1
|
Wang S, Qin H, Zhang Y, Yang N, Zhao J. The relationship between weight-adjusted-waist index, body mass index and diabetic retinopathy among American adults: a population-based analysis. Sci Rep 2024; 14:23837. [PMID: 39394416 PMCID: PMC11470029 DOI: 10.1038/s41598-024-75211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes, with its prevalence increasing globally. While previous research has linked obesity indices such as body mass index (BMI) to DR, the association with weight-adjusted-waist index (WWI) remains unclear. Additionally, the relationship between WWI and DR has not been fully elucidated. This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey (2005-2008) to investigate these associations in Americans aged 40 and above. The study included 5436 participants (2705 men and 2731 women). Weighted logistic regression analysis revealed a significant increase in DR prevalence with higher WWI and BMI values. Smooth curve analysis demonstrated a linear correlation between WWI and DR. The findings suggest that both WWI and BMI are independently associated with DR risk among older US adults, highlighting the importance of considering central obesity measures in assessing diabetic complications.
Collapse
Affiliation(s)
- Songtao Wang
- The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hecong Qin
- The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Zhang
- The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ning Yang
- The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jinsong Zhao
- The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Huang S, Feng Y, Sun Y, Liu J, Wang P, Yu J, Su X, Han S, Huang S, Huang H, Chen S, Xu Y, Zeng F. The associations between single nucleotide polymorphisms and diabetic retinopathy risk: an umbrella review. Endocr J 2024; 71:839-849. [PMID: 39034116 DOI: 10.1507/endocrj.ej23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
This umbrella review was conducted aiming to assess the association between genetic variations and the development of diabetic retinopathy (DR) by collecting and evaluating available systematic reviews and meta-analysis results. We evaluated the methodological quality using the Measurement Tool to Assess Systematic Reviews (AMSTAR) 2.0, estimated the summary effect size by using the random effects model and calculated the 95% prediction intervals (PIs). Evidence from the included meta-analyses was graded according to established criteria as follows: convincing, highly suggestive, suggestive, weak, or not significant. This umbrella review included 32 meta-analyses of 52 candidate SNPs. The 12 selected meta-analyses were rated as "high," 2 studies were rated as "moderate," 11 studies were graded as "low," and the remaining 7 studies were graded as "critically low" in terms of methodological quality. Carriers of specific genotypes and alleles of the transcription Factor 7-like 2 C/T (TCF7L2 C/T) polymorphism (rs7903146, p < 0.001) might be more susceptible to the occurrence of DR in the homozygous and recessive models, and these associations were supported by "convincing" evidence. Significant associations were also found between interleukin-6 (IL-6) -174 G/C (rs1800795; p < 0.05) or vascular endothelial growth factor (VEGF) polymorphisms (rs2010963, rs699947, rs1570360, rs2010963, rs699947, rs2146323; all p values <0.05) and DR risk, but these associations were supported by "weak" evidence. The TCF7L2 C/T variant could be identified as a definitive genetic risk factor for the development and progression of DR. Data from additional in-depth studies are needed to establish robust evidence for the associations between polymorphisms of IL-6 or VEGF and DR.
Collapse
Affiliation(s)
- Shaofen Huang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Yonghui Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiazi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pu Wang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Jingrong Yu
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shasha Han
- Department of Neonatology and Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shiqi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Haokun Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shiyun Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Xu
- Baoan Center for Chronic Diseases Control, Shenzhen 518101, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Zeng Y, Mo G, Wang Z, Wang X, Li K, Yang Y, Tian N. Rheumatoid arthritis and diabetic retinopathy: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39001. [PMID: 39058858 PMCID: PMC11272287 DOI: 10.1097/md.0000000000039001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a common and highly blinding disease. Many clinical studies have shown a causal relationship between Rheumatoid arthritis (RA) and DR, but the results are contradictory. In addition, some clinical results and pathological inferences have certain paradoxes, and the influence of RA on the pathogenesis and development of DR Is unclear. Our research assessed the causal association between RA and the development of DR using a 2-sample Mendelian randomization method. Single nucleotide polymorphisms (SNPs) relevant to the study were extracted and filtered from genome-wide association study (GWAS) data. A DR GWAS with a sample size of 190,594 and an RA GWAS with a sample size of 58,284 were obtained. Inverse variance weighted (IVW) method was used to analyze the results, and Mendelian randomization (MR)-Egger regression method and weighted median method were used to evaluate the robustness. Sensitivity analysis was performed using pleiotropy test, heterogeneity test, leave-one-out test to ensure that the results were unbiased. Confounding factors were eliminated to ensure robustness. A total of 83 related SNPs were screened. IVW method showed a positive correlation between RA and the increased relative risk of diabetic retinopathy (OR = 1.06, 95%CI: 1.04-1.23). The same trend was shown by MR-Egger regression method and weighted median method. Sensitivity analysis showed that there was no heterogeneity in SNPs, and the results were less likely to be affected by potential bias. After removing SNPs linked to confounders, the MR results remained significant and stable in direction. There is a positive causal association between rheumatoid arthritis and diabetic retinopathy. It is important to strengthen retina-related screening and prevention in diabetic patients with RA to reduce the risk of DR In RA patients.
Collapse
Affiliation(s)
- Yihuan Zeng
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Guangmeng Mo
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Zhenting Wang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Xiaoyv Wang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Kunmeng Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, China
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Yan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Ni Tian
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, China
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, China
| |
Collapse
|
4
|
Lykke L, Ernst C, Bek T. The vasoactive effects of bradykinin, vasoactive intestinal peptide, calcitonin gene-related peptide and neuropeptide Y depend on the perivascular tissue in porcine retinal arterioles in vitro. Acta Ophthalmol 2024; 102:349-356. [PMID: 37565361 DOI: 10.1111/aos.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE The retina contains a number of vasoactive neuropeptides and corresponding receptors, but the role of these neuropeptides for tone regulation of retinal arterioles has not been studied in detail. METHODS Porcine arterioles with preserved perivascular retinal tissue were mounted in a wire myograph, and the tone was measured after the addition of increasing concentrations of bradykinin, vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), substance P (SP), calcitonin gene-related peptide (CGRP) and brain natriuretic peptide (BNP). The experiments were performed during inhibition of the synthesis of nitric oxide (NO), prostaglandins and dopamine and were repeated after removal of the perivascular retinal tissue. RESULTS Bradykinin, VIP and CGRP induced significant concentration-dependent dilatation and NPY significant concentration-dependent contraction of the arterioles in the presence of perivascular retinal tissue (p < 0.03 for all comparisons) but not on isolated arterioles. BNP and SP had no effect on vascular tone. The NOS inhibitor L-NAME reduced bradykinin- and VIP-induced relaxation (p < 0.001 for both comparisons), whereas none of the other inhibitors influenced the vasoactive effects of the studied neuropeptides. CONCLUSION The effects of neuropeptides on the tone of retinal arterioles depend on the perivascular retinal tissue and may involve effects other than those mediated by nitric oxide, prostaglandins and adrenergic compounds. Investigation of the mechanisms underlying the vasoactive effect of neuropeptides may be important for understanding and treating retinal diseases where disturbances in retinal flow regulation are involved in the disease pathogenesis.
Collapse
Affiliation(s)
- Lise Lykke
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Charlotte Ernst
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
5
|
Gong AJ, Fu W, Li H, Guo N, Pan T. A Siamese ResNeXt network for predicting carotid intimal thickness of patients with T2DM from fundus images. Front Endocrinol (Lausanne) 2024; 15:1364519. [PMID: 38549767 PMCID: PMC10973133 DOI: 10.3389/fendo.2024.1364519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Objective To develop and validate an artificial intelligence diagnostic model based on fundus images for predicting Carotid Intima-Media Thickness (CIMT) in individuals with Type 2 Diabetes Mellitus (T2DM). Methods In total, 1236 patients with T2DM who had both retinal fundus images and CIMT ultrasound records within a single hospital stay were enrolled. Data were divided into normal and thickened groups and sent to eight deep learning models: convolutional neural networks of the eight models were all based on ResNet or ResNeXt. Their encoder and decoder modes are different, including the standard mode, the Parallel learning mode, and the Siamese mode. Except for the six unimodal networks, two multimodal networks based on ResNeXt under the Parallel learning mode or the Siamese mode were embedded with ages. Performance of eight models were compared via the confusion matrix, precision, recall, specificity, F1 value, and ROC curve, and recall was regarded as the main indicator. Besides, Grad-CAM was used to visualize the decisions made by Siamese ResNeXt network, which is the best performance. Results Performance of various models demonstrated the following points: 1) the RexNeXt showed a notable improvement over the ResNet; 2) the structural Siamese networks, which extracted features parallelly and independently, exhibited slight performance enhancements compared to the traditional networks. Notably, the Siamese networks resulted in significant improvements; 3) the performance of classification declined if the age factor was embedded in the network. Taken together, the Siamese ResNeXt unimodal model performed best for its superior efficacy and robustness. This model achieved a recall rate of 88.0% and an AUC value of 90.88% in the validation subset. Additionally, heatmaps calculated by the Grad-CAM algorithm presented concentrated and orderly mappings around the optic disc vascular area in normal CIMT groups and dispersed, irregular patterns in thickened CIMT groups. Conclusion We provided a Siamese ResNeXt neural network for predicting the carotid intimal thickness of patients with T2DM from fundus images and confirmed the correlation between fundus microvascular lesions and CIMT.
Collapse
Affiliation(s)
- AJuan Gong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heng Li
- The Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Na Guo
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Wang S, Pan X, Zhang M, Chen S. Correlation Between Glycolipid Metabolism Levels and Diabetic Retinopathy in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1-9. [PMID: 38192497 PMCID: PMC10771718 DOI: 10.2147/dmso.s437586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose We investigate the correlation between glucose and lipid metabolism and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM) and its diagnostic and predictive value. Patients and Methods A retrospective analysis involved 620 patients diagnosed with T2DM, categorized into two groups based on fundus examination results: the non-diabetic retinopathy group (NDR, n=340) and the diabetic retinopathy group (DR, n=280). We collected baseline patient data, calculated the ratio of glycated hemoglobin (HbA1c) to high-density lipoprotein cholesterol (HDL-C), and analyzed its association with Type 2 Diabetic Retinopathy. Results HbA1c/HDL-C in DR group exhibited significantly higher than the NDR group (P<0.001). Mantel-Haenszel's chi-square trend analysis indicated a notable linear trend (P<0.001) between HbA1c/HDL-C and DR. HbA1c/HDL-C revealed moderate positive correlations with DR, r=0.342, P<0.001. Binary logistic regression analysis showed systolic blood pressure (SBP), diabetes course, fasting blood glucose (FBG) and HbA1c/HDL-C as independent risk factors for DR in T2DM patients. Restrictive cubic spline analysis demonstrated a significant nonlinear relationship between HbA1c/HDL-C and DR (P total trend <0.001, P nonlinear = 0.0196). ROC curve analysis identified that HbA1c/HDL-C had the highest diagnostic accuracy for DR, with an area under the ROC curve (AUC) of 0.711, 53.2% sensitivity, and 78.2% specificity. Conclusion Our study shows that HbA1c/HDL-C is an independent risk factor for DR in patients with type 2 diabetes. HbA1c/HDL-C has good diagnostic value for DR and can be used as a biological index for early screening of DR.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Mengmeng Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
7
|
Cheng YM, Ma C, Jin K, Jin ZB. Retinal organoid and gene editing for basic and translational research. Vision Res 2023; 210:108273. [PMID: 37307693 DOI: 10.1016/j.visres.2023.108273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The rapid evolution of two technologies has greatly transformed the basic, translational, and clinical research in the mammalian retina. One is the retinal organoid (RO) technology. Various induction methods have been created or adapted to generate species-specific, disease-specific, and experimental-targeted retinal organoids (ROs). The process of generating ROs can highly mimic the in vivo retinal development, and consequently, the ROs resemble the retina in many aspects including the molecular and cellular profiles. The other technology is the gene editing, represented by the classical CRISPR-Cas9 editing and its derivatives such as prime editing, homology independent targeted integration (HITI), base editing and others. The combination of ROs and gene editing has opened up countless possibilities in the study of retinal development, pathogenesis, and therapeutics. We review recent advances in the ROs, gene editing methodologies, delivery vectors, and related topics that are particularly relevant to retinal studies.
Collapse
Affiliation(s)
- You-Min Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Chao Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| |
Collapse
|
8
|
De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, García-Puente L, Rios-Parra A, Garrido-Gil MJ, Casanova-Martín C, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Ortega MA. AIF1: Function and Connection with Inflammatory Diseases. BIOLOGY 2023; 12:biology12050694. [PMID: 37237507 DOI: 10.3390/biology12050694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Macrophages are a type of immune cell distributed throughout all tissues of an organism. Allograft inflammatory factor 1 (AIF1) is a calcium-binding protein linked to the activation of macrophages. AIF1 is a key intracellular signaling molecule that participates in phagocytosis, membrane ruffling and F-actin polymerization. Moreover, it has several cell type-specific functions. AIF1 plays important roles in the development of several diseases: kidney disease, rheumatoid arthritis, cancer, cardiovascular diseases, metabolic diseases and neurological disorders, and in transplants. In this review, we present a comprehensive review of the known structure, functions and role of AIF1 in inflammatory diseases.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
9
|
Wang Y, Hu Q, Luan L, Zhang H. Omentin-1 ameliorates oxidative stress in model of diabetic ophthalmopathy via the promotion of AMPK function. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Sesti LFC, Sbruzzi RC, Polina ER, dos Santos Soares D, Crispim D, Canani LH, dos Santos KG. Association of polymorphisms in the erythropoietin gene with diabetic retinopathy: a case-control study and systematic review with meta-analysis. BMC Ophthalmol 2022; 22:250. [PMID: 35659624 PMCID: PMC9167513 DOI: 10.1186/s12886-022-02467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is characterized by ischemia, hypoxia, and angiogenesis. Erythropoietin (EPO), an angiogenic hormone, is upregulated in DR, and the association of EPO genetic variants with DR is still uncertain, as conflicting results have been reported. Therefore, we performed a case-control study followed by a meta-analysis to investigate whether the rs1617640, rs507392, and rs551238 polymorphisms in EPO gene are associated with DR. METHODS The case-control study included 1042 Southern Brazilians with type 2 diabetes (488 without DR and 554 with DR). Eligible studies for the meta-analysis were searched from electronic databases up to June 1, 2021. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for five genetic inheritance models. RESULTS The minor alleles of the EPO polymorphisms had nearly the same frequency in all groups of patients (35%), and no association was detected with DR in the case-control study. The meta-analysis included 14 independent sets of cases and controls with 9117 subjects for the rs1617640 polymorphism and nine independent sets with more than 5000 subjects for the rs507392 and rs551238 polymorphisms. The G allele of the rs1617640 polymorphism was suggestively associated with DR under the dominant (OR = 0.82, 95% CI: 0.68-0.98), heterozygous additive (OR = 0.82, 95% CI: 0.69-0.97), and overdominant (OR = 0.88, 95% CI: 0.79-0.97) models. In the subgroup analyses, the G allele was also suggestively associated with proliferative DR (PDR), non-proliferative DR (NPDR), and DR (PDR + NPDR) among patients with type 1 diabetes (T1DM) or non-Asian ancestry. After considering the Bonferroni correction for multiple comparisons, the G allele remained associated with NPDR and DR in T1DM. Regarding the rs507392 and rs551238 polymorphisms, no association was found between these variants and DR. CONCLUSION Our findings provide additional support to EPO as a susceptibility gene for DR, with the rs1617640 polymorphism deserving further investigation.
Collapse
Affiliation(s)
- Luís Fernando Castagnino Sesti
- Lutheran University Center of Palmas, Universidade Luterana do Brasil (ULBRA), Palmas, TO Brazil
- Laboratory of Human Molecular Genetics, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, Prédio 22, 5° andar, Canoas, RS 92425-900 Brazil
| | - Renan Cesar Sbruzzi
- Laboratory of Human Molecular Genetics, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, Prédio 22, 5° andar, Canoas, RS 92425-900 Brazil
| | - Evelise Regina Polina
- Laboratory of Human Molecular Genetics, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, Prédio 22, 5° andar, Canoas, RS 92425-900 Brazil
| | - Douglas dos Santos Soares
- Cardiovascular Research Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS Brazil
| | - Luís Henrique Canani
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Kátia Gonçalves dos Santos
- Laboratory of Human Molecular Genetics, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, Prédio 22, 5° andar, Canoas, RS 92425-900 Brazil
| |
Collapse
|
11
|
Akwii RG, Mikelis CM. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 2021; 81:1731-1749. [PMID: 34586603 PMCID: PMC8479497 DOI: 10.1007/s40265-021-01605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1-4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.
Collapse
Affiliation(s)
- Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA.
| |
Collapse
|