1
|
Fu X, Zhang J, Sun K, Zhang M, Wang S, Yuan M, Liu W, Zeng X, Ba X, Ke Y. Poly (ADP-ribose) polymerase 1 promotes HuR/ELAVL1 cytoplasmic localization and inflammatory gene expression by regulating p38 MAPK activity. Cell Mol Life Sci 2024; 81:253. [PMID: 38852108 PMCID: PMC11335290 DOI: 10.1007/s00018-024-05292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Post-transcriptional regulation of cytokine/chemokine mRNA turnover is critical for immune processes and contributes to the mammalian cellular response to diverse inflammatory stimuli. The ubiquitous RNA-binding protein human antigen R (HuR) is an integral regulator of inflammation-associated mRNA fate. HuR function is regulated by various post-translational modifications that alter its subcellular localization and ability to stabilize target mRNAs. Both poly (ADP-ribose) polymerase 1 (PARP1) and p38 mitogen-activated protein kinases (MAPKs) have been reported to regulate the biological function of HuR, but their specific regulatory and crosstalk mechanisms remain unclear. In this study, we show that PARP1 acts via p38 to synergistically promote cytoplasmic accumulation of HuR and stabilization of inflammation-associated mRNAs in cells under inflammatory conditions. Specifically, p38 binds to auto-poly ADP-ribosylated (PARylated) PARP1 resulting in the covalent PARylation of p38 by PARP1, thereby promoting the retention and activity of p38 in the nucleus. In addition, PARylation of HuR facilitates the phosphorylation of HuR at the serine 197 site mediated by p38, which then increases the translocation of HuR to the cytoplasm, ultimately stabilizing the inflammation-associated mRNA expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Xingyue Fu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jiaqi Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Keke Sun
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Meiqi Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Shuyan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Meng Yuan
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Wenguang Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| |
Collapse
|
2
|
Ke Y, Zhang J, Lv X, Zeng X, Ba X. Novel insights into PARPs in gene expression: regulation of RNA metabolism. Cell Mol Life Sci 2019; 76:3283-3299. [PMID: 31055645 PMCID: PMC6697709 DOI: 10.1007/s00018-019-03120-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an important post-translational modification in which an ADP-ribose group is transferred to the target protein by poly(ADP-riboses) polymerases (PARPs). Since the discovery of poly-ADP-ribose (PAR) 50 years ago, its roles in cellular processes have been extensively explored. Although research initially focused on the functions of PAR and PARPs in DNA damage detection and repair, our understanding of the roles of PARPs in various nuclear and cytoplasmic processes, particularly in gene expression, has increased significantly. In this review, we discuss the current advances in understanding the roles of PARylation with a particular emphasis in gene expression through RNA biogenesis and processing. In addition to updating PARP's significance in transcriptional regulation, we specifically focus on how PARPs and PARylation affect gene expression, especially inflammation-related genes, at the post-transcriptional levels by modulating RNA processing and degrading. Increasing evidence suggests that PARP inhibition is a promising treatment for inflammation-related diseases besides conventional chemotherapy for cancer.
Collapse
Affiliation(s)
- Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jing Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueping Lv
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|