prognosis as well as suitable treatment, rehabilitation and assistive technology for these individuals.
Collapse
Affiliation(s)
- Cláudia R C Galvão
- Department of Occupational Therapy, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Ricardo Olinda
- Department of Statistics, State University of Paraíba, Campina Grande, Brazil
| | - Zodja Graciani
- Department of Physical Therapy, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Fernando Kok
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Silvana Santos
- Community Genetics Group, State University of Paraíba, Rua das Baraúnas 351, Campina Grande, Paraíba, Brazil.
| | - Selma Lancman
- Rehabilitation Sciences Program, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Abstract
Our understanding of astrocytes and their role in neurological diseases has increased considerably over the past two decades as the diverse roles of these cells have become recognized. Our evolving understanding of these cells suggests that they are more than support cells for neurons and that they play important roles in CNS homeostasis under normal conditions, in neuroprotection and in disease exacerbation. These multiple functions make them excellent candidates for targeted therapies to treat neurological disorders. New technological advances, including in vivo imaging, optogenetics and chemogenetics, have allowed us to examine astrocytic functions in ways that have uncovered new insights into the dynamic roles of these cells. Furthermore, the use of induced pluripotent stem cell-derived astrocytes from patients with a host of neurological disorders can help to tease out the contributions of astrocytes to human disease. In this Review, we explore some of the technological advances developed over the past decade that have aided our understanding of astrocyte function. We also highlight neurological disorders in which astrocyte function or dysfunction is believed to have a role in disease pathogenesis or propagation and discuss how the technological advances have been and could be used to study each of these diseases.
Collapse
|
7
|
CNS repurposing - Potential new uses for old drugs: Examples of screens for Alzheimer's disease, Parkinson's disease and spasticity. Neuropharmacology 2018; 147:4-10. [PMID: 30165077 DOI: 10.1016/j.neuropharm.2018.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/10/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Drug repurposing is recently gaining increasing attention, not just from pharmaceutical companies but also from government agencies in an attempt to generate new medications to address increasing unmet medical needs in a cost effective and expedite manner. There are several approaches to identify novel indications for known drugs. Many are based on rational selection e.g. the known or a new mechanism of action of a drug. This review will focus rather on phenotypic or high content screening of compounds in models that are believed to be predictive of effectiveness of compounds irrespective of their mechanism of action. Three short cases studies of screens for Alzheimer's disease, Parkinson's disease and spasticity will be given as examples. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
|
8
|
Lerch JK, Buchser W. Functional Genomics and High Content Screening in the Nervous System. Mol Cell Neurosci 2018; 80:159-160. [PMID: 28413055 DOI: 10.1016/j.mcn.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jessica K Lerch
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University, 460 W 12(th) Ave, 696 Biomedical Research Tower, Columbus, OH, 43210, United States.
| | - William Buchser
- Department of Biology, College of William & Mary, Integrated Science Center 2135 540 Landrum Drive, Williamsburg, VA, 23185, United States.
| |
Collapse
|
9
|
Oliveira EP, Silva-Correia J, Reis RL, Oliveira JM. Biomaterials Developments for Brain Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:323-346. [PMID: 30357631 DOI: 10.1007/978-981-13-0950-2_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Central Nervous System (CNS) is a highly complex organ that works as the control centre of the body, managing vital and non-vital functions. Neuro-diseases can lead to the degeneration of neural tissue, breakage of the neuronal networks which can affect vital functions and originate cognitive deficits. The complexity of the neural networks, their components and the low regenerative capacity of the CNS are on the basis for the lack of recovery, having the need for therapies that can promote tissue repair and recovery. Most brain processes are mediated through molecules (e.g. cytokines, neurotransmitters) and cells response accordingly and to surrounding cues, either biological or physical, which offers molecule administration and/or cell transplantation a great potential for use in brain recovery. Biomaterials and in particular, of natural-origin are attractive candidates owed to their intrinsic biological cues and biocompatibility and degradability. Through the use of biomaterials, it is possible to protect the cells/molecules from body clearance, enzymatic degradation while maintaining the components in a place of interest. Moreover, by means of combining several components, it is possible to obtain a more targeted and controlled delivery, to image the biomaterial implantation and its degradation over time and tackling simultaneously occurring events (cell death and inflammation) in brain diseases. In this chapter, it is reviewed some brain-affecting diseases and the current developments on tissue engineering approaches for a functional recovery of the brain from those diseases.
Collapse
Affiliation(s)
- Eduarda P Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal.,ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal.,ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal.,ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal. .,ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| |
Collapse
|
10
|
Can Astrocytes Be a Target for Precision Medicine? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:111-128. [DOI: 10.1007/978-3-319-60733-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|