1
|
Wang Y, Xu S, Chen X, Dou Y, Yang X, Hu Z, Wu S, Wang X, Hu J, Liu X. Single dose of recombinant baculovirus vaccine expressing sigma B and sigma C genes provides good protection against novel duck reovirus challenge in ducks. Poult Sci 2024; 104:104565. [PMID: 39631275 DOI: 10.1016/j.psj.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The novel duck reovirus (NDRV) disease causes high economic losses, resulting in substantial economic losses in waterfowl industry. However, currently, no commercial vaccines are available to alleviate NDRV infection throughout the world. Here, we developed two subunit vaccine candidates for NDRV based on the insect cell-baculovirus expression system (IC-BEVS). Two recombinant viruses, namely rBac-σB and rBac-σC, were successfully generated based on the consensus sequence of NDRV. Then, the σB and σC subunit vaccine candidates were prepared by directly inactivating the recombinant virus infected-Sf9 cell suspension. The double antibody-sandwich ELISA was used for quantitative of σB or σC protein in the inactivated crude antigen. Protective efficacy results revealed that, compared with the whole virus inactivated vaccine, a single dose of 160 ng σB or σC protein showed advantages in inducing serum antibodies, elevating weight, alleviating liver and spleen injury, restraining viral shedding and viral replication in ducklings. To be noted, the subunit σC or the combination of subunit σB and σC vaccine candidates had better protective efficacies, especially the combined σB and σC vaccine group. Therefore, our study provides useful information for developing effective vaccine against NDRV infection.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Siyi Xu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunlong Dou
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingzhu Yang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Chen Y, Yan Z, Liao C, Song Y, Zhou Q, Shen H, Chen F. Recombinant linear multiple epitopes of σB protein protect Muscovy ducks against novel duck reovirus infection. Front Vet Sci 2024; 11:1360246. [PMID: 38803800 PMCID: PMC11129634 DOI: 10.3389/fvets.2024.1360246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 05/29/2024] Open
Abstract
Infection by the novel duck reovirus (NDRV) in ducklings causes high mortality, which leads to substantial economic losses in the duck industry in China. To date, no commercial vaccine is available for this disease. In this study, linear B cell epitopes of the σB protein of the NDRV were predicted and recombinant multiple linear B cell epitopes (MLBEs) were constructed through linkers. The recombinant MLBEs were then expressed and purified. One-day-old Muscovy ducklings were immunized with different doses of MLBEs and challenged with 5 × 104 ELD50 of the virulent CHY strain of NDRV 14 days after immunization. The ducklings vaccinated with 20 and 40 μg of MLBE performed no clinical signs or gross or histopathological lesions, indicating 100% protection against infection. The viral load in the liver and spleens of these birds was significantly lower than that in the control group. Additionally, these ducklings exhibited positive seroconversion at 7 days after vaccination on enzyme-linked immunosorbent assay. These results indicate that MLBE of σB could be used as a candidate for developing vaccines against NDRV infection.
Collapse
Affiliation(s)
- Yiquan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Changtao Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Yiwei Song
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Qi Zhou
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Hanqin Shen
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Zhang S, Dong H, Lin F, Cheng X, Zhu X, Jiang D, Xiao S, Chen S, Chen S, Wang S. Development and application of a multiplex PCR method for the simultaneous detection of goose parvovirus, waterfowl reovirus, and goose astrovirus in Muscovy ducks. J Virol Methods 2024; 324:114857. [PMID: 38029971 DOI: 10.1016/j.jviromet.2023.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
A multiplex polymerase chain reaction (PCR) method was developed to detect and distinguish goose parvovirus (GPV), waterfowl reovirus (WRV), and goose astrovirus (GAstV). Three pairs of primers were designed based on conserved regions in the genomic sequences of these enteric viruses and were used to specifically amplify targeted fragments of 493 bp from the viral protein 3 (VP3) gene of GPV, 300 bp from the sigma A-encoding gene of WRV, and 156 bp from the capsid protein-encoding gene of GAstV. The results showed that the primers can specifically amplify target fragments, without any cross-amplification with other viruses, indicating that the method had good specificity. A sensitivity test showed that the detection limit of the multiplex PCR method was 1 × 103 viral copies. A total of 102 field samples from Muscovy ducks with clinically suspected diseases were evaluated using the newly developed multiplex PCR method. The ratio of positive samples to total samples for GPV, WRV, and GAstV was 73.53% (75/102) for multiplex PCR and was 73.53% (75/102) for routine PCR. Seventy-five positive samples were detected by both methods, for a coincidence ratio of 100%. This multiplex PCR method can simultaneously detect GPV, WRV, and GAstV, which are associated with viral enteritis, thereby providing a specific, sensitive, efficient, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.
Collapse
Affiliation(s)
- Shizhong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Hui Dong
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Dandan Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China.
| |
Collapse
|
4
|
Zhang T, Wang X, Jiang W, Fan X, Liu N, Miao R, Zhai X, Wei L, Jiao P, Jiang S. Research Note: Genetic characterization of novel duck reoviruses from Shandong Province, China in 2022. Poult Sci 2023; 102:102969. [PMID: 37566967 PMCID: PMC10440558 DOI: 10.1016/j.psj.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Since 2005, novel duck reoviruses have been outbreaks in duck breeding areas such as central China and South China. In recent years, the incidence rate of this disease is still increasing, bringing serious economic losses to waterfowl breeding industry. This study isolated 3 novel duck reoviruses (NDRV-SDLS, NDRV-SDWF, and NDRV-SDYC) from sick ducks in 3 local duck farms in Shandong Province. The study aimed to investigate the characteristics of these viruses. The virus is inoculated into duck embryo fibroblasts, where the virus replicates to produce syncytium and dies within 3 to 5 d. The viruses were also isolated from infected ducks, and RT-PCR amplified the whole genomes after passage purification in duck embryos. The resulting whole genome was analyzed for genetic evolution. The total length of the gene sequencing was 23,418 bp, divided into 10 fragments. Gene sequence comparison showed that the 3 strains had high similarity with novel duck reoviruses (NDRV) but low similarity with chicken-origin reovirus (chicken ARV) and Muscovy duck reovirus (MDRV), especially in the σC segment. Phylogenetic analysis of the 10 fragments showed that the 3 isolates constituted the same evolutionary clade as other DRV reference strains and were far related to ARV and MDRV in different evolutionary clades. The results of all 10 segments indicate that the isolates are in the evolutionary branch of NDRV, suggesting that the novel waterfowl reovirus is the dominant circulating strain in Shandong. This study complements the gene bank information of NDRV and provides references for vaccine research and disease prediction of NDRV in Shandong.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City 271000, Shandong Province, China
| | - Xiuyuan Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Wansi Jiang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Xiaole Fan
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Nan Liu
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Runchun Miao
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Xinyu Zhai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shijin Jiang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
5
|
Peng Z, Zhang H, Zhang X, Wang H, Liu Z, Qiao H, Lv Y, Bian C. Identification and molecular characterization of novel duck reoviruses in Henan Province, China. Front Vet Sci 2023; 10:1137967. [PMID: 37065255 PMCID: PMC10098080 DOI: 10.3389/fvets.2023.1137967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Novel Duck reovirus (NDRV) is an ongoing non-enveloped virus with ten double-stranded RNA genome segments that belong to the genus Orthoreovirus, in the family Reoviridae. NDRV-associated spleen swelling, and necrosis disease have caused considerable economic losses to the waterfowl industry worldwide. Since 2017, a significant number of NDRV outbreaks have emerged in China. Herein, we described two cases of duck spleen necrosis disease among ducklings on duck farms in Henan province, central China. Other potential causative agent, including Muscovy duck reovirus (MDRV), Duck hepatitis A virus type 1 (DHAV-1), Duck hepatitis A virus type 3 (DHAV-3), Newcastle disease virus (NDV), and Duck tembusu virus (DTMUV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and two NDRV strains, HeNXX-1/2021 and HNJZ-2/2021, were isolated. Sequencing and phylogenetic analysis of the σC genes revealed that both newly identified NDRV isolates were closely related to DRV/SDHZ17/Shandong/2017. The results further showed that Chinese NDRVs had formed two distinct clades, with late 2017 as the turning point, suggesting that Chinese NDRVs have been evolving in different directions. This study identified and genetic characteristics of two NDRV strains in Henan province, China, indicating NDRVs have evolved in different directions in China. This study provides an insight into the ongoing emerged duck spleen necrosis disease and enriches our understanding of the genetic diversity and evolution of NDRVs.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Han Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haiyan Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zihan Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Chuanzhou Bian
| |
Collapse
|
6
|
Yang H, Zhang W, Wang M, Yuan S, Zhang X, Wen F, Guo J, Mei K, Huang S, Li Z. Characterization and pathogenicity evaluation of recombinant novel duck reovirus isolated from Southeast China. Front Vet Sci 2023; 10:1124999. [PMID: 36998638 PMCID: PMC10043381 DOI: 10.3389/fvets.2023.1124999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The novel duck reovirus (NDRV) emerged in southeast China in 2005. The virus causes severe liver and spleen hemorrhage and necrosis in various duck species, bringing serious harm to waterfowl farming. In this study, three strains of NDRV designated as NDRV-ZSS-FJ20, NDRV-LRS-GD20, and NDRV-FJ19 were isolated from diseased Muscovy ducks in Guangdong and Fujian provinces. Pairwise sequence comparisons revealed that the three strains were closely related to NDRV, with nucleotide sequence identities for 10 genomic fragments ranging between 84.8 and 99.8%. In contrast, the nucleotide sequences of the three strains were only 38.9–80.9% similar to the chicken-origin reovirus and only 37.6–98.9% similar to the classical waterfowl-origin reovirus. Similarly, phylogenetic analysis revealed that the three strains clustered together with NDRV and were significantly different from classical waterfowl-origin reovirus and chicken-origin reovirus. In addition, the analyses showed that the L1 segment of the NDRV-FJ19 strain was a recombinant of 03G and J18 strains. Experimental reproduction of the disease showed that the NDRV-FJ19 strain was pathogenic to both ducks and chickens and could lead to symptoms of hemorrhage and necrosis in the liver and spleen. This was somewhat different from previous reports that NDRV is less pathogenic to chickens. In conclusion, we speculated that the NDRV-FJ19 causing duck liver and spleen necrosis is a new variant of a duck orthoreovirus that is significantly different in pathogenicity from any previously reported waterfowl-origin orthoreovirus.
Collapse
Affiliation(s)
- Huihu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wandi Zhang
- Nanyang Vocational College of Agriculture, Nanyang, China
| | - Meihong Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xuelian Zhang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- *Correspondence: Shujian Huang
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Zhili Li
| |
Collapse
|
7
|
Varga-Kugler R, Marton S, Thuma Á, Szentpáli-Gavallér K, Bálint Á, Bányai K. Candidate 'Avian orthoreovirus B': an emerging waterfowl pathogen in Europe and Asia? Transbound Emerg Dis 2022; 69:e3386-e3392. [PMID: 35810357 DOI: 10.1111/tbed.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
A fusogenic virus was isolated from a flock of breeder Pekin ducks in 2019, Hungary. The affected flock experienced a marked decrease in egg production. Histopathologic lesions were seen in the oviduct and in the lungs of birds sent for diagnostic investigation. The fusogenic agent was characterized as an orthoreovirus by viral metagenomics. The assembled viral genome was composed of 10 genomic segments and was 23,433 nucleotides (nt) in length. The study strain, designated Reo/HUN/DuckDV/2019, shared low-to-medium gene-wise sequence identity with avian orthoreovirus strains from galliform and anseriform birds (nt, 38.90% to 72.33%) as well as with representative strains of neoavian orthoreoviruses (nt, 40.07% to 68.23%). On the contrary, the study strain shared 86.48% to 95.01% pairwise nt sequence identities with recent German and Chinese reovirus isolates, D2533/6 and Ych, respectively. Phylogenetic analysis clustered all three unusual waterfowl pathogens on a monophyletic branch, indicating a common evolutionary origin of Reo/HUN/DuckDV/2019 with these enigmatic orthoreoviruses described over the past few years. The finding that a candidate new orthoreovirus species, tentatively called Avian orthoreovirus B, was isolated in recent years in Europe and Asia in moribund ducks seems an alarming sign that needs to be better evaluated by extending laboratory diagnosis of viral pathogens in countries where the waterfowl industry is important. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
| | - Szilvia Marton
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
| | - Ákos Thuma
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary
| | - Katalin Szentpáli-Gavallér
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary.,Current address: CEVA-Phylaxia, Szállás u. 5., H-1107, Budapest, Hungary
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078, Budapest, Hungary
| |
Collapse
|
8
|
Yan H, Xu G, Zhu Y, Xie Z, Zhang R, Jiang S. Isolation and characterization of a naturally attenuated novel duck reovirus strain as a live vaccine candidate. Vet Microbiol 2021; 261:109214. [PMID: 34461358 DOI: 10.1016/j.vetmic.2021.109214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022]
Abstract
Novel duck reovirus (NDRV) causes high morbidity in ducklings, and recovered ducklings are often remarkably stunted in growth. In this study, four NDRV strains were isolated from the NDRV outbreaks that occurred in different regions of Shandong province, China. The biological characteristics and pathogenicity of the four NDRV strains were elucidated, and the N20 was identified as a naturally attenuated strain. Three-day-old ducklings were immunized with live N20 strain (100 ELD50/duck), and challenged with 104.52 ELD50 of virulent N19 strain at 7 days post immunization. The vaccinated ducklings showed no evidence of clinical signs, gross and histopathological lesions, or loss of body weight, and 100 % protection against the virulent NDRV N19 infection. The NDRV-specific antibodies were generated in the immunized ducklings and could neutralize different NDRV strains. These results indicated that the N20 strain was a promising live attenuated vaccine candidate against highly pathogenic NDRV infection.
Collapse
Affiliation(s)
- Hui Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, 271018, China
| | - Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, 271018, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, 271018, China.
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, 271018, China.
| |
Collapse
|
9
|
Huang Y, Zhang J, Dong J, Li L, Kuang R, Sun M, Liao M. Isolation and characterization of a new goose orthoreovirus causing liver and spleen focal necrosis in geese, China. Transbound Emerg Dis 2021; 69:3028-3034. [PMID: 34259392 DOI: 10.1111/tbed.14236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/09/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
Since July 2020, an infectious disease characterized by liver and spleen white focal necrosis has been spreading widely through geese farms in many regions of China. A novel goose orthoreovirus (GRV), designated GRV-GD2020, was isolated from the liver and spleen of dead geese. Phylogenetic analysis and sequence comparison revealed that all the genes of GRV-GD2020 clustered with other waterfowl-origin orthoreovirus. However, the gene constellation of GRV-GD2020 was not similar to that of any particular strain. Instead, the genomic segments of GRV-GD2020 showed 27.5-97.3% similarities to that of other waterfowl-origin orthoreovirus isolates. Waterfowl-origin orthoreovirus infections characterized by liver and spleen focal necrosis had not emerged in recent years. The re-emergence of the disease may be related to the recombination of the genome segments of Muscovy duck reovirus (MDRV), GRV, and new-type duck orthoreovirus. In summary, we determined that the GRV-GD2020 strain, causing goose liver and spleen focal necrosis, is a new variant of waterfowl-origin orthoreovirus.
Collapse
Affiliation(s)
- Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Ruihuan Kuang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Ming Liao
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|