1
|
Jumaniyazova E, Aghajanyan A, Kurevlev S, Tskhovrebova L, Makarov A, Gordon K, Lokhonina A, Fatkhudinov T. SP1 Gene Methylation in Head and Neck Squamous Cell Cancer in HPV-Negative Patients. Genes (Basel) 2024; 15:281. [PMID: 38540340 PMCID: PMC10970621 DOI: 10.3390/genes15030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
There is still much to learn about the epigenetic mechanisms controlling gene expression during carcinogenesis. When researching aberrant DNA methylation, active proliferative tumor cells from head and neck squamous cell cancer (HNSCC) can be used as a model. The aim of the study was to investigate the methylation status of CDKN1, CDKN2A, MYC, Smad3, SP1, and UBC genes in tumor tissue (control-normal tissue) in 50 patients (37 men and 13 women) with HPV-negative HNSCC. Methods: Bisulfite conversion methods and methyl-sensitive analysis of high-resolution melting curves were used to quantify the methylation of genes. In all patients and across various subgroups (tongue carcinoma, laryngeal and other types of carcinomas T2, T3, T4 status; age before and after 50 years; smoking and non-smoking), there are consistent differences in the methylation levels in the SP1 gene in tumor DNA compared to normal. Results: The methylation of the SP1 gene in tumor DNA suppresses its expression, hinders HNSCC cell proliferation regulation, and could be a molecular indicator of malignant cell growth. The study of DNA methylation of various genes involved in carcinogenesis is promising because hypermethylated promoters can serve as potential biomarkers of disease.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anna Aghajanyan
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Sergey Kurevlev
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Leyla Tskhovrebova
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Andrey Makarov
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Konstantin Gordon
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia
| | - Anastasiya Lokhonina
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Timur Fatkhudinov
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
2
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Wang Y, Wang G, Hong X, Zhao J, Wu D, Chen L, Liu X, Kong D, Huang Q, Xing J, Wang N, Zhao Y. Downregulated mitochondrial transcription factor A enhances mycoplasma infection to promote the metastasis of hepatocellular carcinoma. Cancer Sci 2023; 114:1464-1478. [PMID: 36601865 PMCID: PMC10067405 DOI: 10.1111/cas.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Mycoplasma is widespread in various hosts and may cause various diseases in animals. Interestingly, the occurrence of mycoplasma infection was observed in many tumor types. However, the mechanism regulating its infection is far from clear. We unexpectedly found that the knockdown of mitochondrial transcription factor A (TFAM) remarkably enhanced mycoplasma infection in hepatocellular carcinoma (HCC) cells. More importantly, we found that mycoplasma infection facilitated by TFAM knockdown significantly promoted HCC cell metastasis. Mycoplasma infection was further found to be positively correlated with poor prognosis in patients with HCC. Mechanistically, the decreased TFAM expression upregulated the transcription factor Sp1 to increase the expression level of Annexin A2 (ANXA2), which was reported to interact with membrane protein of mycoplasma. Moreover, we found that mycoplasma infection enhanced by the TFAM downregulation promoted HCC migration and invasion by activating the nuclear factor-κB signaling pathway. The downregulation of TFAM enhanced mycoplasma infection in HCC cells and promoted HCC cell metastasis. Our study contributes to the understanding of the pathological role of mycoplasma infection and provides supporting evidence that targeting TFAM could be a potential strategy for the treatment of HCC with mycoplasma infection.
Collapse
Affiliation(s)
- Yinping Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xin Hong
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Lin Chen
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Deyu Kong
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yilin Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.,Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Chen X, Kong D, Deng J, Mo F, Liang J. Overexpression of circFNDC3B promotes the progression of oral tongue squamous cell carcinoma through the miR-1322/MED1 axis. Head Neck 2022; 44:2417-2427. [PMID: 35916453 DOI: 10.1002/hed.27152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential role of circFNDC3B in regulating oral tongue squamous cell carcinoma development (OTSCC) remains unknown. METHODS The level of circFNDC3B in OTSCC tissues or cell lines was measured and its function in vitro and in vivo was analyzed. Interactions among circFNDC3B, miR-1322, and MED1 were verified by luciferase reporter and RNA pull-down assays. RESULTS The level of circFNDC3B in tissues or cell lines of OTSCC was higher than that in control groups. siRNA-mediated circFNDC3B inhibition resulted in weakened proliferation, migration, and invasion, which was reversed by miR-1322. Overexpression of MED1 in OTSCC cells partially reversed the tumor suppression functions of si-circFNDC3B or miR-1322 mimics in vitro. circFNDC3B overexpression dramatically promoted tumor growth in vivo. circFNDC3B directly bound with miR-1322 and consequently promoted the MED1 expression in OTSCC cells. CONCLUSIONS The circFNDC3B/miR-1322/MED1 axis participates in OTSCC progression, which may provide novel therapeutic targets for OTSCC.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Deyu Kong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jun Deng
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Fei Mo
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jin Liang
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
5
|
Jiang Y, Guo H, Tong T, Xie F, Qin X, Wang X, Chen W, Zhang J. lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther 2022; 30:448-467. [PMID: 34111560 PMCID: PMC8753295 DOI: 10.1016/j.ymthe.2021.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
Cisplatin resistance is a major therapeutic challenge in advanced head and neck squamous cell carcinoma (HNSCC). Here, we aimed to investigate the key signaling pathway for cisplatin resistance in HNSCC cells. Vomeronasal type-1 receptor 5 (VN1R5) was identified as a cisplatin resistance-related protein and was highly expressed in cisplatin-resistant HNSCC cells and tissues. The long noncoding RNA (lncRNA) lnc-POP1-1 was confirmed to be a downstream target induced by VN1R5. VN1R5 transcriptionally regulated lnc-POP1-1 expression by activating the specificity protein 1 (Sp1) transcription factor via the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. VN1R5 promoted cisplatin resistance in HNSCC cells in a lnc-POP1-1-dependent manner. Mechanistically, lnc-POP1-1 bound to the minichromosome maintenance deficient 5 (MCM5) protein directly and decelerated MCM5 degradation by inhibiting ubiquitination of the MCM5 protein, which facilitated the repair of DNA damage caused by cisplatin. In summary, we identified the cisplatin resistance-related protein VN1R5 and its downstream target lnc-POP1-1. Upon upregulation by VN1R5, lnc-POP1-1 promotes DNA repair in HNSCC cells through interaction with MCM5 and deceleration of its degradation.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang 261031, P.R. China
| | - Haiyan Guo
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Tong Tong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Fei Xie
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China.
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China.
| |
Collapse
|
6
|
LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2. Cancer Immunol Immunother 2021; 71:1075-1091. [PMID: 34562123 DOI: 10.1007/s00262-021-03055-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effects of lncRNA MIR155HG and Annexin A2 (ANXA2) on colorectal cancer (CRC) and the mechanism of the MIR155HG/ANXA2 axis. METHODS The expressions of MIR155HG and ANXA2 in human CRC tissues were analyzed for association with pathological characteristics and prognosis of CRC patients. CRC cell lines (Caco2 and HT29) were used to study the effects of MIR155HG or ANXA2 knockdown on tumor cell behaviors and macrophage polarization as well as the effect of M2 polarization on oxaliplatin resistance of CRC cells. RNA immunoprecipitation, RNA pull-down and dual-luciferase reporter assays were applied to verify the targeting relationships among MIR155HG, miR-650 and ANXA2. Heterotopic xenograft models were established to verify the results of cell experiments. RESULTS MIR155HG and ANXA2 were highly expressed in CRC tissues/cells and of prognostic values for CRC patients. Knockdown of MIR155HG or ANXA2 suppressed M2 macrophage polarization, and proliferation, migration, invasion and oxaliplatin resistance of CRC cells. MIR155HG competed with ANXA2 for binding miR-650 and can also directly target ANXA2. Knockdown of MIR155HG or ANXA2 also inhibited M2 macrophage polarization and CRC progression in nude mice. CONCLUSION This study highlighted that MIR155HG, by regulating the miR-650/ANXA2 axis, promotes CRC progression and enhances oxaliplatin resistance in CRC cells through M2 macrophage polarization.
Collapse
|
7
|
Sun T, Zhang J. ETV4 mediates the wnt/β-catenin pathway through transcriptional activation of ANXA2 to promote hepatitis B virus-associated liver hepatocellular carcinoma progression. J Biochem 2021; 170:663-673. [PMID: 34347084 DOI: 10.1093/jb/mvab088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
ETS variant 4 (ETV4) has been implicated in the development of various cancers. However, the molecular events mediated by ETV4 in liver cancer are poorly understood, especially in Hepatitis B virus (HBV)-associated liver hepatocellular carcinoma (LIHC). Here, we aimed to identify the target involved in ETV4-driven hepatocarcinogenesis. Bioinformatics analysis revealed that ETV4 was highly expressed in patients with HBV-associated LIHC, and HBV infection promoted the expression of ETV4 in LIHC cells. Inhibition of ETV4 repressed the proliferation, migration, invasion of LIHC cells and suppressed the secretion of HBV and the replication of HBV DNA. ANXA2 expression in LIHC patients was positively correlated with ETV4 expression. ChIP and dual-luciferase reporter assays revealed that ETV4 elevated the ANXA2 expression at the transcriptional level by binding to the ANXA2 promoter. Overexpression of ANXA2 reversed the inhibitory effect of sh-ETV4 on the malignant biological behaviors of HBV-infected LIHC cells by activating the Wnt/β-catenin pathway. In conclusion, ETV4 mediates the activation of Wnt/β-catenin pathway through transcriptional activation of ANXA2 expression to promote HBV-associated LIHC progression.
Collapse
Affiliation(s)
- Tianfeng Sun
- Department of Liver Disease Infection, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu, P.R. China
| | - Jing Zhang
- Department Of Respiratory, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu, P.R. China
| |
Collapse
|
8
|
Lv T, Liu H, Wu Y, Huang W. Knockdown of lncRNA DLEU1 inhibits the tumorigenesis of oral squamous cell carcinoma via regulation of miR‑149‑5p/CDK6 axis. Mol Med Rep 2021; 23:447. [PMID: 33880596 PMCID: PMC8060799 DOI: 10.3892/mmr.2021.12086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent malignant tumor worldwide. Long non-coding RNAs (lncRNAs) are known to play key roles in different types of cancer, including OSCC. It was previously reported that lncRNA deleted in lymphocytic leukemia 1 (DLEU1) is notably upregulated in OSCC; however, the role of DLEU1 in OSCC remains unclear. Gene and protein expression levels in OSCC cells were detected by reverse transcription-quantitative PCR and western blotting, respectively, in the present study. A Transwell assay was performed to measure cell migration and invasion. Flow cytometry was used to detect cell apoptosis, and the dual-luciferase reporter assay was applied to confirm the interaction between DLEU1, microRNA (miR)-149-5p and CDK6 in OSCC cells. DLEU1 expression was negatively associated with the survival rate of patients with OSCC. In addition, silencing of DLEU1 notably inhibited the proliferation of OSCC cells by inducing apoptosis. Meanwhile, DLEU1 directly bound to miR-149-5p, and CDK6 was found to be the direct target of miR-149-5p. Furthermore, DLEU1 knockdown-induced inhibition of OSCC cell proliferation was significantly reversed by the miR-149-5p antagomir. Knockdown of lncRNA DLEU1 reversed the proliferation of OSCC cells via regulation of the miR-149-5p/CDK6 axis. Thus, DLEU1 may serve as a novel target for treating OSCC.
Collapse
Affiliation(s)
- Tianzhu Lv
- Department of Emergency General, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Hongjing Liu
- Department of Emergency General, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yadong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Wentao Huang
- Department of Basic Stomatology, School of Savaid Stomatology, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
9
|
Gao Y, Gan K, Liu K, Xu B, Chen M. SP1 Expression and the Clinicopathological Features of Tumors: A Meta-Analysis and Bioinformatics Analysis. Pathol Oncol Res 2021; 27:581998. [PMID: 34257529 PMCID: PMC8262197 DOI: 10.3389/pore.2021.581998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022]
Abstract
Objective: Specificity protein 1 (SP1) plays a vital role to promote carcinogenesis in a variety of tumors, and its up-regulated expression is reported to be a hinter of poor prognosis of patients. We conducted this meta-analysis to elucidate the clinical significance and prognostic value of SP1 in malignant tumors. Methods: PubMed and Cochrane Library were searched for studies published between January 1, 2000 and June 1, 2020. The combined odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to investigate the correlation of SP1 with clinical behaviors and prognosis in patients with solid tumors. UALCAN was used to conduct bioinformatics analysis. Results: A total of 24 documents involving 2,739 patients were enrolled in our review. The random-effect model was used to perform this analysis due to the high level of heterogeneity. SP1 low expression was not conducive to lymph node metastasis (OR = 0.42; 95% CI: 0.28-0.64; p < 0.05), progression of TNM stage (OR = 0.34; 95% CI: 0.20-0.57; p < 0.05) and tumor infiltration (OR = 0.33; 95% CI: 0.18-0.60; p < 0.05). Elevated SP1 expression was connected with shorter survival time of patients with hepatocellular carcinoma, pancreatic cancer, gastric cancer and esophageal cancer (HR = 1.95; 95% CI: 1.16-3.28; p < 0.05). According to UALCAN database, breast cancer, ovarian cancer, colon cancer and lung adenocarcinoma display an elevated SP1 expression in comparison with normal tissues. Kaplan-Meier survival plots indicate SP1 mRNA level has negative effects on prognosis of liver hepatocellular carcinoma and brain lower grade glioma. Conclusion: SP1 was associated with lymph node metastasis, TNM stage and depth of invasion, and indicated poor clinical outcome, which brought new insights on the potential candidacy of SP1 in clinical usage.
Collapse
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kai Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kuangzheng Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020. [PMID: 33344262 DOI: 10.3389/fcimb.2020.537650,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Wu P, Zhang X, Zhang G, Chen F, He M, Zhang T, Wang J, Xie K, Dai G. Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PeerJ 2020; 8:e8950. [PMID: 32328350 PMCID: PMC7166044 DOI: 10.7717/peerj.8950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background The meat quality of yellow feathered broilers is better than the quality of its production. Growth traits are important in the broiler industry. The exploration of regulation mechanisms for the skeletal muscle would help to increase the growth performance of chickens. At present, some progress has been made by researchers, but the molecular mechanisms of the skeletal muscle still remain unclear and need to be improved. Methods In this study, the breast muscles of fast- and slow-growing female Jinghai yellow chickens (F4F, F8F, F4S, F8S) and slow-growing male Jinghai yellow chickens (M4S, M8S) aged four and eight weeks were selected for transcriptome sequencing (RNA-seq). All analyses of differentially expressed genes (DEGs) and functional enrichment were performed. Finally, we selected nine DEGs to verify the accuracy of the sequencing by qPCR. Results The differential gene expression analysis resulted in 364, 219 and 111 DEGs (adjusted P-value ≤ 0.05) for the three comparison groups, F8FvsF4F, F8SvsF4S, and M8SvsM4S, respectively. Three common DEGs (ADAMTS20, ARHGAP19, and Novel00254) were found, and they were all highly expressed at four weeks of age. In addition, some other genes related to growth and development, such as ANXA1, COL1A1, MYH15, TGFB3 and ACTC1, were obtained. The most common DEGs (n = 58) were found between the two comparison groups F8FvsF4F and F8SvsF4S, and they might play important roles in the growth of female chickens. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway also showed some significant enrichment pathways, for instance, extracellular matrix (ECM)-receptor interaction, focal adhesion, cell cycle, and DNA replication. The two pathways that were significantly enriched in the F8FvsF4F group were all contained in that of F8SvsF4S. The same two pathways were ECM–receptor interaction and focal adhesion, and they had great influence on the growth of chickens. However, many differences existed between male and female chickens in regards to common DEGs and KEGG pathways. The results would help to reveal the regulation mechanism of the growth and development of chickens and serve as a guideline to propose an experimental design on gene function with the DEGs and pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020; 10:537650. [PMID: 33344262 PMCID: PMC7738612 DOI: 10.3389/fcimb.2020.537650] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K. Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C. Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- *Correspondence: Alok C. Bharti,
| |
Collapse
|
13
|
Wei Z, Lyu B, Hou D, Liu X. Mir-5100 Mediates Proliferation, Migration and Invasion of Oral Squamous Cell Carcinoma Cells Via Targeting SCAI. J INVEST SURG 2019; 34:834-841. [PMID: 31851859 DOI: 10.1080/08941939.2019.1701754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE We aimed to investigate the role of microRNA-5100 (miRNA-5100) in oral squamous cell carcinoma (OSCC) and its underlying mechanisms.Material/Methods: The expression of miR-5100 and suppressor of cancer cell invasion (SCAI) in OSCC cell lines were examined. A luciferase reporter assay was applied to confirm the combination between miR-5100 and SCAI. Then, miR-5100 inhibitor or small hairpin RNA (shRNA)-SCAI were transfected into cells. Cell Counting Kit-8 assay was executed for testing cell proliferation ability. Flow cytometry assay was exploited for measuring cell cycle. Invasion and migration of OSCC cells were assessed using Transwell assay and wound healing assay. The expression of proteins were detected using western blotting. RESULTS The results demonstrated that the level of miR-5100 was upregulated while SCAI was downregulated in OSCC cells. SCAI was verified as a direct target of miR-5100. MiR-5100 silencing suppressed proliferation of OSCC cells, increased cells in the G1 and G2 phases, and reduced those in the S phase, which was reversed after transfection with shRNA-SCAI. Moreover, miR-5100 inhibitor downregulated the expression of cyclin-dependent kinase-2 (CDK-2) and cyclinD1, accompanied by upregulation in p27 expression, whereas SCAI silencing had the opposite results. The invasion and migration abilities of OSCC cells were reduced after treatment with miR-5100 inhibitor, whereas SCAI silencing suppressed the effects of miR-5100 inhibitor on OSCC cell behaviors. CONCLUSION These findings suggested that miR-5100 silencing inhibit proliferation, invasion and migration of OSCC cells via upregulating the expression of SCAI, which provides theoretical basis and treatment strategies for the treatment of OSCC.
Collapse
Affiliation(s)
- Zicheng Wei
- Department of Stomatology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Beili Lyu
- Department of Respiration, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Deqiang Hou
- Department of Stomatology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xiaoming Liu
- Oral Medicine Center, Institute of Oral Diseases China Academy of Sciences Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|