1
|
Allerkamp H, Lehner S, Ekhlasi-Hundrieser M, Detering C, von Depka Prondzinski M, Pfarrer C. Expression of angiogenic factors in the uteroplacental unit is altered at time of placentation in a porcine model of von Willebrand disease type 1. Reprod Biol 2019; 19:412-420. [PMID: 31806575 DOI: 10.1016/j.repbio.2019.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/27/2019] [Accepted: 09/29/2019] [Indexed: 11/15/2022]
Abstract
Von Willebrand disease (VWD) affects blood coagulation and correlates with angiodysplasia. Data on VWD-affected women point to slightly increased miscarriage rates. We aimed to investigate the impact of VWD on angiogenesis in the uteroplacental unit of pregnant pigs of a model of VWD type 1 (T1). Uteri, placentae, and embryos were harvested at time of placentation (day 29 to 31) from four sows (two wildtype (WT) and two heterozygous for a von Willebrand factor (VWF) mutation diagnosed with T1). T1 sows were bred to a T1 boar creating embryos of three different genotypes: WT, T1 or homozygous for the VWF mutation corresponding with VWD type 3 (T3). Uteroplacental tissues were examined histologically. Embryos were genotyped. Gene expression of angiogenic factors possibly related to VWF was determined by quantitative real-time PCR. Corresponding protein expression was analyzed by immunohistochemistry. Genotyping revealed 35.3% WT, 52.9% T1 and 5.9% T3 embryos (5.9% not classified confidently). No histological alterations were found. Gene expression of VEGF was significantly increased in T1 placentae while expression of ANG1, ANG2, TIE2, and ITGB3 was significantly reduced, confirmed on protein level for different cell types. TIE2/TIE1 ratios were significantly lower in T1 placentae. Distribution of embryo genotypes indicates selection favoring the WT. Significant expression differences of angiogenic factors in placentae suggest influence of VWF on these factors during placentation, although angiodysplasia was not observed. The alterations concerning VEGF/VEGFR-2 signaling, integrin expression and the ANG/TIE system may influence angiogenesis and vascular adaptation during placentation and thus the overall outcome of pregnancy.
Collapse
Affiliation(s)
- Hanna Allerkamp
- Werlhof Institute, Department of Fundamental and Clinical Research, Schillerstr. 23, 30159 Hannover, Germany.
| | - Stefanie Lehner
- Werlhof Institute, Department of Fundamental and Clinical Research, Schillerstr. 23, 30159 Hannover, Germany
| | - Mahnaz Ekhlasi-Hundrieser
- Werlhof Institute, Department of Fundamental and Clinical Research, Schillerstr. 23, 30159 Hannover, Germany
| | - Carsten Detering
- Werlhof Institute, Department of Fundamental and Clinical Research, Schillerstr. 23, 30159 Hannover, Germany
| | - Mario von Depka Prondzinski
- Werlhof Institute, Department of Fundamental and Clinical Research, Schillerstr. 23, 30159 Hannover, Germany
| | - Christiane Pfarrer
- University of Veterinary Medicine Hannover Foundation, Institute for Anatomy, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
2
|
Allerkamp H, Lehner S, Ekhlasi-Hundrieser M, Detering C, Pfarrer C, Depka Prondzinski MV. Characterization of a Porcine Model for Von Willebrand Disease Type 1 and 3 Regarding Expression of Angiogenic Mediators in the Nonpregnant Female Reproductive Tract. Comp Med 2019; 69:401-412. [PMID: 31526432 DOI: 10.30802/aalas-cm-19-000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Von Willebrand disease (VWD), a blood coagulation disorder, is also known to cause angiodysplasia. Hitherto, no animal model has been found with angiodysplasia that can be studied in vivo. In addition, VWD patients tend to have a higher incidence of miscarriages for reasons unknown. Thus, we aimed to examine the influence of von Willebrand factor (VWF) on the female reproductive tract histology and the expression and distribution of angiogenic factors in a porcine model for VWD types 1 and 3. The disease-causing tandem duplication within the VWF gene occurred naturally in these pigs, making them a rare and valuable model. Reproductive organs of 6 animals (2 of each mutant genotype and 2 wildtype (WT) animals) were harvested. Genotype plus phenotype were confirmed. Several angiogenic factors were chosen for possible connections to VWF and analyzed alongside VWF by immunohistochemistry and quantitative gene expression studies. VWD type 3 animals showed angiodysplasia in the uterus and shifting of integrin αVβ₃ from the apical membrane of uterine epithelium to the cytoplasm accompanied by increased vascular endothelial growth factor (VEGF) expression. Varying staining patterns for angiopoietin (Ang)-2 were observed among the genotypes. As compared with WT, the ovaries of the VWD type 3 animals showed decreased gene expression of ANG2 and increased gene expression of TIE (tyrosine kinase with immunoglobulin and epidermal growth factor homology domains) 2, with some differences in the ANG/TIE-system among the mutant genotypes. In conclusion, severely reduced VWF seems to evoke angiodysplasia in the porcine uterus. Varying distribution and expression of angiogenic factors suggest that this large animal model is promising for investigation of influence of VWF on angiogenesis in larger groups.
Collapse
Affiliation(s)
- Hanna Allerkamp
- Department of Fundamental and Clinical Research, Werlhof Institute, Hannover, Lower Saxony, Germany; Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Lower Saxony, Germany;,
| | - Stefanie Lehner
- Department of Fundamental and Clinical Research, Werlhof Institute, Hannover, Lower Saxony, Germany
| | | | - Carsten Detering
- Department of Fundamental and Clinical Research, Werlhof Institute, Hannover, Lower Saxony, Germany
| | - Christiane Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Lower Saxony, Germany
| | | |
Collapse
|
3
|
Wang G, Wang Y, Shang Y, Zhang Z, Liu X. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol J 2015; 12:9. [PMID: 25645358 PMCID: PMC4322448 DOI: 10.1186/s12985-015-0246-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022] Open
Abstract
This study reviews the FMDV receptor-binding domain, integrin receptors, and heparan sulfate receptors to provide references for studies regarding the mechanisms underlying FMDV infection.
Collapse
Affiliation(s)
- Guangxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Youjun Shang
- National Foot-and-Mouth Disease Reference Laboratory, Lanzhou, 730046, China. .,Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou, 730046, China.
| | - Zhidong Zhang
- National Foot-and-Mouth Disease Reference Laboratory, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Xiangtao Liu
- National Foot-and-Mouth Disease Reference Laboratory, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
4
|
Du J, Guo X, Gao S, Luo J, Gong X, Hao C, Yang B, Lin T, Shao J, Cong G, Chang H. Induction of protection against foot-and-mouth disease virus in cell culture and transgenic suckling mice by miRNA targeting integrin αv receptor. J Biotechnol 2014; 187:154-61. [DOI: 10.1016/j.jbiotec.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
|
5
|
Du P, Shang Y, Yin S, Zhang K, Wang G, Lv Z, Yang S, Wu J, Jin Y, Chen Y, Liu Y, Tian H, Liu X. Comparative analysis of cloned cDNAs encoding Chinese yellow cattle and Gansu black swine integrin receptors for foot-and-mouth disease virus. Arch Virol 2013; 158:2069-78. [PMID: 23620003 DOI: 10.1007/s00705-013-1704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/15/2013] [Indexed: 10/26/2022]
Abstract
To analyze foot-and-mouth disease virus tropism and host range with respect to the integrin receptor, we cloned cDNAs encoding the integrin αν, β1, β3, β6 and β8 subunits from Chinese yellow cattle and Gansu black swine and carried out comparative analysis of their molecular characteristics. The lengths of the mature proteins and the functional domains of the four integrin β subunits were the same between bovine and swine; however, the number of putative N-linked glycosylation sites and cysteine residues and their arrangement varied. Homology analysis of the nucleotide and amino acid sequences showed that FMDV integrin receptors of Chinese yellow cattle and Gansu black swine are highly conserved. Phylogenetic analysis showed that all FMDV integrin receptor subunits of cattle and swine are clustered into the Artiodactyla group; however, Chinese yellow cattle are phylogenetically closer to sheep than to Gansu black swine. We postulate that the host tropism of FMDV may, in part, be related to the divergence of integrin subunits among different species.
Collapse
Affiliation(s)
- Ping Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Chengguan District, Lanzhou, 730046, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Luo J, Du J, Gao S, Zhang G, Sun J, Cong G, Shao J, Lin T, Chang H. Lentviral-mediated RNAi to inhibit target gene expression of the porcine integrin αv subunit, the FMDV receptor, and against FMDV infection in PK-15 cells. Virol J 2011; 8:428. [PMID: 21899738 PMCID: PMC3183033 DOI: 10.1186/1743-422x-8-428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/07/2011] [Indexed: 11/10/2022] Open
Abstract
Background shRNA targeting the integrin αv subunit, which is the foot-and-mouth disease virus (FMDV) receptor, plays a key role in virus attachment to susceptible cells. We constructed a RNAi lentiviral vector, iαv pLenti6/BLOCK -iT™, which expressed siRNA targeting the FMDV receptor, the porcine integrin αv subunit, on PK-15 cells. We also produced a lentiviral stock, established an iαv-PK-15 cell line, evaluated the gene silencing efficiency of mRNA using real-time qRT-PCR, integrand αv expression by indirect immunofluorescence assay (IIF) and cell enzyme linked immunosorbent assays (cell ELISA), and investigated the in vivo inhibitory effect of shRNA on FMDV replication in PK-15 cells. Results Our results indicated successful establishment of the iαv U6 RNAi entry vector and the iαv pLenti6/BLOCK -iT expression vector. The functional titer of obtained virus was 1.0 × 106 TU/mL. To compare with the control and mock group, the iαv-PK-15 group αv mRNA expression rate in group was reduced by 89.5%, whilst IIF and cell ELISA clearly indicated suppression in the experimental group. Thus, iαv-PK-15 cells could reduce virus growth by more than three-fold and there was a > 99% reduction in virus titer when cells were challenged with 102 TCID50 of FMDV. Conclusions Iαv-PK-15 cells were demonstrated as a cell model for anti-FMDV potency testing, and this study suggests that shRNA could be a viable therapeutic approach for controlling the severity of FMD infection and spread.
Collapse
Affiliation(s)
- Jihuai Luo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Du J, Gao S, Luo J, Zhang G, Cong G, Shao J, Lin T, Cai X, Chang H. Effective inhibition of foot-and-mouth disease virus (FMDV) replication in vitro by vector-delivered microRNAs targeting the 3D gene. Virol J 2011; 8:292. [PMID: 21663611 PMCID: PMC3315795 DOI: 10.1186/1743-422x-8-292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 06/10/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Foot-and-mouth disease virus (FMDV) causes an economically important and highly contagious disease of cloven-hoofed animals. RNAi triggered by small RNA molecules, including siRNAs and miRNAs, offers a new approach for controlling viral infections. There is no report available for FMDV inhibition by vector-delivered miRNA, although miRNA is believed to have more potential than siRNA. In this study, the inhibitory effects of vector-delivered miRNAs targeting the 3D gene on FMDV replication were examined. RESULTS Four pairs of oligonucleotides encoding 3D-specific miRNA of FMDV were designed and selected for construction of miRNA expression plasmids. In the reporter assays, two of four miRNA expression plasmids were able to significantly silence the expression of 3D-GFP fusion proteins from the reporter plasmid, p3D-GFP, which was cotransfected with each miRNA expression plasmid. After detecting the silencing effects of the reporter genes, the inhibitory effects of FMDV replication were determined in the miRNA expression plasmid-transfected and FMDV-infected cells. Virus titration and real-time RT-PCR assays showed that the p3D715-miR and p3D983-miR plasmids were able to potently inhibit the replication of FMDV when BHK-21 cells were infected with FMDV. CONCLUSION Our results indicated that vector-delivered miRNAs targeting the 3D gene efficiently inhibits FMDV replication in vitro. This finding provides evidence that miRNAs could be used as a potential tool against FMDV infection.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jihuai Luo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guofeng Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guozheng Cong
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Tong Lin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|