1
|
Wu Y, Li J, Shu L, Tian Z, Wu S, Wu Z. Ultrasound combined with microbubble mediated immunotherapy for tumor microenvironment. Front Pharmacol 2024; 15:1304502. [PMID: 38487163 PMCID: PMC10937735 DOI: 10.3389/fphar.2024.1304502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in dynamically regulating the progress of cancer and influencing the therapeutic results. Targeting the tumor microenvironment is a promising cancer treatment method in recent years. The importance of tumor immune microenvironment regulation by ultrasound combined with microbubbles is now widely recognized. Ultrasound and microbubbles work together to induce antigen release of tumor cell through mechanical or thermal effects, promoting antigen presentation and T cells' recognition and killing of tumor cells, and improve tumor immunosuppression microenvironment, which will be a breakthrough in improving traditional treatment problems such as immune checkpoint blocking (ICB) and himeric antigen receptor (CAR)-T cell therapy. In order to improve the therapeutic effect and immune regulation of TME targeted tumor therapy, it is necessary to develop and optimize the application system of microbubble ultrasound for organs or diseases. Therefore, the combination of ultrasound and microbubbles in the field of TME will continue to focus on developing more effective strategies to regulate the immunosuppression mechanisms, so as to activate anti-tumor immunity and/or improve the efficacy of immune-targeted drugs, At present, the potential value of ultrasound combined with microbubbles in TME targeted therapy tumor microenvironment targeted therapy has great potential, which has been confirmed in the experimental research and application of breast cancer, colon cancer, pancreatic cancer and prostate cancer, which provides a new alternative idea for clinical tumor treatment. This article reviews the research progress of ultrasound combined with microbubbles in the treatment of tumors and their application in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuohui Wu
- Department of Ultrasound, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Liao A, Wang C, Wang B, Lin Y, Chuang H, Liu H, Shih C. Combined use of microbubbles of various sizes and single-transducer dual-frequency ultrasound for safe and efficient inner ear drug delivery. Bioeng Transl Med 2023; 8:e10450. [PMID: 37693043 PMCID: PMC10487305 DOI: 10.1002/btm2.10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
We have previously applied ultrasound (US) with microbubbles (MBs) to enhance inner ear drug delivery, with most experiments conducted using single-frequency, high-power density US, and multiple treatments. In the present study, the treatment efficacy was enhanced and safety concerns were addressed using a combination of low-power-density, single-transducer, dual-frequency US (I SPTA = 213 mW/cm2) and MBs of different sizes coated with insulin-like growth factor 1 (IGF-1). This study is the first to investigate the drug-coating capacity of human serum albumin (HSA) MBs of different particle sizes and their drug delivery efficiency. The concentration of HSA was adjusted to produce different MB sizes. The drug-coating efficiency was significantly higher for large-sized MBs than for smaller MBs. In vitro Franz diffusion experiments showed that the combination of dual-frequency US and large MB size delivered the most IGF-1 (24.3 ± 0.47 ng/cm2) to the receptor side at the second hour of treatment. In an in vivo guinea pig experiment, the efficiency of IGF-1 delivery into the inner ear was 15.9 times greater in animals treated with the combination of dual-frequency US and large MBs (D-USMB) than in control animals treated with round window soaking (RWS). The IGF-1 delivery efficiency was 10.15 times greater with the combination of single-frequency US and large size MBs (S-USMB) than with RWS. Confocal microscopy of the cochlea showed a stronger distribution of IGF-1 in the basal turn in the D-USMB and S-USMB groups than in the RWS group. In the second and third turns, the D-USMB group showed the greatest IGF-1 distribution. Hearing assessments revealed no significant differences among the D-USMB, S-USMB, and RWS groups. In conclusion, the combination of single-transducer dual-frequency US and suitably sized MBs can significantly reduce US power density while enhancing the delivery of large molecular weight drugs, such as IGF-1, to the inner ear.
Collapse
Affiliation(s)
- Ai‐Ho Liao
- Graduate Institute of Biomedical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
- Department of Biomedical EngineeringNational Defense Medical CenterTaipeiTaiwan
| | - Chih‐Hung Wang
- Department of Otolaryngology‐Head and Neck Surgery, Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Bo‐Han Wang
- Department of Mechanical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
| | - Yi‐Chun Lin
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Ho‐Chiao Chuang
- Department of Mechanical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
| | - Hao‐Li Liu
- Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Ping Shih
- Department of Otolaryngology‐Head and Neck Surgery, Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
3
|
Kancheva M, Aronson L, Pattilachan T, Sautto F, Daines B, Thommes D, Shar A, Razavi M. Bubble-Based Drug Delivery Systems: Next-Generation Diagnosis to Therapy. J Funct Biomater 2023; 14:373. [PMID: 37504868 PMCID: PMC10382061 DOI: 10.3390/jfb14070373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Current radiologic and medication administration is systematic and has widespread side effects; however, the administration of microbubbles and nanobubbles (MNBs) has the possibility to provide therapeutic and diagnostic information without the same ramifications. Microbubbles (MBs), for instance, have been used for ultrasound (US) imaging due to their ability to remain in vessels when exposed to ultrasonic waves. On the other hand, nanobubbles (NBs) can be used for further therapeutic benefits, including chronic treatments for osteoporosis and cancer, gene delivery, and treatment for acute conditions, such as brain infections and urinary tract infections (UTIs). Clinical trials are also being conducted for different administrations and utilizations of MNBs. Overall, there are large horizons for the benefits of MNBs in radiology, general medicine, surgery, and many more medical applications. As such, this review aims to evaluate the most recent publications from 2016 to 2022 to report the current uses and innovations for MNBs.
Collapse
Affiliation(s)
- Mihaela Kancheva
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Lauren Aronson
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Tara Pattilachan
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Francesco Sautto
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Benjamin Daines
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Donald Thommes
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Angela Shar
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Liu Y, Hong G, Mao L, Su Z, Liu T, Liu H. A Novel Paclitaxel Derivative for Triple-Negative Breast Cancer Chemotherapy. Molecules 2023; 28:molecules28093662. [PMID: 37175072 PMCID: PMC10180349 DOI: 10.3390/molecules28093662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Paclitaxel-triethylenetetramine hexaacetic acid conjugate (PTX-TTHA), a novel semi-synthetic taxane, is designed to improve the water solubility and cosolvent toxicity of paclitaxel in several aminopolycarboxylic acid groups. In this study, the in vitro and in vivo antitumor effects and mechanisms of PTX-TTHA against triple-negative breast cancer (TNBC) and its intravenous toxicity were evaluated. Results showed the water solubility of PTX-TTHA was greater than 5 mg/mL, which was about 7140-fold higher than that of paclitaxel (<0.7 µg/mL). PTX-TTHA (10-105 nmol/L) could significantly inhibit breast cancer proliferation and induce apoptosis by stabilizing microtubules and arresting the cell cycle in the G2/M phase in vitro, with its therapeutic effect and mechanism similar to paclitaxel. However, when the MDA-MB-231 cell-derived xenograft (CDX) tumor model received PTX-TTHA (13.73 mg/kg) treatment once every 3 days for 21 days, the tumor inhibition rate was up to 77.32%. Furthermore, PTX-TTHA could inhibit tumor proliferation by downregulating Ki-67, and induce apoptosis by increasing pro-apoptotic proteins (Bax, cleaved caspase-3) and TdT-mediated dUTP nick end labeling (TUNEL) positive apoptotic cells, and reducing anti-apoptotic protein (Bcl-2). Moreover, PTX-TTHA demonstrated no sign of acute toxicity on vital organs, hematological, and biochemical parameters at the limit dose (138.6 mg/kg, i.v.). Our study indicated that PTX-TTHA showed better water solubility than paclitaxel, as well as comparable in vitro and in vivo antitumor activity in TNBC models. In addition, the antitumor mechanism of PTX-TTHA was related to microtubule regulation and apoptosis signaling pathway activation.
Collapse
Affiliation(s)
- Yuetong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Lina Mao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Zhe Su
- Tianjin Institute for Drug Control, Tianjin 300070, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
5
|
Stable Cavitation-Mediated Delivery of miR-126 to Endothelial Cells. Pharmaceutics 2022; 14:pharmaceutics14122656. [PMID: 36559150 PMCID: PMC9784098 DOI: 10.3390/pharmaceutics14122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
In endothelial cells, microRNA-126 (miR-126) promotes angiogenesis, and modulating the intracellular levels of this gene could suggest a method to treat cardiovascular diseases such as ischemia. Novel ultrasound-stimulated microbubbles offer a means to deliver therapeutic payloads to target cells and sites of disease. The purpose of this study was to investigate the feasibility of gene delivery by stimulating miR-126-decorated microbubbles using gentle acoustic conditions (stable cavitation). A cationic DSTAP microbubble was formulated and characterized to carry 6 µg of a miR-126 payload per 109 microbubbles. Human umbilical vein endothelial cells (HUVECs) were treated at 20−40% duty cycle with miR-126-conjugated microbubbles in a custom ultrasound setup coupled with a passive cavitation detection system. Transfection efficiency was assessed by RT-qPCR, Western blotting, and endothelial tube formation assay, while HUVEC viability was monitored by MTT assay. With increasing duty cycle, the trend observed was an increase in intracellular miR-126 levels, up to a 2.3-fold increase, as well as a decrease in SPRED1 (by 33%) and PIK3R2 (by 46%) expression, two salient miR-126 targets. Under these ultrasound parameters, HUVECs maintained >95% viability after 96 h. The present work describes the delivery of a proangiogenic miR-126 using an ultrasound-responsive cationic microbubble with potential to stimulate therapeutic angiogenesis while minimizing endothelial damage.
Collapse
|
6
|
Dastidar DG, Ghosh D, Das A. Recent developments in nanocarriers for cancer chemotherapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Li CH, Chang YC, Hsiao M, Chan MH. Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities. Pharmaceutics 2022; 14:1282. [PMID: 35745854 PMCID: PMC9229768 DOI: 10.3390/pharmaceutics14061282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is a disease characterized by abnormal cell growth. According to a report published by the World Health Organization (WHO), cancer is the second leading cause of death globally, responsible for an estimated 9.6 million deaths in 2018. It should be noted that ultrasound is already widely used as a diagnostic procedure for detecting tumorigenesis. In addition, ultrasound energy can also be utilized effectively for treating cancer. By filling the interior of lipospheres with gas molecules, these particles can serve both as contrast agents for ultrasonic imaging and as delivery systems for drugs such as microbubbles and nanobubbles. Therefore, this review aims to describe the nanoparticle-assisted drug delivery system and how it can enhance image analysis and biomedicine. The formation characteristics of nanoparticles indicate that they will accumulate at the tumor site upon ultrasonic imaging, in accordance with their modification characteristics. As a result of changing the accumulation of materials, it is possible to examine the results by comparing images of other tumor cell lines. It is also possible to investigate ultrasound images for evidence of cellular effects. In combination with a precision ultrasound imaging system, drug-carrying lipospheres can precisely track tumor tissue and deliver drugs to tumor cells to enhance the ability of this nanocomposite to treat cancer.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
8
|
Langeveld SAG, Meijlink B, Beekers I, Olthof M, van der Steen AFW, de Jong N, Kooiman K. Theranostic Microbubbles with Homogeneous Ligand Distribution for Higher Binding Efficacy. Pharmaceutics 2022; 14:pharmaceutics14020311. [PMID: 35214044 PMCID: PMC8878664 DOI: 10.3390/pharmaceutics14020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Phospholipid-coated targeted microbubbles are used for ultrasound molecular imaging and locally enhanced drug delivery, with the binding efficacy being an important trait. The use of organic solvent in microbubble production makes the difference between a heterogeneous or homogeneous ligand distribution. This study demonstrates the effect of ligand distribution on the binding efficacy of phospholipid-coated ανβ3-targeted microbubbles in vitro using a monolayer of human umbilical-vein endothelial cells and in vivo using chicken embryos. Microbubbles with a homogeneous ligand distribution had a higher binding efficacy than those with a heterogeneous ligand distribution both in vitro and in vivo. In vitro, 1.55× more microbubbles with a homogeneous ligand distribution bound under static conditions, while this was 1.49× more under flow with 1.25 dyn/cm2, 1.56× more under flow with 2.22 dyn/cm2, and 1.25× more in vivo. The in vitro dissociation rate of bound microbubbles with homogeneous ligand distribution was lower at low shear stresses (1–5 dyn/cm2). The internalized depth of bound microbubbles was influenced by microbubble size, not by ligand distribution. In conclusion, for optimal binding the use of organic solvent in targeted microbubble production is preferable over directly dispersing phospholipids in aqueous medium.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Correspondence:
| | - Bram Meijlink
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Inés Beekers
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Department of Health, ORTEC B.V., 2719 EA Zoetermeer, The Netherlands
| | - Mark Olthof
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Antonius F. W. van der Steen
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Nico de Jong
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Klazina Kooiman
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| |
Collapse
|
9
|
Cheng L, Zhang D, Yan W. Ultrasound‑targeted microbubble destruction‑mediated overexpression of Sirtuin 3 inhibits the progression of ovarian cancer. Oncol Rep 2021; 46:220. [PMID: 34396428 PMCID: PMC8377464 DOI: 10.3892/or.2021.8171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Ultrasound-targeted microbubble destruction (UTMD) has recently been developed as a promising noninvasive tool for organ- and tissue-specific gene or drug delivery. The aim of the present study was to explore the role of UTMD-mediated Sirtuin 3 (SIRT3) overexpression in the malignant behaviors of human ovarian cancer (HOC) cells. Reverse transcription-quantitative PCR was performed to detect SIRT3 mRNA expression levels in normal human ovarian epithelial cells and HOC cell lines; low SIRT3 expression was found in HOC cell lines, and the SKOV3 cell line was used in the following experiments. The SIRT3-microbubble (MB) was prepared, and the effects of ultrasound-treated SIRT3-MB on biological processes of SKOV3 cells were determined. The proliferation, migration, invasion and apoptosis of SKOV3 cells were measured after SIRT3 upregulation by UTMD. Xenograft tumors in nude mice were induced to observe tumor growth in vivo. Upregulation of SIRT3 inhibited the malignant behaviors of SKOV3 cells, whereas UTMD-mediated SIRT3 upregulation further inhibited proliferation, epithelial-mesenchymal transition, invasion and migration, and induced apoptosis of SKOV3 cells, and it also inhibited tumor formation and growth in vivo. Moreover, the present study identified hypoxia inducible factor-1α (HIF-1α) as a target of SIRT3. The present study provided evidence that UTMD-mediated overexpression of SIRT3 may suppress HOC progression through the inhibition of HIF-1α.
Collapse
Affiliation(s)
- Li Cheng
- Department of Electrical Diagnosis, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Dongmei Zhang
- Department of Electrical Diagnosis, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Wei Yan
- Department of Electrical Diagnosis, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021; 28:49. [PMID: 34154581 PMCID: PMC8215828 DOI: 10.1186/s12929-021-00744-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Microbubbles are typically 0.5-10 μm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Phospholipid-coated targeted microbubbles for ultrasound molecular imaging and therapy. Curr Opin Chem Biol 2021; 63:171-179. [PMID: 34102582 DOI: 10.1016/j.cbpa.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/24/2023]
Abstract
Phospholipid-coated microbubbles are ultrasound contrast agents that, when functionalized, adhere to specific biomarkers on cells. In this concise review, we highlight recent developments in strategies for targeting the microbubbles and their use for ultrasound molecular imaging (UMI) and therapy. Recently developed novel targeting strategies include magnetic functionalization, triple targeting, and the use of several new ligands. UMI is a powerful technique for studying disease progression, diagnostic imaging, and monitoring of therapeutic responses. Targeted microbubbles (tMBs) have been used for the treatment of cardiovascular diseases and cancer, with therapeutics either coadministered or loaded onto the tMBs. Regardless of which disease was treated, the use of tMBs always resulted in a better therapeutic outcome than non-tMBs when compared in vitro or in vivo.
Collapse
|
12
|
Li Z, Wang Y, Liu C, Wang Z, Wang D, Liang X, Tian J. Association between VEGF single nucleotide polymorphism and breast cancer in the Northern China Han population. Breast Cancer Res Treat 2021; 186:149-156. [PMID: 33392836 DOI: 10.1007/s10549-020-06024-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/16/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the associations of four commonly studied single nucleotide polymorphisms (SNP) of the vascular endothelial growth factor (VEGF), including -460T/C (rs833061), - 634G/C (rs2010963), - 2578C/A (rs699947), and +936T/C (rs3025039), with the incidence, aggressiveness, and tumor markers expression of breast cancer in the Northern China Han population. METHODS Followed the genomic DNA extraction, a total of 259 patients with breast cancer (case group) and 273 healthy women (control group) underwent genotyping by PCR-LDR SNP assays. The associations between VEGF gene polymorphisms and the incidence, aggressiveness, and tumor markers expression of breast cancer were analyzed. RESULTS Significant differences were observed in allele frequency and genotype distribution of - 634G/C between breast cancer cases and healthy controls (p = 0.006, 0.013). Individuals who carry the G allele more likely had a lower risk of breast cancer (OR, 0.866, 95% CI 0.782-0.959). Compared with CC genotype carriers, women who had the CG and GG genotypes demonstrated a relatively lower risk (OR, 0.860, 95% CI 0.757-0.978, p = 0.022; OR, 0.778, 95% CI, 0.656-0.924, p = 0.004, respectively). When we stratified the group of patients according to the status of tumor markers, a significant association of - 634G/C SNP and Ki-67 expression was observed. The CC genotype carriers were more likely to be characterized by high expression of Ki-67 (p = 0.031). Further analysis showed that the - 460T/-634C/-2578C/+936C haplotype was more associated with a higher risk of breast cancer (OR, 1.445, 95% CI 1.123-1.859, p = 0.004), whereas the - 460T/- 634G/- 2578C/+936C one was associated with a lower risk (OR, 0.736, 95% CI 0.563-0.963, p = 0.025). CONCLUSIONS In the present study, we concluded that VEGF gene - 634G/C polymorphism is related to the incidence of breast cancer in the Han population in Northern China and also might be associated with tumor proliferation index Ki-67.
Collapse
Affiliation(s)
- Ziyao Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
| | - Ying Wang
- Department of General Surgery, Second Hospital of Hebei Medical University, Add: 215 Peace Road, Shijiazhuang, Hebei Province, China
| | - Cong Liu
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
| | - Zhenzhen Wang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
| | - Dongmo Wang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
| | - Xingyu Liang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
| | - Jiawei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
13
|
Drug-Loaded Microbubbles Combined with Ultrasound for Thrombolysis and Malignant Tumor Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6792465. [PMID: 31662987 PMCID: PMC6791276 DOI: 10.1155/2019/6792465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Cardiac-cerebral thrombosis and malignant tumor endanger the safety of human life seriously. Traditional chemotherapy drugs have side effects which restrict their applications. Drug-loaded microbubbles can be destroyed by ultrasound irradiation at the focus position and be used for thrombolysis and tumor therapy. Compared with traditional drug treatment, the drug-loaded microbubbles can be excited by ultrasound and release drugs to lesion sites, increasing the local drug concentration and the exposure dose to nonfocal regions, thus reducing the cytotoxicity and side effects of drugs. This article reviews the applications of drug-loaded microbubbles combined with ultrasound for thrombolysis and tumor therapy. We focus on highlighting the advantages of using this new technique for disease treatment and concluding with recommendations for future efforts on the applications of this technology.
Collapse
|