1
|
Fu X, Wang Q, Ma B, Zhang B, Sun K, Yu X, Ye Z, Zhang M. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. Int J Mol Sci 2023; 24:17157. [PMID: 38138987 PMCID: PMC10743243 DOI: 10.3390/ijms242417157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza is caused by avian influenza virus infection; the H5N1 avian influenza virus is a highly pathogenic subtype, affecting poultry and human health. Since the discovery of the highly pathogenic subtype of the H5N1 avian influenza virus, it has caused enormous losses to the poultry farming industry. It was recently found that the H5N1 avian influenza virus tends to spread among mammals. Therefore, early rapid detection methods are highly significant for effectively preventing the spread of H5N1. This paper discusses the detection technologies used in the detection of the H5N1 avian influenza virus, including serological detection technology, immunological detection technology, molecular biology detection technology, genetic detection technology, and biosensors. Comparisons of these detection technologies were analyzed, aiming to provide some recommendations for the detection of the H5N1 avian influenza virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (X.F.); (Q.W.); (B.M.); (B.Z.); (K.S.); (X.Y.); (Z.Y.)
| |
Collapse
|
2
|
Shi D, Shen S, Fan X, Chen S, Wang D, Li C, Wu X, Li L, Bai D, Zhang C, Wang J. Evaluation of Commercial Diagnostic Assays for the Specific Detection of Avian Influenza A (H7N9) Virus RNA Using a Quality-Control Panel and Clinical Specimens in China. PLoS One 2015; 10:e0137862. [PMID: 26361351 PMCID: PMC4567293 DOI: 10.1371/journal.pone.0137862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/23/2015] [Indexed: 11/18/2022] Open
Abstract
A novel avian influenza A H7N9-subtype virus emerged in China in 2013 and threatened global public health. Commercial kits that specifically detect avian influenza A (H7N9) virus RNA are urgently required to prepare for the emergence and potential pandemic of this novel influenza virus. The safety and effectiveness of three commercial molecular diagnostic assays were evaluated using a quality-control panel and clinical specimens collected from over 90 patients with confirmed avian influenza A (H7N9) virus infections. The analytical performance evaluation showed that diverse influenza H7N9 viruses can be detected with high within- and between-lot reproducibility and without cross-reactivity to other influenza viruses (H1N1 pdm09, seasonal H1N1, H3N2, H5N1 and influenza B). The detection limit of all the commercial assays was 2.83 Log10 copies/μl [0.7 Log10TCID50/mL of avian influenza A (H7N9) virus strain A/Zhejiang/DTID-ZJU01/2013], which is comparable to the method recommended by the World Health Organization (WHO). In addition, using a WHO-Chinese National Influenza Center (CNIC) method as a reference for clinical evaluation, positive agreement of more than 98% was determined for all of the commercial kits, while negative agreement of more than 99% was observed. In conclusion, our findings provide comprehensive evidence for the high performance of three commercial diagnostic assays and suggest the application of these assays as rapid and effective diagnostic tools for avian influenza A (H7N9) virus in the routine clinical practice of medical laboratories.
Collapse
Affiliation(s)
- Dawei Shi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Shu Shen
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xingliang Fan
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Suhong Chen
- Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- WHO Collaborating Center for Reference and Research on Influenza, Beijing, People’s Republic of China
| | - Changgui Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Xing Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Lili Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Dongting Bai
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Chuntao Zhang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- * E-mail: (CTZ); (JZW)
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- * E-mail: (CTZ); (JZW)
| |
Collapse
|
3
|
A review on emerging diagnostic assay for viral detection: the case of avian influenza virus. Mol Biol Rep 2014; 42:187-99. [PMID: 25245956 DOI: 10.1007/s11033-014-3758-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Biotechnology-based detection systems and sensors are in use for a wide range of applications in biomedicine, including the diagnostics of viral pathogens. In this review, emerging detection systems and their applicability for diagnostics of viruses, exemplified by the case of avian influenza virus, are discussed. In particular, nano-diagnostic assays presently under development or available as prototype and their potentials for sensitive and rapid virus detection are highlighted.
Collapse
|
4
|
Xie Z, Huang J, Luo S, Xie Z, Xie L, Liu J, Pang Y, Deng X, Fan Q. Ultrasensitive electrochemical immunoassay for avian influenza subtype H5 using nanocomposite. PLoS One 2014; 9:e94685. [PMID: 24733043 PMCID: PMC3986103 DOI: 10.1371/journal.pone.0094685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022] Open
Abstract
We report a novel electrochemical immunosensor that can sensitively detect avian influenza virus H5 subtype (AIV H5) captured by graphene oxide-H5-polychonal antibodies-bovine serum albumin (GO-PAb-BSA) nanocomposite. The graphene oxide (GO) carried H5-polychonal antibody (PAb) were used as signal amplification materials. Upon signal amplification, the immunosensor showed a 256-fold increase in detection sensitivity compared to the immunosensor without GO-PAb-BSA. We designed a PAb labeling GO strategy and signal amplification procedure that allow ultrasensitive and selective detection of AIV H5. The established method responded to 2−15 HA unit/50 µL H5, with a linear calibration range from 2−15 to 2−8 HA unit/50 µL. In summary, we demonstrated that the immunosenser has a high specificity and sensitivity for AIV H5, and the established assay could be potentially applied in the rapid detection of other pathogenic microorganisms.
Collapse
Affiliation(s)
- Zhixun Xie
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
- * E-mail:
| | - Jiaoling Huang
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Sisi Luo
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Liji Xie
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Jiabo Liu
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Yaoshan Pang
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Qing Fan
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| |
Collapse
|
5
|
Yin J, Liu S, Zhu Y. An overview of the highly pathogenic H5N1 influenza virus. Virol Sin 2013; 28:3-15. [PMID: 23325419 PMCID: PMC7090813 DOI: 10.1007/s12250-013-3294-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/31/2012] [Indexed: 11/17/2022] Open
Abstract
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.
Collapse
Affiliation(s)
- Jingchuan Yin
- The State Key laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
6
|
Sakurai A, Shibasaki F. Updated values for molecular diagnosis for highly pathogenic avian influenza virus. Viruses 2012; 4:1235-57. [PMID: 23012622 PMCID: PMC3446759 DOI: 10.3390/v4081235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 07/31/2012] [Accepted: 08/03/2012] [Indexed: 01/31/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 strain pose a pandemic threat. H5N1 strain virus is extremely lethal and contagious for poultry. Even though mortality is 59% in infected humans, these viruses do not spread efficiently between humans. In 1997, an outbreak of H5N1 strain with human cases occurred in Hong Kong. This event highlighted the need for rapid identification and subtyping of influenza A viruses (IAV), not only to facilitate surveillance of the pandemic potential of avian IAV, but also to improve the control and treatment of infected patients. Molecular diagnosis has played a key role in the detection and typing of IAV in recent years, spurred by rapid advances in technologies for detection and characterization of viral RNAs and proteins. Such technologies, which include immunochromatography, quantitative real-time PCR, super high-speed real-time PCR, and isothermal DNA amplification, are expected to contribute to faster and easier diagnosis and typing of IAV.
Collapse
Affiliation(s)
- Akira Sakurai
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | |
Collapse
|
7
|
Mahony JB, Petrich A, Smieja M. Molecular diagnosis of respiratory virus infections. Crit Rev Clin Lab Sci 2012; 48:217-49. [PMID: 22185616 DOI: 10.3109/10408363.2011.640976] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The appearance of eight new respiratory viruses, including the SARS coronavirus in 2003 and swine-origin influenza A/H1N1 in 2009, in the human population in the past nine years has tested the ability of virology laboratories to develop diagnostic tests to identify these viruses. Nucleic acid based amplification tests (NATs) for respiratory viruses were first introduced two decades ago and today are utilized for the detection of both conventional and emerging viruses. These tests are more sensitive than other diagnostic approaches, including virus isolation in cell culture, shell vial culture (SVC), antigen detection by direct fluorescent antibody (DFA) staining, and rapid enzyme immunoassay (EIA), and now form the backbone of clinical virology laboratory testing around the world. NATs not only provide fast, accurate and sensitive detection of respiratory viruses in clinical specimens but also have increased our understanding of the epidemiology of both new emerging viruses such as the pandemic H1N1 influenza virus of 2009, and conventional viruses such as the common cold viruses, including rhinovirus and coronavirus. Multiplex polymerase chain reaction (PCR) assays introduced in the last five years detect up to 19 different viruses in a single test. Several multiplex PCR tests are now commercially available and tests are working their way into clinical laboratories. The final chapter in the evolution of respiratory virus diagnostics has been the addition of allelic discrimination and detection of single nucleotide polymorphisms associated with antiviral resistance. These assays are now being multiplexed with primary detection and subtyping assays, especially in the case of influenza virus. These resistance assays, together with viral load assays, will enable clinical laboratories to provide physicians with new and important information for optimal treatment of respiratory virus infections.
Collapse
Affiliation(s)
- James B Mahony
- M.G. DeGroote Institute for Infectious Disease Research, St. Joseph’s Healthcare, Hamilton, Canada.
| | | | | |
Collapse
|
8
|
Loeffelholz MJ. Avian Influenza (H5N1) Update: Role of the Clinical Microbiology Laboratory. Lab Med 2011. [DOI: 10.1309/lmoeb6a8q9rxnyxjh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
9
|
Debernardi A, Suzanne E, Formant A, Pène L, Dufour A, Lobry J. One year variability of peak heights, heterozygous balance and inter-locus balance for the DNA positive control of AmpFSTR© Identifiler© STR kit. Forensic Sci Int Genet 2011; 5:43-9. [DOI: 10.1016/j.fsigen.2010.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/05/2009] [Accepted: 01/29/2010] [Indexed: 11/15/2022]
|
10
|
Abstract
Although influenza A viruses of avian origin have long been responsible for influenza pandemics, including the "Spanish flu" pandemic of 1918, human infections caused by avian subtypes of influenza A virus, most notably H5N1, have emerged since the 1990s (H5N1 in 1997; H9N2 in 1999; and H7N7 in 2003). The wide geographic distribution of influenza A H5N1 in avian species, and the number and severity of human infections are unprecedented. Together with the ongoing genetic evolution of this virus, these features make influenza A H5N1 a likely candidate for a future influenza pandemic. This article discusses the epidemiology, pathogenesis, and diagnosis of human infections caused by influenza A H5N1 virus.
Collapse
|
11
|
Kaewpongsri S, Sukasem C, Srichunrusami C, Pasomsub E, Zwang J, Pairoj W, Chantratita W. An integrated bioinformatics approach to the characterization of influenza A/H5N1 viral sequences by microarray data: Implication for monitoring H5N1 emerging strains and designing appropriate influenza vaccines. Mol Cell Probes 2010; 24:387-95. [PMID: 20797431 DOI: 10.1016/j.mcp.2010.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 01/18/2010] [Accepted: 08/17/2010] [Indexed: 12/09/2022]
Abstract
In order to characterize A/H5N1 viral sequences, a bioinformatics approach accurately identified viral sequences from discovery of a sequence signature, which provided enough distinctive information for sequence identification. Eight highly pathogenic H5N1 viral isolations were collected from different areas of Thailand between 2003 and 2006, and were used for analysis of H5N1 genotypic testing with a semiconductor-based oligonucleotide microarray. All H5N1 samples and H1N1, H4N8 negative controls were correctly subtyped. Sensitivity of the eight oligonucleotide probes, with optimized cut-offs, ranged from 70% (95% CI 65-75) to 87% (95% CI 84-91), and the corresponding Kappa values ranged from 0.76 (95% CI 0.72-0.80) to 0.86 (95% CI 0.83-0.89). Semi-conductor-based oligonucleotide array and oligonucleotide probes corresponded well when detecting H5N1. After fully correcting the subtype from the result of microarray signal intensity, the microarray output method combined with bioinformatics tools, identified and monitored genetic variations of H5N1. Capability of distinguishing different strains of H5N1 from Thailand was the outstanding feature of this assay. Ninety percent of HA and NA (4/5) genes were sequenced correctly, in accordance with previous examinations performed by classical diagnostic methods. The low-medium-high bioinformatics resolutions were able to predict an epidemic strain of H5N1. This study also showed the advantage of using a large genotypic database to predict the epidemic strain of H5N1. However, the monitoring protocol of this new strain has been recommended for further study with a large-scale sample.
Collapse
Affiliation(s)
- Supaporn Kaewpongsri
- Virology and Molecular Microbiology Unit, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| | | | | | | | | | | | | |
Collapse
|
12
|
A new method for the detection of the H5 influenza virus by magnetic beads capturing quantum dot fluorescent signals. Biotechnol Lett 2010; 32:1933-7. [DOI: 10.1007/s10529-010-0379-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
13
|
Vilcek S, Vlasakova M, Jackova A. LUX real-time PCR assay for the detection of porcine circovirus type 2. J Virol Methods 2010; 165:216-21. [PMID: 20138916 DOI: 10.1016/j.jviromet.2010.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 11/18/2022]
Abstract
Light Upon eXtension real-time PCR (LUX real-time PCR) assay was developed for the detection of porcine circovirus type 2 (PCV2). The primers flanking a 114 bp fragment were selected from ORF1. The optimized assay could detect 20 viral copies of pBluescript SK+ plasmid containing inserted PCV2 DNA. The dynamic range of quantitative analysis covered a 7-order interval ranging from 20 to 2 x 10(8) genome equivalents per assay with the best results in the range from 2 x 10(2) to 2 x 10(7) viral copies. The LUX real-time PCR assay had a high specificity since it detected PCV2 but not PCV1, CSFV, PRRSV or negative samples. There was good agreement between the LUX real-time PCR and the conventional PCR when lymph nodes from PCV2 infected animals were tested. A comparison of the LUX real-time PCR with the TaqMan PCR and SYBR Green PCR indicated that the amount of viral copies determined using linear calibration curve differed from assay to assay but not more than an order. LUX real-time PCR, similar to the TaqMan PCR, was more specific for generation of fluorogenic signal than SYBR Green PCR.
Collapse
Affiliation(s)
- Stefan Vilcek
- University of Veterinary Medicine and Pharmacy, Dept. of Infectious Diseases and Parasitology, SK-041 81 Kosice, Slovakia.
| | | | | |
Collapse
|