1
|
Zhao J, Xu Y, Yu H, Li X, Wang W, Mao D. Effects of PPARG on the proliferation, apoptosis, and estrogen secretion in goat granulosa cells. Theriogenology 2024; 231:62-72. [PMID: 39413539 DOI: 10.1016/j.theriogenology.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As a member of peroxisome proliferator-activated receptor (PPAR) family, PPARG has been reported to be involved in glucolipid metabolism in various species. However, the function of PPARG in estradiol (E2) synthesis, apoptosis, and proliferation in goat ovarian granulosa cells (GCs) is unclear. In this study, we found that goat PPARG was expressed in GCs of all grades of follicles, and localized in the cytoplasm and nucleus of GCs. Transfection of small interfering RNA-PPARG2 (si-PPARG2) decreased E2 synthesis and the abundances of HSD3B and CYP19A1 mRNA and protein. It also promoted cell apoptosis with significant increases in the ratio of BAX/BCL-2 and Caspase3 mRNA and protein. Meanwhile, cell cycle was inhibited by si-PPARG2 transfection, accompanied by decreased mRNA levels of CDK4, CKD6, MYC, CCND1, CCND2, PCNA, and CCNB, increased mRNA level of P53, and decreased protein levels of CDK4, MYC, and CCND1. Furthermore, PPARG interference affected the mRNA and protein abundances of CREB as well as the phosphorylation of CREB but not PKA. In conclusion, our data suggest that PPARG plays an important role in regulating E2 synthesis, cell apoptosis, and proliferation of goat GCs, including the CREB expression and phosphorylation. These results provide evidences for the in-depth study of PPARG in the regulation of goat GCs function.
Collapse
Affiliation(s)
- Jie Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinying Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaotong Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Luo H, Yang L, Zhang G, Bao X, Ma D, Li B, Cao L, Cao S, Liu S, Bao L, E J, Zheng Y. Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy. Genes Genomics 2024; 46:621-635. [PMID: 38536617 DOI: 10.1007/s13258-024-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/04/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. OBJECTIVE This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. METHODS We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. RESULTS Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. CONCLUSION Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.
Collapse
Affiliation(s)
- Hongyan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lirong Yang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Guoqing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Xi Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Danna Ma
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Li Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Shilu Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shunyao Liu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing E
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yali Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China.
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
3
|
Wei L, Gao J, Wang L, Tao Q, Tu C. Multi-omics analysis reveals the potential pathogenesis and therapeutic targets of diabetic kidney disease. Hum Mol Genet 2024; 33:122-137. [PMID: 37774345 DOI: 10.1093/hmg/ddad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Clinicians have long been interested in understanding the molecular basis of diabetic kidney disease (DKD)and its potential treatment targets. Its pathophysiology involves protein phosphorylation, one of the most recognizable post-transcriptional modifications, that can take part in many cellular functions and control different metabolic processes. In order to recognize the molecular and protein changes of DKD kidney, this study applied Tandem liquid chromatography-mass spectrometry (LC-MS/MS) and Next-Generation Sequencing, along with Tandem Mass Tags (TMT) labeling techniques to evaluate the mRNA, protein and modified phosphorylation sites between DKD mice and model ones. Based on Gene Ontology (GO) and KEGG pathway analyses of transcriptome and proteome, The molecular changes of DKD include accumulation of extracellular matrix, abnormally activated inflammatory microenvironment, oxidative stress and lipid metabolism disorders, leading to glomerulosclerosis and tubulointerstitial fibrosis. Oxidative stress has been emphasized as an important factor in DKD and progression to ESKD, which is directly related to podocyte injury, albuminuria and renal tubulointerstitial fibrosis. A histological study of phosphorylation further revealed that kinases were crucial. Three groups of studies have found that RAS signaling pathway, RAP1 signaling pathway, AMPK signaling pathway, PPAR signaling pathway and HIF-1 signaling pathway were crucial for the pathogenesis of DKD. Through this approach, it was discovered that targeting specific molecules, proteins, kinases and critical pathways could be a promising approach for treating DKD.
Collapse
Affiliation(s)
- Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Jingjing Gao
- Zhonglou District Center for Disease Control and Prevention, Changzhou, Jiangsu 213000, China
| | - Liangzhi Wang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Qianru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| |
Collapse
|
4
|
He L, Shen K, He L, Chen Y, Tang Z. The Mechanism of Plantaginis Semen in the Treatment of Diabetic Nephropathy based on Network Pharmacology and Molecular Docking Technology. Endocr Metab Immune Disord Drug Targets 2024; 24:363-379. [PMID: 37718520 DOI: 10.2174/1871530323666230915100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the common complications of diabetes. Plantaginis Semen (PS) has a variety of therapeutic effects, however its mechanism on DN is unclear. OBJECTIVE This paper aims to find the ingredients, the key targets, and the action pathways of PS on DN from the perspective of network pharmacology. METHODS The databases of network pharmacology, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Pharmmapper, OMIM, DrugBank, Gene- Cards, TTD, Disgenet, STRING, and Cytoscape software, were used to find the main ingredients and targets. Gene Ontology (GO) function and Kyoto Encyclopedia of Genome and Genomes (KEGG) pathway enrichment analysis were used to reveal the potential pathways of the PS on DN. The GEO database was used to find the targets of DN based on valid experimental research. The molecular docking technology was used to evaluate the combination between ingredients of PS and the targets. RESULTS A total of 9 active ingredients and 216 potential therapeutic targets were obtained for PS on DN. Hub targets were discovered by the Cytoscape software analysis. CASP3 was screened by Venn diagram by making intersection between GSE30529 and hub genes. Moreover, CASP3 was combined with one of the nine active ingredients, quercetin, by molecular docking analysis. The KEGG pathways were mainly involved in diabetic nephropathy, and were simultaneously associated with CASP3 as followed: AGE-RAGE signaling pathway in diabetic complications, apoptosis, lipid and atherosclerosis, MAPK signaling pathway, TNF signaling pathway, IL-17 signaling pathway, and p53 signaling pathway. CONCLUSION PS can have the treatment on DN through CASP3. Quercetin, as one of the nine active ingredients, can be bounded to CASP3 to inhibit apoptosis in DN. PS can also take action on DN probably through many pathways. The role of PS on DN through other pathways still needs to be further elaborated.
Collapse
Affiliation(s)
- Linlin He
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Kai Shen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei He
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuqing Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
den Braanker DJW, Maas RJH, van Mierlo G, Parr NMJ, Bakker-van Bebber M, Deegens JKJ, Jansen PWTC, Gloerich J, Willemsen B, Dijkman HB, van Gool AJ, Wetzels JFM, Rinschen MM, Vermeulen M, Nijenhuis T, van der Vlag J. Primary Focal Segmental Glomerulosclerosis Plasmas Increase Lipid Droplet Formation and Perilipin-2 Expression in Human Podocytes. Int J Mol Sci 2022; 24:ijms24010194. [PMID: 36613637 PMCID: PMC9820489 DOI: 10.3390/ijms24010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Many patients with primary focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation. Several circulating permeability factors (CPFs) responsible for recurrence have been suggested, but were never validated. We aimed to find proteins involved in the mechanism of action of CPF(s) and/or potential biomarkers for the presence of CPF(s). Cultured human podocytes were exposed to plasma from patients with FSGS with presumed CPF(s) or healthy and disease controls. Podocyte proteomes were analyzed by LC-MS. Results were validated using flow cytometry, RT-PCR, and immunofluorescence. Podocyte granularity was examined using flow cytometry, electron microscopy imaging, and BODIPY staining. Perilipin-2 protein expression was increased in podocytes exposed to presumed CPF-containing plasmas, and correlated with the capacity of plasma to induce podocyte granularity, identified as lipid droplet accumulation. Elevated podocyte perilipin-2 was confirmed at protein and mRNA level and was also detected in glomeruli of FSGS patients whose active disease plasmas induced podocyte perilipin-2 and lipid droplets. Our study demonstrates that presumably, CPF-containing plasmas from FSGS patients induce podocyte lipid droplet accumulation and perilipin-2 expression, identifying perilipin-2 as a potential biomarker. Future research should address the mechanism underlying CPF-induced alterations in podocyte lipid metabolism, which ultimately may result in novel leads for treatment.
Collapse
Affiliation(s)
- Dirk J. W. den Braanker
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rutger J. H. Maas
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Naomi M. J. Parr
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jeroen K. J. Deegens
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Henry B. Dijkman
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alain J. van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jack F. M. Wetzels
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Peroxisome Proliferator-Activated Receptor Gene Knockout Promotes Podocyte Injury in Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9018379. [PMID: 35813229 PMCID: PMC9262558 DOI: 10.1155/2022/9018379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effects of peroxisome proliferator-activated receptor (PPARγ) expression on renal podocyte in diabetic mice by conditionally knockout mouse PPARγ gene. Methods. Wild-type C57BL mice and PPARγ gene knockout mice were used as research objects to establish the diabetic mouse model, which was divided into normal control group (NC group), normal glucose PPARγ gene knockout group (NK group), diabetic wild-type group (DM group), and diabetic PPARγ gene knockout group (DK group), with 8 mice in each group. After 16 weeks, the mice were sacrificed for renal tissue collection. Morphological changes of renal tissue were observed by HE and Masson staining, and ultrastructure of renal tissue was observed by transmission electron microscope. Protein expressions of PPARγ, podocin, nephrin, collagen IV, and fibronectin (FN) in renal tissues were detected by immunohistochemistry and Western blot, and mRNA changes of PPARγ, podocin, and nephrin in renal tissues were detected by qRT-PCR. Results. Compared with the NC group, the protein and mRNA expressions of PPARγ, podocin, and nephrin decreased in the kidney tissue of mice in the DM group, while the protein expressions of collagen IV and FN increased. The expression of various proteins in kidney tissues of the DK group was consistent with that of the DM group, and the difference was more obvious. The expression of PPARγ protein and mRNA decreased in the NK group, while the expression of podocin, nephrin protein and mRNA, collagen IV, and FN protein showed no significant difference. Conclusion. In diabetic renal tissue, the loss of PPARγ can aggravate podocellular damage and thus promote the occurrence of diabetic renal fibrosis. Increasing the expression of PPARγ may effectively relieve renal podocyte impairment in diabetic patients, which can be used for the treatment of diabetic nephropathy.
Collapse
|
7
|
Wang Z, Sun W, Li R, Liu Y. miRNA-93-5p in exosomes derived from M2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting Toll-like receptor 4. Bioengineered 2022; 13:7683-7696. [PMID: 35291915 PMCID: PMC9208503 DOI: 10.1080/21655979.2021.2023794] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus which can result in renal failure and severely affect public health. Several studies have revealed the important role of podocyte injury in DN progression. Although, the involvement of exosomes derived from M2 macrophages has been reported in podocyte injury, the underlying molecular mechanism of M2 macrophage-secreted exosomes has not been fully elucidated. Our study suggests that M2 macrophages mitigate lipopolysaccharide (LPS)-induced injury of podocytes via exosomes. Moreover, we observed that miR-93-5p expression was markedly upregulated in exosomes from M2 macrophages. Inhibition of miR-93-5p derived from M2 macrophage exosomes resulted in apoptosis of LPS-treated podocytes. Additionally, TLR4 showed the potential to bind to miR-93-5p. Subsequently, we validated that TLR4 is a downstream target of miR-93-5p. Further findings indicated that silencing of TLR4 reversed the renoprotective effects of miR-93-5p-containing M2 macrophage exosomes on LPS-induced podocyte injury. In summary, our study demonstrated that M2 macrophage-secreted exosomes attenuated LPS-induced podocyte apoptosis by regulating the miR-93-5p/TLR4 axis, which provides a new perspective for the treatment of patients with DN.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi'An Jiaotong University Health Science Center, Xi'an,Shaanxi, China
| | - Wansen Sun
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi'An Jiaotong University Health Science Center, Xi'an,Shaanxi, China
| | - Ruiping Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi'An Jiaotong University Health Science Center, Xi'an,Shaanxi, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi'An Jiaotong University Health Science Center, Xi'an,Shaanxi, China
| |
Collapse
|
8
|
O'Brien DP, Thorne AM, Huang H, Pappalardo E, Yao X, Thyrrestrup PS, Ravlo K, Secher N, Norregaard R, Ploeg RJ, Jespersen B, Kessler BM. Integrative omics reveals subtle molecular perturbations following ischemic conditioning in a porcine kidney transplant model. Clin Proteomics 2022; 19:6. [PMID: 35164671 PMCID: PMC8903695 DOI: 10.1186/s12014-022-09343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. METHODS Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. RESULTS In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). CONCLUSIONS Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Adam M Thorne
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Honglei Huang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elisa Pappalardo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Xuan Yao
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Søndergaard Thyrrestrup
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Anaesthesiology, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian Ravlo
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Secher
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Norregaard
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|