1
|
Ayala-Torres C, Liu J, Dantuma NP, Masucci MG. Regulation of N-degron recognin-mediated autophagy by the SARS-CoV-2 PLpro ubiquitin deconjugase. Autophagy 2025:1-20. [PMID: 39723606 DOI: 10.1080/15548627.2024.2442849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase. PLpro was detected in protein complexes that control multiple ubiquitin and ubiquitin-like (UbL) regulated signaling and effector pathways. By restricting the analysis to cytosolic and membrane-associated ubiquitin ligases, we found that PLpro interacts with N-recognin ubiquitin ligases and preferentially rescues type I N-degron substrates from proteasomal degradation. PLpro stabilized N-degron carrying HSPA5/BiP/GRP78, which is arginylated in the cytosol upon release from the endoplasmic reticulum (ER) during ER stress, and enhanced the Arg-HSPA5-driven oligomerization of the N-recognin SQSTM1/p62 that serves as a platform for phagophore assembly. However, while in addition to Arg-HSPA5 and SQSTM1/p62, ATG9A, WIPI2, and BECN1/Beclin 1 were detected in PLpro immunoprecipitates, other components of the autophagosome biogenesis machinery, such as the ATG12-ATG5-ATG16L1 complex and MAP1LC3/LC3 were absent, which correlated with proteolytic inactivation of ULK1, impaired production of lipidated LC3-II, and inhibition of reticulophagy. The findings highlight a novel mechanism by which, through the reprogramming of autophagy, the PLpro deubiquitinase may contribute to the remodeling of intracellular membranes in coronavirus-infected cells.
Collapse
Affiliation(s)
- Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
2
|
Wang K, Ni X, Deng X, Nan J, Ma-Lauer Y, von Brunn A, Zeng R, Lei J. The CoV-Y domain of SARS-CoV-2 Nsp3 interacts with BRAP to stimulate NF-κB signaling and induce host inflammatory responses. Int J Biol Macromol 2024; 280:136123. [PMID: 39343285 DOI: 10.1016/j.ijbiomac.2024.136123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Non-structural protein 3 (Nsp3) is the largest protein encoded by the coronavirus (CoV) genome. It consists of multiple domains that perform critical functions during the viral life cycle. CoV-Y is the most C-terminal domain of Nsp3, and it exhibits evolutionary conservation across diverse CoVs; however, the exact biological function of CoV-Y remains unclear. Here, we determined the crystal structure of CoV-Y of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp3 using the single-wavelength anomalous diffraction method. We revealed the interaction between CoV-Y and the host BRCA1-associated protein (BRAP) using immunoprecipitation-mass spectrometry experiments. This interaction was subsequently confirmed in cellular assays, and the precise binding-regions between these two proteins were clarified. We found that this interaction is conserved in SARS-CoV and Middle East respiratory syndrome coronavirus. Next, we demonstrated that CoV-Y enhances IκBα and IκBβ phosphorylation and promotes the nuclear translocation of the downstream NF-κB members p50 and p65 through binding to BRAP. The CoV-Y-BRAP interaction can upregulate the transcript levels of the host inflammatory cytokines. Overall, our findings illustrate the biological function of CoV-Y for the first time and provide novel insights into coronavirus regulation of host inflammatory responses, as well as a possible target for antiviral drug development.
Collapse
Affiliation(s)
- Kai Wang
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xincheng Ni
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyue Deng
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Nan
- MAX IV Laboratory, Lund University, PO Box 118, SE-22100 Lund, Sweden
| | - Yue Ma-Lauer
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich and German Center for Infection Research (DZIF), Partner Site Munich, 80336 Munich, Germany
| | - Albrecht von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich and German Center for Infection Research (DZIF), Partner Site Munich, 80336 Munich, Germany
| | - Rui Zeng
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Lei
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Carrasco JL, Ambrós S, Gutiérrez PA, Elena SF. Adaptation of turnip mosaic virus to Arabidopsis thaliana involves rewiring of VPg-host proteome interactions. Virus Evol 2024; 10:veae055. [PMID: 39091990 PMCID: PMC11291303 DOI: 10.1093/ve/veae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The outcome of a viral infection depends on a complex interplay between the host physiology and the virus, mediated through numerous protein-protein interactions. In a previous study, we used high-throughput yeast two-hybrid (HT-Y2H) to identify proteins in Arabidopsis thaliana that bind to the proteins encoded by the turnip mosaic virus (TuMV) genome. Furthermore, after experimental evolution of TuMV lineages in plants with mutations in defense-related or proviral genes, most mutations observed in the evolved viruses affected the VPg cistron. Among these mutations, D113G was a convergent mutation selected in many lineages across different plant genotypes, including cpr5-2 with constitutive expression of systemic acquired resistance. In contrast, mutation R118H specifically emerged in the jin1 mutant with affected jasmonate signaling. Using the HT-Y2H system, we analyzed the impact of these two mutations on VPg's interaction with plant proteins. Interestingly, both mutations severely compromised the interaction of VPg with the translation initiation factor eIF(iso)4E, a crucial interactor for potyvirus infection. Moreover, mutation D113G, but not R118H, adversely affected the interaction with RHD1, a zinc-finger homeodomain transcription factor involved in regulating DNA demethylation. Our results suggest that RHD1 enhances plant tolerance to TuMV infection. We also discuss our findings in a broad virus evolution context.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Pablo A Gutiérrez
- Laboratorio de Microbiología Industrial, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 65 Nro. 59A - 110, Medellín, Antioquia 050034, Colombia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
- The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States
| |
Collapse
|
4
|
Davies JP, Plate L. The glycoprotein quality control factor Malectin promotes coronavirus replication and viral protein biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597051. [PMID: 38895409 PMCID: PMC11185542 DOI: 10.1101/2024.06.02.597051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coronaviruses (CoV) rewire host protein homeostasis (proteostasis) networks through interactions between viral nonstructural proteins (nsps) and host factors to promote infection. With the emergence of SARS-CoV-2, it is imperative to characterize host interactors shared across nsp homologs. Using quantitative proteomics and functional genetic screening, we identify conserved proteostasis interactors of nsp2 and nsp4 that serve pro-viral roles during infection of murine hepatitis virus - a model betacoronavirus. We uncover a glycoprotein quality control factor, Malectin (MLEC), which significantly reduces infectious titers when knocked down. During infection, nsp2 interacts with MLEC-associated proteins and the MLEC-interactome is drastically altered, stabilizing association with the Oligosaccheryltransferase (OST) complex, a crucial component of viral glycoprotein production. MLEC promotes viral protein levels and genome replication through its quality control activity. Lastly, we show MLEC promotes SARS-CoV-2 replication. Our results reveal a role for MLEC in mediating CoV infection and identify a potential target for pan-CoV antivirals.
Collapse
Affiliation(s)
- Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37235
| |
Collapse
|
5
|
Li M, Hou Y, Zhou Y, Yang Z, Zhao H, Jian T, Yu Q, Zeng F, Liu X, Zhang Z, Zhao YG. LLPS of FXR proteins drives replication organelle clustering for β-coronaviral proliferation. J Cell Biol 2024; 223:e202309140. [PMID: 38587486 PMCID: PMC11001562 DOI: 10.1083/jcb.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
β-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.
Collapse
Affiliation(s)
- Meng Li
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yali Hou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Zhenni Yang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Tao Jian
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, P.R. China
| | - Qianxi Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Xiaotian Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yan G. Zhao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| |
Collapse
|
6
|
Keramidas P, Pitou M, Papachristou E, Choli-Papadopoulou T. Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection. Curr Issues Mol Biol 2024; 46:4286-4308. [PMID: 38785529 PMCID: PMC11120126 DOI: 10.3390/cimb46050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.
Collapse
Affiliation(s)
| | | | | | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (M.P.); (E.P.)
| |
Collapse
|
7
|
Garvanska DH, Alvarado RE, Mundt FO, Lindqvist R, Duel JK, Coscia F, Nilsson E, Lokugamage K, Johnson BA, Plante JA, Morris DR, Vu MN, Estes LK, McLeland AM, Walker J, Crocquet-Valdes PA, Mendez BL, Plante KS, Walker DH, Weisser MB, Överby AK, Mann M, Menachery VD, Nilsson J. The NSP3 protein of SARS-CoV-2 binds fragile X mental retardation proteins to disrupt UBAP2L interactions. EMBO Rep 2024; 25:902-926. [PMID: 38177924 PMCID: PMC10897489 DOI: 10.1038/s44319-023-00043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.
Collapse
Affiliation(s)
- Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Filip Oskar Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Josephine Kerzel Duel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Coscia
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Kumari Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Dorothea R Morris
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leah K Estes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alyssa M McLeland
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordyn Walker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Davies JP, Sivadas A, Keller KR, Roman BK, Wojcikiewicz RJH, Plate L. Expression of SARS-CoV-2 Nonstructural Proteins 3 and 4 Can Tune the Unfolded Protein Response in Cell Culture. J Proteome Res 2024; 23:356-367. [PMID: 38038604 PMCID: PMC11063930 DOI: 10.1021/acs.jproteome.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Coronaviruses (CoV), including SARS-CoV-2, modulate host proteostasis through the activation of stress-responsive signaling pathways such as the Unfolded Protein Response (UPR), which remedies misfolded protein accumulation by attenuating translation and increasing protein folding capacity. While CoV nonstructural proteins (nsps) are essential for infection, little is known about the role of nsps in modulating the UPR. We characterized the impact of overexpression of SARS-CoV-2 nsp4, a key driver of replication, on the UPR in cell culture using quantitative proteomics to sensitively detect pathway-wide upregulation of effector proteins. We find that nsp4 preferentially activates the ATF6 and PERK branches of the UPR. Previously, we found that an N-terminal truncation of nsp3 (nsp3.1) can suppress pharmacological ATF6 activation. To determine how nsp3.1 and nsp4 tune the UPR, their coexpression demonstrated that nsp3.1 suppresses nsp4-mediated PERK, but not ATF6 activation. Reanalysis of SARS-CoV-2 infection proteomics data revealed time-dependent activation of PERK targets early in infection, which subsequently fades. This temporal regulation suggests a role for nsp3 and nsp4 in tuning the PERK pathway to attenuate host translation beneficial for viral replication while avoiding later apoptotic signaling caused by chronic activation. This work furthers our understanding of CoV-host proteostasis interactions and highlights the power of proteomic methods for systems-level analysis of the UPR.
Collapse
Affiliation(s)
- Jonathan P Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Athira Sivadas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 12310, United States
| | - Brynn K Roman
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Richard J H Wojcikiewicz
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 12310, United States
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| |
Collapse
|
9
|
Pahmeier F, Lavacca TM, Goellner S, Neufeldt CJ, Prasad V, Cerikan B, Rajasekharan S, Mizzon G, Haselmann U, Funaya C, Scaturro P, Cortese M, Bartenschlager R. Identification of host dependency factors involved in SARS-CoV-2 replication organelle formation through proteomics and ultrastructural analysis. J Virol 2023; 97:e0087823. [PMID: 37905840 PMCID: PMC10688318 DOI: 10.1128/jvi.00878-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.
Collapse
Affiliation(s)
- Felix Pahmeier
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Teresa-Maria Lavacca
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Sarah Goellner
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Christopher J. Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | | | - Giulia Mizzon
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Pietro Scaturro
- Systems Arbovirology, Leibniz Institute of Virology, Hamburg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
- Division “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Li J, Gui Q, Liang FX, Sall J, Zhang Q, Duan Y, Dhabaria A, Askenazi M, Ueberheide B, Stapleford KA, Pagano M. The REEP5/TRAM1 complex binds SARS-CoV-2 NSP3 and promotes virus replication. J Virol 2023; 97:e0050723. [PMID: 37768083 PMCID: PMC10617467 DOI: 10.1128/jvi.00507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Feng-Xia Liang
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Joseph Sall
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Yatong Duan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- William A. Shine Great Neck South High School, Lake Success, New York, USA
| | - Avantika Dhabaria
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Biomedical Hosting LLC, Arlington, Massachusetts, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Bouhaddou M, Reuschl AK, Polacco BJ, Thorne LG, Ummadi MR, Ye C, Rosales R, Pelin A, Batra J, Jang GM, Xu J, Moen JM, Richards AL, Zhou Y, Harjai B, Stevenson E, Rojc A, Ragazzini R, Whelan MVX, Furnon W, De Lorenzo G, Cowton V, Syed AM, Ciling A, Deutsch N, Pirak D, Dowgier G, Mesner D, Turner JL, McGovern BL, Rodriguez ML, Leiva-Rebollo R, Dunham AS, Zhong X, Eckhardt M, Fossati A, Liotta NF, Kehrer T, Cupic A, Rutkowska M, Mena I, Aslam S, Hoffert A, Foussard H, Olwal CO, Huang W, Zwaka T, Pham J, Lyons M, Donohue L, Griffin A, Nugent R, Holden K, Deans R, Aviles P, Lopez-Martin JA, Jimeno JM, Obernier K, Fabius JM, Soucheray M, Hüttenhain R, Jungreis I, Kellis M, Echeverria I, Verba K, Bonfanti P, Beltrao P, Sharan R, Doudna JA, Martinez-Sobrido L, Patel AH, Palmarini M, Miorin L, White K, Swaney DL, Garcia-Sastre A, Jolly C, Zuliani-Alvarez L, Towers GJ, Krogan NJ. SARS-CoV-2 variants evolve convergent strategies to remodel the host response. Cell 2023; 186:4597-4614.e26. [PMID: 37738970 PMCID: PMC10604369 DOI: 10.1016/j.cell.2023.08.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ann-Kathrin Reuschl
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Lucy G Thorne
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Manisha R Ummadi
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Chengjin Ye
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Romel Rosales
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jyoti Batra
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Bhavya Harjai
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ajda Rojc
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Abdullah M Syed
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alison Ciling
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noa Deutsch
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Pirak
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Giulia Dowgier
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Briana L McGovern
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rocio Leiva-Rebollo
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alistair S Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden, UK
| | - Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nicholas F Liotta
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kehrer
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasija Cupic
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Magdalena Rutkowska
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alyssa Hoffert
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Charles Ochieng' Olwal
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Weiqing Huang
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Pham
- Synthego Corporation, Redwood City, CA, USA
| | | | | | | | | | | | | | | | | | | | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jacqueline M Fabius
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ignacia Echeverria
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kliment Verba
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Pedro Beltrao
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Jennifer A Doudna
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Luis Martinez-Sobrido
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lisa Miorin
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kris White
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo Garcia-Sastre
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Clare Jolly
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Greg J Towers
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
12
|
Garvanska DH, Alvarado RE, Mundt FO, Nilsson E, Duel JK, Coscia F, Lindqvist R, Lokugamage K, Johnson BA, Plante JA, Morris DR, Vu MN, Estes LK, McLeland AM, Walker J, Crocquet-Valdes PA, Mendez BL, Plante KS, Walker DH, Weisser MB, Overby AK, Mann M, Menachery VD, Nilsson J. SARS-CoV-2 hijacks fragile X mental retardation proteins for efficient infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555899. [PMID: 37693415 PMCID: PMC10491247 DOI: 10.1101/2023.09.01.555899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1 and FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and have delayed disease onset in vivo. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins for efficient infection and provides molecular insight to the possible underlying molecular defects in fragile X syndrome.
Collapse
Affiliation(s)
- Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rojelio E Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Filip Oskar Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Josephine Kerzel Duel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Coscia
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kumari Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - Dorothea R Morris
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leah K Estes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alyssa M McLeland
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jordyn Walker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | | | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Overby
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Guichard A, Lu S, Kanca O, Bressan D, Huang Y, Ma M, Sanz Juste S, Andrews JC, Jay KL, Sneider M, Schwartz R, Huang MC, Bei D, Pan H, Ma L, Lin WW, Auradkar A, Bhagwat P, Park S, Wan KH, Ohsako T, Takano-Shimizu T, Celniker SE, Wangler MF, Yamamoto S, Bellen HJ, Bier E. A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins. Cell Rep 2023; 42:112842. [PMID: 37480566 PMCID: PMC10962759 DOI: 10.1016/j.celrep.2023.112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023] Open
Abstract
Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel Bressan
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sara Sanz Juste
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Department of Epigenetics & Molecular Carcinogenesis at MD Anderson, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Marketta Sneider
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Mei-Chu Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Danqing Bei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Liwen Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Soo Park
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth H Wan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Takashi Ohsako
- Advanced Technology Center, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Toshiyuki Takano-Shimizu
- Kyoto Drosophila Stock Center and Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Susan E Celniker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Tata Institute for Genetics and Society - UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Davies JP, Sivadas A, Keller KR, Wojcikiewicz RJ, Plate L. SARS-CoV-2 Nonstructural Proteins 3 and 4 tune the Unfolded Protein Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537917. [PMID: 37162862 PMCID: PMC10168236 DOI: 10.1101/2023.04.22.537917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Coronaviruses (CoV), including SARS-CoV-2, modulate host proteostasis through activation of stress-responsive signaling pathways such as the Unfolded Protein Response (UPR), which remedies misfolded protein accumulation by attenuating translation and increasing protein folding capacity. While CoV nonstructural proteins (nsps) are essential for infection, little is known about the role of nsps in modulating the UPR. We characterized the impact of SARS-CoV-2 nsp4, a key driver of replication, on the UPR using quantitative proteomics to sensitively detect pathway-wide upregulation of effector proteins. We find nsp4 preferentially activates the ATF6 and PERK branches of the UPR. Previously, we found an N-terminal truncation of nsp3 (nsp3.1) can suppress pharmacological ATF6 activation. To determine how nsp3.1 and nsp4 tune the UPR, their co-expression demonstrated that nsp3.1 suppresses nsp4-mediated PERK, but not ATF6 activation. Re-analysis of SARS-CoV-2 infection proteomics data revealed time-dependent activation of PERK targets early in infection, which subsequently fades. This temporal regulation suggests a role for nsp3 and nsp4 in tuning the PERK pathway to attenuate host translation beneficial for viral replication while avoiding later apoptotic signaling caused by chronic activation. This work furthers our understanding of CoV-host proteostasis interactions and highlights the power of proteomic methods for systems-level analysis of the UPR.
Collapse
Affiliation(s)
| | - Athira Sivadas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | | | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Department of Chemistry, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
15
|
Crystal structure of the CoV-Y domain of SARS-CoV-2 nonstructural protein 3. Sci Rep 2023; 13:2890. [PMID: 36801935 PMCID: PMC9938512 DOI: 10.1038/s41598-023-30045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Replication of the coronavirus genome starts with the formation of viral RNA-containing double-membrane vesicles (DMV) following viral entry into the host cell. The multi-domain nonstructural protein 3 (nsp3) is the largest protein encoded by the known coronavirus genome and serves as a central component of the viral replication and transcription machinery. Previous studies demonstrated that the highly-conserved C-terminal region of nsp3 is essential for subcellular membrane rearrangement, yet the underlying mechanisms remain elusive. Here we report the crystal structure of the CoV-Y domain, the most C-terminal domain of the SARS-CoV-2 nsp3, at 2.4 Å-resolution. CoV-Y adopts a previously uncharacterized V-shaped fold featuring three distinct subdomains. Sequence alignment and structure prediction suggest that this fold is likely shared by the CoV-Y domains from closely related nsp3 homologs. NMR-based fragment screening combined with molecular docking identifies surface cavities in CoV-Y for interaction with potential ligands and other nsps. These studies provide the first structural view on a complete nsp3 CoV-Y domain, and the molecular framework for understanding the architecture, assembly and function of the nsp3 C-terminal domains in coronavirus replication. Our work illuminates nsp3 as a potential target for therapeutic interventions to aid in the on-going battle against the COVID-19 pandemic and diseases caused by other coronaviruses.
Collapse
|
16
|
Azizogli AR, Pai V, Coppola F, Jafari R, Dodd-o JB, Harish R, Balasubramanian B, Kashyap J, Acevedo-Jake AM, Král P, Kumar VA. Scalable Inhibitors of the Nsp3-Nsp4 Coupling in SARS-CoV-2. ACS OMEGA 2023; 8:5349-5360. [PMID: 36798146 PMCID: PMC9923439 DOI: 10.1021/acsomega.2c06384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
The human Betacoronavirus SARS-CoV-2 is a novel pathogen claiming millions of lives and causing a global pandemic that has disrupted international healthcare systems, economies, and communities. The virus is fast mutating and presenting more infectious but less lethal versions. Currently, some small-molecule therapeutics have received FDA emergency use authorization for the treatment of COVID-19, including Lagevrio (molnupiravir) and Paxlovid (nirmaltrevir/ritonavir), which target the RNA-dependent RNA polymerase and the 3CLpro main protease, respectively. Proteins downstream in the viral replication process, specifically the nonstructural proteins (Nsps1-16), are potential drug targets due to their crucial functions. Of these Nsps, Nsp4 is a particularly promising drug target due to its involvement in the SARS-CoV viral replication and double-membrane vesicle formation (mediated via interaction with Nsp3). Given the degree of sequence conservation of these two Nsps across the Betacoronavirus clade, their protein-protein interactions and functions are likely to be conserved as well in SARS-CoV-2. Through AlphaFold2 and its recent advancements, protein structures were generated of Nsp3 and 4 lumenal loops of interest. Then, using a combination of molecular docking suites and an existing library of lead-like compounds, we virtually screened 7 million ligands to identify five putative ligand inhibitors of Nsp4, which could present an alternative pharmaceutical approach against SARS-CoV-2. These ligands exhibit promising lead-like properties (ideal molecular weight and log P profiles), maintain fixed-Nsp4-ligand complexes in molecular dynamics (MD) simulations, and tightly associate with Nsp4 via hydrophobic interactions. Additionally, alternative peptide inhibitors based on Nsp3 were designed and shown in MD simulations to provide a highly stable binding to the Nsp4 protein. Finally, these therapeutics were attached to dendrimer structures to promote their multivalent binding with Nsp4, especially its large flexible luminal loop (Nsp4LLL). The therapeutics tested in this study represent many different approaches for targeting large flexible protein structures, especially those localized to the ER. This study is the first work targeting the membrane rearrangement system of viruses and will serve as a potential avenue for treating viruses with similar replicative function.
Collapse
Affiliation(s)
- Abdul-Rahman Azizogli
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Varun Pai
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Roya Jafari
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Joseph B. Dodd-o
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Rohan Harish
- Department
of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Bhavani Balasubramanian
- Department
of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jatin Kashyap
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Amanda M. Acevedo-Jake
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
- Departments
of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vivek A. Kumar
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Chemical and Materials Engineering, New
Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department
of Endodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
17
|
Direct Interaction of Coronavirus Nonstructural Protein 3 with Melanoma Differentiation-Associated Gene 5 Modulates Type I Interferon Response during Coronavirus Infection. Int J Mol Sci 2022; 23:ijms231911692. [PMID: 36232993 PMCID: PMC9570369 DOI: 10.3390/ijms231911692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.
Collapse
|
18
|
Shi R, Feng Z, Zhang X. Integrative Multi-omics Landscape of Non-structural Protein 3 of Severe Acute Respiratory Syndrome Coronaviruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:707-726. [PMID: 34774773 PMCID: PMC8578027 DOI: 10.1016/j.gpb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass spectrometry-based proteomics studies have revealed the cellular changes due to the infection and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods. We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analyses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as RNA metabolism and immune response (e.g., NF-κB signal transduction). Interestingly, we showed that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addition, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our integrative multi-omics study of NSP3 improves the understanding of the functions of NSP3 and offers potential targets for the development of anti-SARS strategies.
Collapse
Affiliation(s)
- Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhuan Feng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China.
| |
Collapse
|