1
|
Reed AJ, Sapia RJ, Dowis C, Solarez S, Gerasimova YV. Interrogation of highly structured RNA with multicomponent deoxyribozyme probes at ambient temperatures. RNA (NEW YORK, N.Y.) 2020; 26:1882-1890. [PMID: 32859694 PMCID: PMC7668264 DOI: 10.1261/rna.074864.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Molecular analysis of RNA through hybridization with sequence-specific probes is challenging due to the intrinsic ability of RNA molecules to form stable secondary and tertiary structures. To overcome the energy barrier toward the probe-RNA complex formation, the probes are made of artificial nucleotides, which are more expensive than their natural counterparts and may still be inefficient. Here, we propose the use of a multicomponent probe based on an RNA-cleaving deoxyribozyme for the analysis of highly structured RNA targets. Efficient interrogation of two native RNA from Saccharomyces cerevisiae-a transfer RNA (tRNA) and 18S ribosomal RNA (rRNA)-was achieved at ambient temperature. We achieved detection limits of tRNA down to ∼0.3 nM, which is two orders of magnitude lower than that previously reported for molecular beacon probes. Importantly, no probe annealing to the target was required, with the hybridization assay performed at 37°C. Excess of nonspecific targets did not compromise the performance of the probe, and high interrogation efficiency was maintained by the probes even in complex matrices, such as cell lysate. A linear dynamic range of 0.3-150 nM tRNA was demonstrated. The probe can be adapted for differentiation of a single mismatch in the tRNA-probe complex. Therefore, this study opens a venue toward highly selective, sensitive, robust, and inexpensive assays for the interrogation of biological RNA.
Collapse
Affiliation(s)
- Adam J Reed
- Chemistry Department, University of Central Florida, Orlando, Florida 32765, USA
| | - Ryan J Sapia
- Chemistry Department, University of Central Florida, Orlando, Florida 32765, USA
| | - Charles Dowis
- Chemistry Department, University of Central Florida, Orlando, Florida 32765, USA
| | - Sheila Solarez
- Chemistry Department, University of Central Florida, Orlando, Florida 32765, USA
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, Orlando, Florida 32765, USA
| |
Collapse
|
2
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Kim EM, Song MS, Hur DH, An CM, Kang JH, Park JY. Easy method for discriminating the origins of manila clam Ruditapes philippinarum with a dual-labelled PNA-probe-based melting curve analysis. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9402-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Kim K, Hong SH, Kim BJ, Kim BR, Lee SY, Kim GN, Shim TS, Kook YH, Kim BJ. Separation of Mycobacterium abscessus into subspecies or genotype level by direct application of peptide nucleic acid multi-probe- real-time PCR method into sputa samples. BMC Infect Dis 2015; 15:325. [PMID: 26259717 PMCID: PMC4531893 DOI: 10.1186/s12879-015-1076-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022] Open
Abstract
Background Recently, we introduced a novel peptide nucleic acid (PNA) multi-probe real time PCR method targeting the hsp65 gene (hsp65 PNA RT-PCR) to distinguish Mycobacterium abscessus groups. Methods Here, we evaluated the usefulness of the hsp65 PNA RT-PCR for the direct identification of the M. abscessus group at the subspecies and genotype levels from sputa samples. The method was applied to total sputa DNA from 60 different patients who were identified as having mycobacterial infections via rpoB PCR restriction analysis of the same cultures. Results The hsp65 PNA RT-PCR method had higher sensitivity than the multi-probe real-time PCR assay targeting hsp65 (HMPRT-PCR) for the detection of M. abscessus from sputum [96.7 % (29/30 samples) vs. 70 % (21/30 samples); 100 % specificity]. Conclusions These results suggest that the PNA-based method is feasible for the detection of M. abscessus members not only from cultures but also directly from sputa. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1076-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kijeong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea.
| | - Seok-Hyun Hong
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, and Liver Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| | - Byoung-Jun Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, and Liver Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| | - Bo-Ram Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, and Liver Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| | - So-Young Lee
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, and Liver Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| | - Ga-Na Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, and Liver Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| | - Tae Sun Shim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yoon-Hoh Kook
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, and Liver Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, and Liver Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
5
|
Artificial Nucleic Acid Probes and Their Applications in Clinical Microbiology. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta 2014; 439:231-50. [PMID: 25451956 DOI: 10.1016/j.cca.2014.10.017] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/28/2022]
Abstract
Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review.
Collapse
Affiliation(s)
- E Navarro
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - G Serrano-Heras
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - M J Castaño
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - J Solera
- Internal Medicine Department, General University Hospital, Hermanos Falcó 37, 02006 Albacete, Spain.
| |
Collapse
|
7
|
Jain DR, Ganesh KN. Clickable Cγ-azido(methylene/butylene) peptide nucleic acids and their clicked fluorescent derivatives: synthesis, DNA hybridization properties, and cell penetration studies. J Org Chem 2014; 79:6708-14. [PMID: 24941399 DOI: 10.1021/jo500834u] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synthesis, characterization, and DNA complementation studies of clickable C(γ)-substituted methylene (azm)/butylene (azb) azido PNAs show that these analogues enhance the stability of the derived PNA:DNA duplexes. The fluorescent PNA oligomers synthesized by their click reaction with propyne carboxyfluorescein are seen to accumulate around the nuclear membrane in 3T3 cells.
Collapse
Affiliation(s)
- Deepak R Jain
- Chemical Biology Unit, Indian Institute of Science Education and Research , Dr Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
8
|
Huang J, Yang X, He X, Wang K, Liu J, Shi H, Wang Q, Guo Q, He D. Design and bioanalytical applications of DNA hairpin-based fluorescent probes. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Chan K, Marras SAE, Parveen N. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti. BMC Microbiol 2013; 13:295. [PMID: 24359556 PMCID: PMC3890647 DOI: 10.1186/1471-2180-13-295] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022] Open
Abstract
Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner.
Collapse
Affiliation(s)
| | | | - Nikhat Parveen
- Department of Microbiology and Molecular Genetics, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103-3535, USA.
| |
Collapse
|
10
|
Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG. Fluorescent probes for nucleic Acid visualization in fixed and live cells. Molecules 2013; 18:15357-97. [PMID: 24335616 PMCID: PMC6270009 DOI: 10.3390/molecules181215357] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Collapse
Affiliation(s)
- Alexandre S. Boutorine
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| | - Olga A. Krasheninina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str., 2, Novosibirsk 630090, Russia
| | - Karine Nozeret
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| |
Collapse
|
11
|
Riahi R, Dean Z, Wu TH, Teitell MA, Chiou PY, Zhang DD, Wong PK. Detection of mRNA in living cells by double-stranded locked nucleic acid probes. Analyst 2013; 138:4777-85. [PMID: 23772441 PMCID: PMC3736730 DOI: 10.1039/c3an00722g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Double-stranded probes are homogeneous biosensors for rapid detection of specific nucleotide sequences. These double-stranded probes have been applied in various molecular sensing applications, such as real-time polymerase chain reaction and detection of bacterial 16S rRNA. In this study, we present the design and optimization of double-stranded probes for single-cell gene expression analysis in living cells. With alternating DNA/LNA monomers for optimizing the stability and specificity, we show that the probe is stable in living cells for over 72 hours post-transfection and is capable of detecting changes in gene expression induced by external stimuli. The probes can be delivered to a large number of cells simultaneously by cationic liposomal transfection or to individual cells selectively by photothermal delivery. We also demonstrate that the probe quantifies intracellular mRNA in living cells through the use of an equilibrium analysis. With its effectiveness and performance, the double-stranded probe represents a broadly applicable approach for large-scale single-cell gene expression analysis toward numerous biomedical applications, such as systems biology, cancer, and drug screening.
Collapse
Affiliation(s)
- Reza Riahi
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721-0119, USA
| | - Zachary Dean
- Biomedical Engineering Interdisciplinary Program, The University of Arizona, Tucson, AZ 85721-0119, USA
| | - Ting-Hsiang Wu
- Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1597, USA
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095
| | - Pei-Yu Chiou
- Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1597, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ 85721-0119, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721-0119, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721-0119, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721-0119, USA
| |
Collapse
|
12
|
Wang Q, Chen L, Long Y, Tian H, Wu J. Molecular beacons of xeno-nucleic acid for detecting nucleic acid. Theranostics 2013; 3:395-408. [PMID: 23781286 PMCID: PMC3677410 DOI: 10.7150/thno.5935] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Molecular beacons (MBs) of DNA and RNA have aroused increasing interest because they allow a continuous readout, excellent spatial and temporal resolution to observe in real time. This kind of dual-labeled oligonucleotide probes can differentiate between bound and unbound DNA/RNA in homogenous hybridization with a high signal-to-background ratio in living cells. This review briefly summarizes the different unnatural sugar backbones of oligonucleotides combined with fluorophores that have been employed to sense DNA/RNA. With different probes, we epitomize the fundamental understanding of driving forces and these recognition processes. Moreover, we will introduce a few novel and attractive emerging applications and discuss their advantages and disadvantages. We also highlight several perspective probes in the application of cancer therapeutics.
Collapse
|
13
|
El-Yazbi AF, Loppnow GR. Chimeric RNA–DNA Molecular Beacons for Quantification of Nucleic Acids, Single Nucleotide Polymophisms, and Nucleic Acid Damage. Anal Chem 2013; 85:4321-7. [DOI: 10.1021/ac301669y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amira F. El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB
T6G 2G2 Canada
| | - Glen R. Loppnow
- Department of Chemistry, University of Alberta, Edmonton, AB
T6G 2G2 Canada
| |
Collapse
|
14
|
Johnson RP, Gale N, Richardson JA, Brown T, Bartlett PN. Denaturation of dsDNA immobilised at a negatively charged gold electrode is not caused by electrostatic repulsion. Chem Sci 2013. [DOI: 10.1039/c3sc22147d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Moustafa ME, Hudson RHE. An azo-based PNA monomer: synthesis and spectroscopic study. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:740-51. [PMID: 21902475 DOI: 10.1080/15257770.2011.604661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The full synthetic details and photospectroscopic characterization of a peptide nucleic acid (PNA) monomer suitable for Fmoc-based oligomerization chemistry that bears an azobenzene moiety as a base surrogate are reported. The monomer showed the ability to quench the fluorescence emission of fluorescein and pyrene luminophores and proved to be a competent Föster resonance energy transfer partner in a PNA-based molecular beacon.
Collapse
Affiliation(s)
- Mohamed E Moustafa
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
16
|
Tsybulsky DA, Kvach MV, Stepanova IA, Korshun VA, Shmanai VV. 4',5'-Dichloro-2',7'-dimethoxy-5(6)-carboxyfluorescein (JOE): synthesis and spectral properties of oligonucleotide conjugates. J Org Chem 2011; 77:977-84. [PMID: 22148236 DOI: 10.1021/jo202229t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A convenient procedure for the preparation of the fluorescent dye 4',5'-dichloro-2',7'-dimethoxy-5(6)-carboxyfluorescein (JOE) is reported; the overall yield achieved starting from isovanillin is 10 times higher (40% vs 4%) compared to the known procedure. Isomers (5- and 6-) are easily chromatographically separable as pentafluorophenyl esters of 3',6'-O-bis(cyclohexylcarbonyl) derivatives. Four non-nucleoside JOE phosphoramidites based on 5- and 6-isomers and flexible 6-aminohexanol (AH) or rigid 4-trans-aminocyclohexanol (ACH) linkers have been prepared and used for oligonucleotide labeling. Spectral and photophysical properties of 5'-JOE-modified oligonucleotides have been studied. Fluorescence quantum yield of the dye correlates with the nature of the linker (rigid vs flexible) and with the presence of dG nucleosides in close proximity to a JOE residue.
Collapse
Affiliation(s)
- Dmitry A Tsybulsky
- Institute of Physical Organic Chemistry, Surganova 13, 220072 Minsk, Belarus
| | | | | | | | | |
Collapse
|
17
|
A transformer of molecular beacon for sensitive and real-time detection of phosphatases with effective inhibition of the false positive signals. Biosens Bioelectron 2011; 28:13-6. [DOI: 10.1016/j.bios.2011.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 12/12/2022]
|
18
|
Sato Y, Nishizawa S, Teramae N. Label-Free Molecular Beacon System Based on DNAs Containing Abasic Sites and Fluorescent Ligands That Bind Abasic Sites. Chemistry 2011; 17:11650-6. [DOI: 10.1002/chem.201100384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/31/2011] [Indexed: 01/13/2023]
|
19
|
Monroy-Contreras R, Vaca L. Molecular beacons: powerful tools for imaging RNA in living cells. J Nucleic Acids 2011; 2011:741723. [PMID: 21876785 PMCID: PMC3163130 DOI: 10.4061/2011/741723] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/14/2011] [Accepted: 06/22/2011] [Indexed: 12/25/2022] Open
Abstract
Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs) are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore) at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area.
Collapse
Affiliation(s)
- Ricardo Monroy-Contreras
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico, DF, Mexico
| | | |
Collapse
|
20
|
Su X, Zhang C, Zhao M. Discrimination of the false-positive signals of molecular beacons by combination of heat inactivation and using single walled carbon nanotubes. Biosens Bioelectron 2011; 26:3596-601. [DOI: 10.1016/j.bios.2011.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/22/2011] [Accepted: 02/09/2011] [Indexed: 01/03/2023]
|
21
|
Mayer G, Müller J, Lünse CE. RNA diagnostics: real-time RT-PCR strategies and promising novel target RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:32-41. [PMID: 21956968 DOI: 10.1002/wrna.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ribonucleic acid (RNA) is a multifunctional type of molecule, playing critical roles in protein biosynthesis and regulation. In recent years, suppression of protein translation by so-called microRNAs came into the focus of research, especially because deregulation of this process has been shown to play a role in malignant transformation. Furthermore, RNA molecules circulating in the blood have been revealed as a novel class of markers for diagnosis of cancers. Moreover, genetic information of some pathogens is stored as RNA, allowing their sensitive detection using nucleic acid amplification techniques. In this article, the principle of detecting different RNA types by real-time reverse-transcription polymerase chain reaction applications is described. Furthermore, the emerging use of microRNA and circulating RNA profiles complementing the broad spectrum of RNA diagnosis is discussed.
Collapse
Affiliation(s)
- Günter Mayer
- Institute, Rheinische Friedrich-Wilhelms University of Bonn, Gerhard-Domagk-Strasse 1, Bonn, Germany.
| | | | | |
Collapse
|
22
|
Almeida C, Azevedo NF, Fernandes RM, Keevil CW, Vieira MJ. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl Environ Microbiol 2010; 76:4476-85. [PMID: 20453122 PMCID: PMC2897454 DOI: 10.1128/aem.01678-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022] Open
Abstract
A fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella spp. using a novel peptide nucleic acid (PNA) probe was developed. The probe theoretical specificity and sensitivity were both 100%. The PNA-FISH method was optimized, and laboratory testing on representative strains from the Salmonella genus subspecies and several related bacterial species confirmed the predicted theoretical values of specificity and sensitivity. The PNA-FISH method has been successfully adapted to detect cells in suspension and is hence able to be employed for the detection of this bacterium in blood, feces, water, and powdered infant formula (PIF). The blood and PIF samples were artificially contaminated with decreasing pathogen concentrations. After the use of an enrichment step, the PNA-FISH method was able to detect 1 CFU per 10 ml of blood (5 x 10(9) +/- 5 x 10(8) CFU/ml after an overnight enrichment step) and also 1 CFU per 10 g of PIF (2 x 10(7) +/- 5 x 10(6) CFU/ml after an 8-h enrichment step). The feces and water samples were also enriched according to the corresponding International Organization for Standardization methods, and results showed that the PNA-FISH method was able to detect Salmonella immediately after the first enrichment step was conducted. Moreover, the probe was able to discriminate the bacterium in a mixed microbial population in feces and water by counter-staining with 4',6-diamidino-2-phenylindole (DAPI). This new method is applicable to a broad spectrum of samples and takes less than 20 h to obtain a diagnosis, except for PIF samples, where the analysis takes less than 12 h. This procedure may be used for food processing and municipal water control and also in clinical settings, representing an improved alternative to culture-based techniques and to the existing Salmonella PNA probe, Sal23S10, which presents a lower specificity.
Collapse
Affiliation(s)
- C. Almeida
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - N. F. Azevedo
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - R. M. Fernandes
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - C. W. Keevil
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - M. J. Vieira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
|
24
|
Pensato S, Renda M, Leccia F, Saviano M, D'Andrea LD, Pedone C, Pedone PV, Romanelli A. PNA zipper as a dimerization tool: development of a bZip mimic. Biopolymers 2010; 93:434-41. [PMID: 19938072 DOI: 10.1002/bip.21357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The article describes the use of a PNA duplex (PNA zipper) as a tool to dimerize or bring in close proximity two polypeptides or protein domains. The amino acid sequence to be dimerized is covalently bound to complementary PNA sequences. Annealing of the PNA strands results in dimer formation. To test the ability of the "PNA-zipper" as a dimerization tool, we designed a GCN4 mimetic, where the leucine-zipper dimerization domain was replaced by the PNA zipper, whereas the basic DNA-binding domain was covalently attached to the PNA. The molecule was assembled by chemical ligation of the peptide corresponding to the DNA-binding domain of GCN4 modified with a succinyl thioester with two complementary PNAs harboring a cysteine residue. Electromobility-shift experiments show the ability of the PNA zipper-GCN4 to bind selected DNA duplexes. The PNA zipper-GCN4 binds both the TRE and CRE DNA sites, but it does not bind TRE and CRE mutants containing even a single base mutation, as the native GCN4. The ability to fold upon complexation with DNA was investigated by CD. A good correlation between the ability of the PNA zipper-GCN4 to fold into alpha helices and the ability to bind DNA was found.
Collapse
|
25
|
Zhang N, Appella DH. Advantages of peptide nucleic acids as diagnostic platforms for detection of nucleic acids in resource-limited settings. J Infect Dis 2010; 201 Suppl 1:S42-5. [PMID: 20225945 DOI: 10.1086/650389] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Peptide nucleic acids are a class of nondegradable oligonucleotide mimics that can be used as probes for nucleic acid sequences and could convey the necessary stability to be a diagnostic tool for use in a resource-limited setting. In this review, there is a brief introduction to the field of peptide nucleic acids and their potential benefits as probes for DNA and RNA sequences, followed by highlights of ways by which peptide nucleic acids could benefit a number of established diagnostic tools for human immunodeficiency virus detection.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | |
Collapse
|
26
|
Totsingan F, Tedeschi T, Sforza S, Corradini R, Marchelli R. Highly selective single nucleotide polymorphism recognition by a chiral (5S) PNA beacon. Chirality 2009; 21:245-53. [PMID: 18853465 DOI: 10.1002/chir.20659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A chiral peptide nucleic acid (PNA) beacon containing a C-5 modified monomer based on L-lysine was synthesized. The terminal amino group of the lysine side chain was linked to a spacer for future applications on surfaces. The PNA beacon bears a carboxyfluorescein fluorophore and a dabcyl quencher at opposite ends. The DNA binding properties were compared with those of a homologous PNA beacon containing only achiral monomers. Both beacons underwent a fluorescence increase in the presence of complementary DNA, with higher efficiency and higher selectivity (evaluated using single mismatched DNA sequences) observed for the chiral monomer containing PNA. Ion exchange (IE) HPLC with fluorimetric detection was used in combination with the beacon for the selective detection of complementary DNA. A fluorescent peak corresponding to the PNA beacon:DNA duplex was observed at a very low detection limit (1 nM). The discriminating capacity of the chiral PNA beacon for a single mismatch was found to be superior to those observed with the unmodified one, thus confirming the potency of chirality for increasing the affinity and specificity of DNA recognition.
Collapse
Affiliation(s)
- Filbert Totsingan
- Dipartimento di Chimica Organica e Industriale Università di Parma, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
27
|
Daniels G, Finning K, Martin P, Massey E. Noninvasive prenatal diagnosis of fetal blood group phenotypes: current practice and future prospects. Prenat Diagn 2009; 29:101-7. [DOI: 10.1002/pd.2172] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Wang K, Tang Z, Yang C, Kim Y, Fang X, Li W, Wu Y, Medley C, Cao Z, Li J, Colon P, Lin H, Tan W. Molekulartechnische DNA-Modifizierung: Molecular Beacons. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200800370] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W. Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed Engl 2009; 48:856-70. [PMID: 19065690 PMCID: PMC2772660 DOI: 10.1002/anie.200800370] [Citation(s) in RCA: 492] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular beacons (MBs) are specifically designed DNA hairpin structures that are widely used as fluorescent probes. Applications of MBs range from genetic screening, biosensor development, biochip construction, and the detection of single-nucleotide polymorphisms to mRNA monitoring in living cells. The inherent signal-transduction mechanism of MBs enables the analysis of target oligonucleotides without the separation of unbound probes. The MB stem-loop structure holds the fluorescence-donor and fluorescence-acceptor moieties in close proximity to one another, which results in resonant energy transfer. A spontaneous conformation change occurs upon hybridization to separate the two moieties and restore the fluorescence of the donor. Recent research has focused on the improvement of probe composition, intracellular gene quantitation, protein-DNA interaction studies, and protein recognition.
Collapse
Affiliation(s)
- Kemin Wang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| | - Zhiwen Tang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Chaoyong James Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (P.R. China)
| | - Youngmi Kim
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences 2 Zhongguancun Beiyijie, Beijing 100190 (P.R. China)
| | - Wei Li
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| | - Yanrong Wu
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Colin D. Medley
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Zehui Cao
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Jun Li
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| | - Patrick Colon
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Hui Lin
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| |
Collapse
|
30
|
Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons. Appl Environ Microbiol 2008; 74:7297-305. [PMID: 18820054 DOI: 10.1128/aem.01002-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.
Collapse
|
31
|
Li Y, Zhou X, Ye D. Molecular beacons: An optimal multifunctional biological probe. Biochem Biophys Res Commun 2008; 373:457-61. [DOI: 10.1016/j.bbrc.2008.05.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
|
32
|
Li JJ, Chu Y, Lee BYH, Xie XS. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res 2008; 36:e36. [PMID: 18304948 PMCID: PMC2346604 DOI: 10.1093/nar/gkn033] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 01/09/2008] [Accepted: 01/21/2008] [Indexed: 01/19/2023] Open
Abstract
Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
33
|
Totsingan F, Rossi S, Corradini R, Tedeschi T, Sforza S, Juris A, Scaravelli E, Marchelli R. Label-free selective DNA detection with high mismatch recognition by PNA beacons and ion exchange HPLC. Org Biomol Chem 2008; 6:1232-7. [PMID: 18362963 DOI: 10.1039/b718772f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 11mer peptide nucleic acid (PNA) beacons were synthesized and tested for the detection of full-matched or single mismatched DNA. Fluorescent measurements carried out in solution showed only partial discrimination of the mismatched sequence, while using anion-exchange HPLC, in combination with fluorimetric detection, allowed DNA analysis to be performed with high sensitivity and extremely high sequence selectivity. Up to >90 : 1 signal discrimination in the presence of one single mismatched base was observed. The analysis was tested on both short and long DNA oligomers. Detection of DNA obtained from PCR amplification was also performed allowing the selective detection of the target sequence in complex mixtures. Label free detection of the DNA with high sequence selectivity is therefore possible using the present approach.
Collapse
Affiliation(s)
- Filbert Totsingan
- Dipartimento di Chimica Organica e Industriale-Università di Parma, Viale G.P. Usberti 17/a-I43100, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim Y, Yang CJ, Tan W. Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic Acids Res 2007; 35:7279-87. [PMID: 17959649 PMCID: PMC2175343 DOI: 10.1093/nar/gkm771] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hairpin nucleic acid probes have been highly useful in many areas, especially for intracellular and in vitro nucleic acid detection. The success of these probes can be attributed to the ease with which their conformational change upon target binding can be coupled to a variety of signal transduction mechanisms. However, false-positive signals arise from the opening of the hairpin due mainly to thermal fluctuations and stem invasions. Stem invasions occur when the stem interacts with its complementary sequence and are especially problematic in complex biological samples. To address the problem of stem invasions in hairpin probes, we have created a modified molecular beacon that incorporates unnatural enantiomeric l-DNA in the stem and natural d-DNA or 2′-O-Me-modified RNA in the loop. l-DNA has the same physical characteristics as d-DNA except that l-DNA cannot form stable duplexes with d-DNA. Here we show that incorporating l-DNA into the stem region of a molecular beacon reduces intra- and intermolecular stem invasions, increases the melting temperature, improves selectivity to its target, and leads to enhanced bio-stability. Our results suggest that l-DNA is useful for designing functional nucleic acid probes especially for biological applications.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Chemistry and UF Genetics Institute, Shands Cancer Center, Center for Research at Bio/nano Interface and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | |
Collapse
|
35
|
Huang S, Salituro J, Tang N, Luk KC, Hackett J, Swanson P, Cloherty G, Mak WB, Robinson J, Abravaya K. Thermodynamically modulated partially double-stranded linear DNA probe design for homogeneous real-time PCR. Nucleic Acids Res 2007; 35:e101. [PMID: 17693434 PMCID: PMC2018630 DOI: 10.1093/nar/gkm551] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Real-time PCR assays have recently been developed for diagnostic and research purposes. Signal generation in real-time PCR is achieved with probe designs that usually depend on exonuclease activity of DNA polymerase (e.g. TaqMan probe) or oligonucleotide hybridization (e.g. molecular beacon). Probe design often needs to be specifically tailored either to tolerate or to differentiate between sequence variations. The conventional probe technologies offer limited flexibility to meet these diverse requirements. Here, we introduce a novel partially double-stranded linear DNA probe design. It consists of a hybridization probe 5′-labeled with a fluorophore and a shorter quencher oligo of complementary sequence 3′-labeled with a quencher. Fluorescent signal is generated when the hybridization probe preferentially binds to amplified targets during PCR. This novel class of probe can be thermodynamically modulated by adjusting (i) the length of hybridization probe, (ii) the length of quencher oligo, (iii) the molar ratio between the two strands and (iv) signal detection temperature. As a result, pre-amplification signal, signal gain and the extent of mismatch discrimination can be reliably controlled and optimized. The applicability of this design strategy was demonstrated in the Abbott RealTime HIV-1 assay.
Collapse
Affiliation(s)
- Shihai Huang
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - John Salituro
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Ning Tang
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Ka-Cheung Luk
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - John Hackett
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Priscilla Swanson
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Gavin Cloherty
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Wai-Bing Mak
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - John Robinson
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
| | - Klara Abravaya
- Abbott Molecular Inc., Des Plaines, IL, USA and Abbott Diagnostics, AIDS Research and Retrovirus Discovery, Abbott Park, IL, USA
- *To whom correspondence should be addressed. +1 224 361 7310+1 224 361 7507
| |
Collapse
|
36
|
Aoki H, Tao H. Label- and marker-free gene detection based on hybridization-induced conformational flexibility changes in a ferrocene-PNA conjugate probe. Analyst 2007; 132:784-91. [PMID: 17646878 DOI: 10.1039/b704214k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a strategy for label-free and marker-free gene detection transducing the hybridization event to an electrochemical signal based on the hybridization-induced conformational flexibility change in probe structure. The probe structure was designed to possess a ferrocene moiety as a reporter part and a cysteine moiety as an anchor part at each end of a peptide nucleic acid (PNA) as a recognition part. Electrochemical examination of probe-modified gold electrodes revealed that the ferrocene moiety was placed at the flexible end of the linear probe chain. Upon hybridization with a complementary target DNA, the resultant rigid duplex restricted the ferrocene motion to the electrode surface, causing a decrease in the observed current. The target DNA was detected with the detection limit of 1.44 x 10(-11) M. Thus the probe functioned as a 'self-reporting probe' and detection of the target DNA was demonstrated without the need for external indicators. Moreover, the sensor electrode was able repeatedly to detect the target DNA by the process of regeneration and could discriminate a mismatched DNA.
Collapse
Affiliation(s)
- Hiroshi Aoki
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | | |
Collapse
|
37
|
Yang CJ, Wang L, Wu Y, Kim Y, Medley CD, Lin H, Tan W. Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Res 2007; 35:4030-41. [PMID: 17557813 PMCID: PMC1919502 DOI: 10.1093/nar/gkm358] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To take full advantage of locked nucleic acid (LNA) based molecular beacons (LNA-MBs) for a variety of applications including analysis of complex samples and intracellular monitoring, we have systematically synthesized a series of DNA/LNA chimeric MBs and studied the effect of DNA/LNA ratio in MBs on their thermodynamics, hybridization kinetics, protein binding affinity and enzymatic resistance. It was found that the LNA bases in a MB stem sequence had a significant effect on the stability of the hair-pin structure. The hybridization rates of LNA-MBs were significantly improved by lowering the DNA/LNA ratio in the probe, and most significantly, by having a shared-stem design for the LNA-MB to prevent sticky-end pairing. It was found that only MB sequences with DNA/LNA alternating bases or all LNA bases were able to resist nonspecific protein binding and DNase I digestion. Additional results showed that a sequence consisting of a DNA stretch less than three bases between LNA bases was able to block RNase H function. This study suggested that a shared-stem MB with a 4 base-pair stem and alternating DNA/LNA bases is desirable for intracellular applications as it ensures reasonable hybridization rates, reduces protein binding and resists nuclease degradation for both target and probes. These findings have implications on the design of LNA molecular probes for intracellular monitoring application, disease diagnosis and basic biological studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihong Tan
- *To whom correspondence should be addressed. +1 352 846 2410+1 352 846 2410
| |
Collapse
|
38
|
Quantitative Reverse Transcriptase Polymerase Chain Reaction. BASIC SCIENCE TECHNIQUES IN CLINICAL PRACTICE 2007. [PMCID: PMC7123628 DOI: 10.1007/978-1-84628-740-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Since the first documentation of real-time polymerase chain reaction (PCR),1 it has been used for an increasing and diverse number of applications, including mRNA expression studies, DNA copy number measurements in genomic or viral DNAs,2–7 allelic discrimination assays,8,9 expression analysis of specific splice variants of genes10–13 and gene expression in paraffin-embedded tissues,14,15 and laser captured microdissected cells.13,16–19 Therefore, quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR) is now essential in molecular diagnostics to quantitatively assess the level of RNA or DNA in a given specimen. QRT-PCR enables the detection and quantification of very small amounts of DNA, cDNA, or RNA, even down to a single copy. It is based on the detection of fluorescence produced by reporter probes, which varies with reaction cycle number. Only during the exponential phase of the conventional PCR reaction is it possible to extrapolate back in order to determine the quantity of initial template sequence. The “real-time” nature of this technology pertains to the constant monitoring of fluorescence from specially designed reporter probes during each cycle. Due to inhibitors of the polymerase reaction found with the template, reagent limitation or accumulation of pyrophosphate molecules, the PCR reaction eventually ceases to generate template at an exponential rate (i.e., the plateau phase), making the end point quantitation of PCR products unreliable in all but the exponential phase.
Collapse
|
39
|
Ye S, Miyajima Y, Ohnishi T, Yamamoto Y, Komiyama M. Combination of peptide nucleic acid beacon and nuclease S1 for clear-cut genotyping of single nucleotide polymorphisms. Anal Biochem 2006; 363:300-2. [PMID: 17288978 DOI: 10.1016/j.ab.2006.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/18/2006] [Accepted: 12/21/2006] [Indexed: 11/18/2022]
Affiliation(s)
- Sheng Ye
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | |
Collapse
|
40
|
Englund EA, Appella DH. Synthesis of gamma-substituted peptide nucleic acids: a new place to attach fluorophores without affecting DNA binding. Org Lett 2006; 7:3465-7. [PMID: 16048318 DOI: 10.1021/ol051143z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular beacon strategies using PNA are currently restricted to fluorophore attachment to the ends of the PNA. We report the synthesis of PNA oligomers wherein fluorophores can be attached to the PNA backbone from novel gamma-lysine PNA monomers. Oligomers incorporating the modified PNA showed comparable thermal stability to the corresponding aegPNA oligomer with DNA. When the modified PNA oligomer was annealed with complementary DNA, the fluorescence intensity increased 4-fold over the unbound PNA. [structure: see text]
Collapse
Affiliation(s)
- Ethan A Englund
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
41
|
Pyshnyi DV, Lomzov AA, Pyshnaya IA, Ivanova EM. Hybridization of the bridged oligonucleotides with DNA: thermodynamic and kinetic studies. J Biomol Struct Dyn 2006; 23:567-80. [PMID: 16494507 DOI: 10.1080/07391102.2006.10507082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Hybridization properties of oligonucleotides containing non-nucleotide inserts designed on the basis of synthetic abasic sites, oligomethylene diols or oligoethylene glycols have been characterized. The influence of the inserts which generate extrahelical anucleotidic bulges on thermodynamics, kinetics of hybridization of bridged oligonucleotide with DNA has been studied by UV-melting and stopped-flow techniques. Circular dichroism spectrometry data show that anucleotidic bulges in the middle of the duplex does not alter the B-form helix conformation. Nevertheless, the insert induces destabilization of the duplex structure, caused mostly by the considerable enhancement of the dissociation rates. Free energy increments for the extrahelical anucleotidic bulges can be described in the nearest-neighbor approximation. The thermodynamic effect of the insert lengthening obeys a simple Jacobson-Stockmayer entropy extrapolation. Independently of the insert type, the free energy term is directly proportional to the logarithm of the number of bonds between the oligonucleotide fragments. The behavior of hydrophobic inserts formed by 10-hydroxydecyl-1-phospate units is an exception to the rule.
Collapse
Affiliation(s)
- D V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospect Akad. Lavrentyeva 8, 630090, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
42
|
de Koning MC, Petersen L, Weterings JJ, Overhand M, van der Marel GA, Filippov DV. Synthesis of thiol-modified peptide nucleic acids designed for post-assembly conjugation reactions. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.01.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
44
|
Gibson NJ. The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 2005; 363:32-47. [PMID: 16182268 DOI: 10.1016/j.cccn.2005.06.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Real-time (RT) PCR methods for discovering and genotyping single nucleotide polymorphisms (SNPs) are becoming increasingly important in various fields of biological sciences. SNP genotyping is widely used to perform genetic association studies aimed at characterising the genetic factors underlying inherited traits. The detection and quantification of somatic mutations is an important tool for investigating the genetic causes of tumorigenesis. In infectious disease diagnostics there is an increasing emphasis placed on genotyping variation within the genomes of pathogenic organisms in order to distinguish between strains. METHODS There are several platforms and methods available to the researcher wishing to undertake SNP analysis using real-time PCR methods. These use fluorescent technologies for discriminating between the alternate alleles of a polymorphism. There are several real-time PCR platforms currently on the market. Two of the key technical challenges are allele discrimination and allele quantification. CONCLUSIONS Applications of this technology include SNP genotyping, the sensitive detection of somatic mutations and infectious disease subtyping.
Collapse
Affiliation(s)
- Neil J Gibson
- R&D Genetics, AstraZeneca Pharmaceuticals, 19G9 Mereside, Macclesfield, Cheshire, UK.
| |
Collapse
|
45
|
Rockenbauer E, Petersen K, Vogel U, Bolund L, Kølvraa S, Nielsen KV, Nexø BA. SNP genotyping using microsphere-linked PNA and flow cytometric detection. Cytometry A 2005; 64:80-6. [PMID: 15729710 DOI: 10.1002/cyto.a.20123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) represent the most frequent form of genetic variations. Some of the most sensitive methods for SNP genotyping employ synthetic oligonucleotides, such as the peptide nucleic acid (PNA). We introduce a new method combining allele-specific hybridization, PNA technology, and flow cytometric detection. We tested the design by genotyping a Danish basal cell carcinoma cohort of 80 individuals for an A/C SNP in exon 6 of the XPD gene. METHODS Genomic DNA was amplified by a two-step polymerase chain reaction (PCR) in the presence of fluorescein-dyed primers and fluorescein-12-dUTP. The allele-specific PNA molecules were covalently coupled to carboxylated microspheres with and without rhodamine. Allele-specific hybridization between PCR products and immobilized PNA was carried out at 60 degrees C followed by flow cytometric detection. RESULTS We present a fully functional two-bead genotyping system based on PNA capture and flow cytometric detection used for the correct and fast regenotyping of a Danish basal cell carcinoma cohort. CONCLUSIONS This new assay presents a simple, rapid, and robust method for SNP genotyping for laboratories equipped with a standard flow cytometer. Moreover, this system offers potential for multiplexing and will be operational for middle-scale genotyping.
Collapse
|
46
|
Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HRH. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 2005; 5:209-19. [PMID: 15833050 DOI: 10.1586/14737159.5.2.209] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Real-time quantitative PCR allows the sensitive, specific and reproducible quantitation of nucleic acids. Since its introduction, real-time quantitative PCR has revolutionized the field of molecular diagnostics and the technique is being used in a rapidly expanding number of applications. This exciting technology has enabled the shift of molecular diagnostics toward a high-throughput, automated technology with lower turnaround times. This article reviews the basic principles of real-time PCR and describes the various chemistries available: the double-stranded DNA-intercalating agent SYBR Green 1, hydrolysis probes, dual hybridization probes, molecular beacons and scorpion probes. Quantitation methods are discussed in addition to the competing instruments available on the market. Examples of applications of this important and versatile technique are provided throughout the review.
Collapse
Affiliation(s)
- Manit Arya
- Institute of Urology, Prostate Cancer Research Centre, University College London, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The analysis of biomolecules using microarrays and other biosensors has a significant role in molecular biotechnology, and will become even more important in the future as a versatile tool for research and diagnostics. For many applications, the synthetic DNA mimic peptide nucleic acid (PNA) could be advantageous as a probe molecule, owing to its unique physicochemical and biochemical properties. PNA exhibits superior hybridization characteristics and improved chemical and enzymatic stability relative to nucleic acids. Furthermore, its different molecular structure enables new modes of detection, especially procedures that avoid the introduction of a label. In our opinion, all of these factors contribute significantly toward the establishment of faster and more reliable analytical processes and opens new fields of application.
Collapse
Affiliation(s)
- Ole Brandt
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | | |
Collapse
|