1
|
Kamstrup Sell D, Sinkjaer AW, Bakhshinejad B, Kjaer A. Propagation Capacity of Phage Display Peptide Libraries Is Affected by the Length and Conformation of Displayed Peptide. Molecules 2023; 28:5318. [PMID: 37513190 PMCID: PMC10386350 DOI: 10.3390/molecules28145318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The larger size and diversity of phage display peptide libraries enhance the probability of finding clinically valuable ligands. A simple way of increasing the throughput of selection is to mix multiple peptide libraries with different characteristics of displayed peptides and use it as biopanning input. In phage display, the peptide is genetically coupled with a biological entity (the phage), and the representation of peptides in the selection system is dependent on the propagation capacity of phages. Little is known about how the characteristics of displayed peptides affect the propagation capacity of the pooled library. In this work, next-generation sequencing (NGS) was used to investigate the amplification capacity of three widely used commercial phage display peptide libraries (Ph.D.™-7, Ph.D.™-12, and Ph.D.™-C7C from New England Biolabs). The three libraries were pooled and subjected to competitive propagation, and the proportion of each library in the pool was quantitated at two time points during propagation. The results of the inter-library competitive propagation assay led to the conclusion that the propagation capacity of phage libraries on a population level is decreased with increasing length and cyclic conformation of displayed peptides. Moreover, the enrichment factor (EF) analysis of the phage population revealed a higher propagation capacity of the Ph.D.TM-7 library. Our findings provide evidence for the contribution of the length and structural conformation of displayed peptides to the unequal propagation rates of phage display libraries and suggest that it is important to take peptide characteristics into account once pooling multiple combinatorial libraries for phage display selection through biopanning.
Collapse
Affiliation(s)
- Danna Kamstrup Sell
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders Wilgaard Sinkjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Babak Bakhshinejad
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Pandey S, Malviya G, Chottova Dvorakova M. Role of Peptides in Diagnostics. Int J Mol Sci 2021; 22:ijms22168828. [PMID: 34445532 PMCID: PMC8396325 DOI: 10.3390/ijms22168828] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The specificity of a diagnostic assay depends upon the purity of the biomolecules used as a probe. To get specific and accurate information of a disease, the use of synthetic peptides in diagnostics have increased in the last few decades, because of their high purity profile and ability to get modified chemically. The discovered peptide probes are used either in imaging diagnostics or in non-imaging diagnostics. In non-imaging diagnostics, techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow devices (i.e., point-of-care testing), or microarray or LC-MS/MS are used for direct analysis of biofluids. Among all, peptide-based ELISA is considered to be the most preferred technology platform. Similarly, peptides can also be used as probes for imaging techniques, such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The role of radiolabeled peptides, such as somatostatin receptors, interleukin 2 receptor, prostate specific membrane antigen, αβ3 integrin receptor, gastrin-releasing peptide, chemokine receptor 4, and urokinase-type plasminogen receptor, are well established tools for targeted molecular imaging ortumor receptor imaging. Low molecular weight peptides allow a rapid clearance from the blood and result in favorable target-to-non-target ratios. It also displays a good tissue penetration and non-immunogenicity. The only drawback of using peptides is their potential low metabolic stability. In this review article, we have discussed and evaluated the role of peptides in imaging and non-imaging diagnostics. The most popular non-imaging and imaging diagnostic platforms are discussed, categorized, and ranked, as per their scientific contribution on PUBMED. Moreover, the applicability of peptide-based diagnostics in deadly diseases, mainly COVID-19 and cancer, is also discussed in detail.
Collapse
Affiliation(s)
- Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- Correspondence:
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G611BD, UK;
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic;
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| |
Collapse
|
3
|
Xia X, Wang Q, Ye T, Liu Y, Liu D, Song S, Zheng C. NRF2/ABCB1-mediated efflux and PARP1-mediated dampening of DNA damage contribute to doxorubicin resistance in chronic hypoxic HepG2 cells. Fundam Clin Pharmacol 2019; 34:41-50. [PMID: 31420991 DOI: 10.1111/fcp.12505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/09/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022]
Abstract
Transarterial chemoembolization (TACE)-induced hypoxia can trigger residual liver cancer cells to present a more aggressive phenotype associated with chemoresistance, but the underlying mechanisms are still unknown. In this study, the human liver cancer cell line HepG2 was pre-cultured in different oxygen environments to examine the possible mechanisms of hypoxia-induced doxorubicin resistance. Our study showed that HepG2 cells pre-cultured in a chronic intermittent hypoxic environment exhibited significant resistance to doxorubicin, evidenced by increased intracellular doxorubicin efflux, relatively higher cell proliferation, lower apoptosis, and decreased DNA damage. These changes were accompanied by high levels of NRF2 and ABCB1 under conditions of both chronic and acute hypoxia and PARP1 gene expression only under conditions of chronic hypoxia. SiRNA-mediated silencing of NRF2 gene expression downregulated the expression of ABCB1 and increased the intracellular doxorubicin accumulation and cell apoptosis both in acute and chronic hypoxic HepG2 cells. Moreover, silencing of PARP1 gene expression increased the doxorubicin-induced DNA damage and cell apoptosis in chronic hypoxic cells. On the basis of these findings, we concluded that NRF2/ABCB1-mediated efflux and PARP1-mediated DNA repair contribute to doxorubicin resistance in chronic hypoxic HepG2 cells.
Collapse
Affiliation(s)
- Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Qi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Tianhe Ye
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Yiming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Dehan Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| |
Collapse
|