1
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
2
|
Cheng X, Yang W, Lin W, Mei F. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Pharmacol Rev 2023; 75:979-1006. [PMID: 37137717 PMCID: PMC10441629 DOI: 10.1124/pharmrev.122.000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenli Yang
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Lin
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fang Mei
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
3
|
De La Cruz-Herrera CF, Tatham MH, Siddiqi UZ, Shire K, Marcon E, Greenblatt JF, Hay RT, Frappier L. Changes in SUMO-modified proteins in Epstein-Barr virus infection identifies reciprocal regulation of TRIM24/28/33 complexes and the lytic switch BZLF1. PLoS Pathog 2023; 19:e1011477. [PMID: 37410772 DOI: 10.1371/journal.ppat.1011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
SUMO modifications regulate the function of many proteins and are important in controlling herpesvirus infections. We performed a site-specific proteomic analysis of SUMO1- and SUMO2-modified proteins in Epstein-Barr virus (EBV) latent and lytic infection to identify proteins that change in SUMO modification status in response to EBV reactivation. Major changes were identified in all three components of the TRIM24/TRIM28/TRIM33 complex, with TRIM24 being rapidly degraded and TRIM33 being phosphorylated and SUMOylated in response to EBV lytic infection. Further experiments revealed TRIM24 and TRIM33 repress expression of the EBV BZLF1 lytic switch gene, suppressing EBV reactivation. However, BZLF1 was shown to interact with TRIM24 and TRIM33, resulting in disruption of TRIM24/TRIM28/TRIM33 complexes, degradation of TRIM24 and modification followed by degradation of TRIM33. Therefore, we have identified TRIM24 and TRIM33 as cellular antiviral defence factors against EBV lytic infection and established the mechanism by which BZLF1 disables this defence.
Collapse
Affiliation(s)
| | - Michael H Tatham
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Umama Z Siddiqi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Ronald T Hay
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Zhu Q, Liang P, Chu C, Zhang A, Zhou W. Protein sumoylation in normal and cancer stem cells. Front Mol Biosci 2022; 9:1095142. [PMID: 36601585 PMCID: PMC9806136 DOI: 10.3389/fmolb.2022.1095142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells with the capacity of self-renewal and differentiation play pivotal roles in normal tissues and malignant tumors. Whereas stem cells are supposed to be genetically identical to their non-stem cell counterparts, cell stemness is deliberately regulated by a dynamic network of molecular mechanisms. Reversible post-translational protein modifications (PTMs) are rapid and reversible non-genetic processes that regulate essentially all physiological and pathological process. Numerous studies have reported the involvement of post-translational protein modifications in the acquirement and maintenance of cell stemness. Recent studies underscore the importance of protein sumoylation, i.e., the covalent attachment of the small ubiquitin-like modifiers (SUMO), as a critical post-translational protein modification in the stem cell populations in development and tumorigenesis. In this review, we summarize the functions of protein sumoylation in different kinds of normal and cancer stem cells. In addition, we describe the upstream regulators and the downstream effectors of protein sumoylation associated with cell stemness. We also introduce the translational studies aiming at sumoylation to target stem cells for disease treatment. Finally, we propose future directions for sumoylation studies in stem cells.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| |
Collapse
|
6
|
Ryu HY. SUMO pathway is required for ribosome biogenesis. BMB Rep 2022; 55:535-540. [PMID: 36195568 PMCID: PMC9712707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis. [BMB Reports 2022; 55(11): 535-540].
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea,Corresponding author. Tel: +82-53-950-6352; Fax: +82-53-955-5522; E-mail:
| |
Collapse
|
7
|
Ryu HY. SUMO pathway is required for ribosome biogenesis. BMB Rep 2022; 55:535-540. [PMID: 36195568 PMCID: PMC9712707 DOI: 10.5483/bmbrep.2022.55.11.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2023] Open
Abstract
Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis. [BMB Reports 2022; 55(11): 535-540].
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
8
|
Fan L, Yang X, Zheng M, Yang X, Ning Y, Gao M, Zhang S. Regulation of SUMOylation Targets Associated With Wnt/β-Catenin Pathway. Front Oncol 2022; 12:943683. [PMID: 35847921 PMCID: PMC9280480 DOI: 10.3389/fonc.2022.943683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Wnt/β-catenin signaling is a delicate and complex signal transduction pathway mediated by multiple signaling molecules, which plays a significant role in regulating human physiology and pathology. Abnormally activated Wnt/β-catenin signaling pathway plays a crucial role in promoting malignant tumor occurrence, development, recurrence, and metastasis, particularly in cancer stem cells. Studies have shown that the Wnt/β-catenin signaling pathway controls cell fate and function through the transcriptional and post-translational regulation of omics networks. Therefore, precise regulation of Wnt/β-catenin signaling as a cancer-targeting strategy may contribute to the treatment of some malignancies. SUMOylation is a post-translational modification of proteins that has been found to play a major role in the Wnt/β-catenin signaling pathway. Here, we review the complex regulation of Wnt/β-catenin signaling by SUMOylation and discuss the potential targets of SUMOylation therapy.
Collapse
Affiliation(s)
- Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Ming Gao
- Department of Thyroid Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang,
| |
Collapse
|
9
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
10
|
Banerjee P, Markande S, Kalarikkal M, Joseph J. SUMOylation modulates the function of DDX19 in mRNA export. J Cell Sci 2022; 135:274424. [PMID: 35080244 DOI: 10.1242/jcs.259449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Nuclear export of mRNAs is a critical regulatory step in eukaryotic gene expression. The mRNA transcript undergoes extensive processing, and is loaded with a set of RNA-binding proteins (RBPs) to form export-competent messenger ribonucleoprotein particles (mRNPs) in the nucleus. During the transit of mRNPs through the nuclear pore complex (NPC), the DEAD-box ATPase - DDX19 - remodels mRNPs at the cytoplasmic side of the NPC, by removing a subset of RNA-binding proteins to terminate mRNP export. This requires the RNA-dependent ATPase activity of DDX19 and its dynamic interactions with Gle1 and Nup214. However, the regulatory mechanisms underlying these interactions are unclear. We find that DDX19 gets covalently attached with a small ubiquitin-like modifier (SUMO) at lysine 26, which enhances its interaction with Gle1. Furthermore, a SUMOylation-defective mutant of human DDX19B, K26R, failed to provide a complete rescue of the mRNA export defect caused by DDX19 depletion. Collectively, our results suggest that SUMOylation fine-tunes the function of DDX19 in mRNA export by regulating its interaction with Gle1. This study identifies SUMOylation of DDX19 as a modulatory mechanism during the mRNA export process.
Collapse
Affiliation(s)
- Poulomi Banerjee
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Shubha Markande
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Misha Kalarikkal
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Jomon Joseph
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| |
Collapse
|