1
|
Colautti A, Ginaldi F, Camprini L, Comi G, Reale A, Iacumin L. Investigating Safety and Technological Traits of a Leading Probiotic Species: Lacticaseibacillus paracasei. Nutrients 2024; 16:2212. [PMID: 39064654 PMCID: PMC11280365 DOI: 10.3390/nu16142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lacticaseibacillus spp. are genetically close lactic acid bacteria species widely used in fermented products for their technological properties as well as their proven beneficial effects on human and animal health. This study, the first to include such a large collection of heterogeneous isolates (121) obtained from international collections belonging to Lacticaseibacillus paracasei, aimed to characterize the safety traits and technological properties of this important probiotic species, also making comparisons with other genetically related species, such as Lacticaseibacillus casei and Lacticaseibacillus zeae. These strains were isolated from a variety of heterogeneous sources, including dairy products, sourdoughs, wine, must, and human body excreta. After a preliminary molecular characterization using repetitive element palindromic PCR (Rep-PCR), Random Amplification of Polymorphic DNA (RAPD), and Sau-PCR, particular attention was paid to safety traits, evaluating antibiotic resistance profiles, biogenic amine (BA) production, the presence of genes related to the production of ethyl carbamate and diaminobenzidine (DAB), and multicopper oxidase activity (MCO). The technological characteristics of the strains, such as the capability to grow at different NaCl and ethanol concentrations and different pH values, were also investigated, as well as the production of bacteriocins. From the obtained results, it was observed that strains isolated from the same type of matrix often shared similar genetic characteristics. However, phenotypic traits were strain-specific. This underscored the vast potential of the different strains to be used for various purposes, from probiotics to bioprotective and starter cultures for food and feed production, highlighting the importance of conducting comprehensive evaluations to identify the most suitable strain for each purpose with the final aim of promoting human health.
Collapse
Affiliation(s)
- Andrea Colautti
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Federica Ginaldi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Lucia Camprini
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Giuseppe Comi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Anna Reale
- Institute of Food Science (ISA), National Research Council, Via Roma, 64, 83100 Avellino, Italy;
| | - Lucilla Iacumin
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| |
Collapse
|
2
|
Tathode MS, Bonomo MG, Zappavigna S, Mang SM, Bocchetti M, Camele I, Caraglia M, Salzano G. Whole-genome analysis suggesting probiotic potential and safety properties of Pediococcus pentosaceus DSPZPP1, a promising LAB strain isolated from traditional fermented sausages of the Basilicata region (Southern Italy). Front Microbiol 2024; 15:1268216. [PMID: 38638895 PMCID: PMC11024341 DOI: 10.3389/fmicb.2024.1268216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Many lactic acid bacteria (LAB) strains are currently gaining attention in the food industry and various biological applications because of their harmless and functional properties. Given the growing consumer demand for safe food, further research into potential probiotic bacteria is beneficial. Therefore, we aimed to characterize Pediococcus pentosaceus DSPZPP1, a LAB strain isolated from traditional fermented sausages from the Basilicata region of Southern Italy. Methods In this study, we analyzed the whole genome of the P. pentosaceus DSPZPP1 strain and performed in silico characterization to evaluate its applicability for probiotics and use in the food industry. Results and Discussion The whole-genome assembly and functional annotations revealed many interesting characteristics of the DSPZPP1 strain. Sequencing raw reads were assembled into a draft genome of size 1,891,398 bp, with a G + C content of 37.3%. Functional annotation identified 1930 protein-encoding genes and 58 RNAs including tRNA, tmRNA, and 16S, 23S, and 5S rRNAs. The analysis shows the presence of genes that encode water-soluble B-group vitamins such as biotin, folate, coenzyme A, and riboflavin. Furthermore, the analysis revealed that the DSPZPP1 strain can synthesize class II bacteriocin, penocin A, adding importance to the food industry for bio-enriched food. The DSPZPP1 genome does not show the presence of plasmids, and no genes associated with antimicrobial resistance and virulence were found. In addition, two intact bacteriophages were identified. Importantly, the lowest probability value in pathogenicity analysis indicates that this strain is non-pathogenic to humans. 16 s rRNA-based phylogenetic analysis and comparative analysis based on ANI and Tetra reveal that the DSPZPP1 strain shares the closest evolutionary relationship with P. pentosaceus DSM 20336 and other Pediococcus strains. Analysis of carbohydrate active enzymes (CAZymes) identified glycosyl transferases (GT) as a main class of enzymes followed by glycoside hydrolases (GH). Our study shows several interesting characteristics of the isolated DSPZPP1 strain from fermented Italian sausages, suggesting its potential use as a promising probiotic candidate and making it more appropriate for selection as a future additive in biopreservation.
Collapse
Affiliation(s)
- Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Grazia Bonomo
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Giovanni Salzano
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| |
Collapse
|
3
|
Nobile M, Chiesa LM, Arioli F, Panseri S. Bio-based packaging combined to protective atmosphere to manage shelf life of salami to enhance food safety and product quality. Meat Sci 2024; 207:109366. [PMID: 37857029 DOI: 10.1016/j.meatsci.2023.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Plastics are currently the most widely used and most suitable packaging material to meet quality and food safety, particularly for meat products, because of their perishable nature. Biopolymers are very interesting from the point of view of sustainability. This study focused on the application of biodegradable packaging (polylactic acid, PLA) for sliced salami in a protective atmosphere, as a potential replacement for the one currently used (polyethylene terephthalate, PET), monitoring the shelf life of the meat product through microbiological, chemical (colorimetric, pH and volatile compound determination) and sensory analysis. The results showed that the PLA-packaged salami maintained the red color throughout the entire shelf life; pH monitoring was essentially constant over time (from 5.63 to 5.70). Only one difference was detected at the end of shelf life regarding the main markers of product alteration (hexanal, 3-hydroxy-2-butanone, ethanol and 3-methyl-1-butanol), that were not sensory perceived remaining appreciated by the consumer panel.
Collapse
Affiliation(s)
- Maria Nobile
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| | - Luca Maria Chiesa
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy.
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Universita' 6, 26900 Lodi, Italy
| |
Collapse
|
4
|
Zadravec M, Lešić T, Brnić D, Pleadin J, Kraak B, Jakopović Ž, Perković I, Vahčić N, Tkalec VJ, Houbraken J. Regional distribution and diversity of Aspergillus and Penicillium species on Croatian traditional meat products. Int J Food Microbiol 2023; 406:110404. [PMID: 37778241 DOI: 10.1016/j.ijfoodmicro.2023.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Various factors, such as weather and production practices (e.g., environmental hygiene, process duration, raw material quality, ripening temperature, and relative humidity), in combination with the intrinsic product properties (e.g., pH, aw, salt content), significantly affect the growth of surface moulds. The aim of this study was to isolate and identify surface moulds retrieved from traditional meat products (TMPs) and correlate these data to the production region and production technology. The surface of 250 TMPs (dry-fermented sausages, n = 108; dry-cured meat products, n = 142) from five Croatian regions were sampled during a two-year period. Dry-fermented sausages had a significantly higher pH and a lower salt concentration when compared to dry-cured meat products. In total, 528 isolates were obtained, comprising 20 Penicillium and 17 Aspergillus species. The species most frequently isolated from the dry-fermented sausages were P. commune (32.4 %), A. proliferans (33 %), and P. solitum (14.8 %), while A. proliferans (52.1 %), P. commune (28.9 %) and P. citrinum (19.7 %) predominated in dry-cured meat products. Aspergillus predominated on the TMPs from southern Croatia, while Penicillium was prevalent on products from the other four regions, possibly due to differences in weather conditions. Seven potentially mycotoxigenic species (A. creber, A. flavus, A. niger, A. westerdijkiae, P. citrinum, P. commune, and P. nordicum) were isolated and identified. Regular monitoring of mould species and their toxigenic metabolites present on traditional meat products is of the utmost importance from the public health perspective, while the results of such a monitoring can prove beneficial for the tailoring of the production technology development.
Collapse
Affiliation(s)
- Manuela Zadravec
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Tina Lešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Jelka Pleadin
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| | - Željko Jakopović
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Irena Perković
- Croatian Veterinary Institute, Veterinary Department Vinkovci, J. Kozarca 24, 32100 Vinkovci, Croatia.
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Vesna Jaki Tkalec
- Croatian Veterinary Institute, Veterinary Department Križevci, Ivana Zakmardija Dijankovečkog 10, 48260 Križevci, Croatia.
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| |
Collapse
|
5
|
Pasquali F, Valero A, Possas A, Lucchi A, Crippa C, Gambi L, Manfreda G, De Cesare A. Variability in Physicochemical Parameters and Its Impact on Microbiological Quality and Occurrence of Foodborne Pathogens in Artisanal Italian Organic Salami. Foods 2023; 12:4086. [PMID: 38002143 PMCID: PMC10670534 DOI: 10.3390/foods12224086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Artisanal salami is produced in small-scale production plants, where the lack of full automation might result in higher variability in food intrinsic properties. The aim of the present study was to evaluate the inter- and intra-batch variability in physicochemical parameters and its impact on microbial quality and occurrence of foodborne pathogens on 480 samples collected from six batches of an artisanal Italian production of organic salami. Relatively high total bacterial counts (TBC) were found on the surface of the table in the stuffing room (4.29 ± 0.40 log cfu/cm2). High loads of Enterobacteriaceae in the meat mixture of batch 2 and TBC in batch 5 were associated with a higher occurrence of bacterial pathogens. During ripening, water activity (aw) and pH failed to reach values lower than 0.86 and 5.3, respectively. Six Staphylococcus aureus and four Listeria monocytogenes isolates were collected from the salami meat mixture during ripening and the processing environment. A total of 126 isolates of Enterobacteriaceae were characterized at a species level, with Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and Citrobacter freundii isolated from the final products. Results suggest the relevance of first steps of production in terms of the hygiene of raw materials and handling during stuffing procedures, especially when the physicochemical parameters of the final products do not reach values that represent hurdles for foodborne pathogens.
Collapse
Affiliation(s)
- Frédérique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (F.P.); (A.L.); (C.C.); (L.G.); (G.M.)
| | - Antonio Valero
- Department of Food Science and Technology, University of Cordoba, Agrifood Campus of International Excellence ceiA3, Campus Rabanales, 14014 Córdoba, Spain;
| | - Arícia Possas
- Department of Food Science and Technology, University of Cordoba, Agrifood Campus of International Excellence ceiA3, Campus Rabanales, 14014 Córdoba, Spain;
| | - Alex Lucchi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (F.P.); (A.L.); (C.C.); (L.G.); (G.M.)
| | - Cecilia Crippa
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (F.P.); (A.L.); (C.C.); (L.G.); (G.M.)
| | - Lucia Gambi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (F.P.); (A.L.); (C.C.); (L.G.); (G.M.)
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (F.P.); (A.L.); (C.C.); (L.G.); (G.M.)
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
6
|
Pellegrini M, Barbieri F, Montanari C, Iacumin L, Bernardi C, Gardini F, Comi G. Microbial Spoilage of Traditional Goose Sausages Produced in a Northern Region of Italy. Microorganisms 2023; 11:1942. [PMID: 37630502 PMCID: PMC10459116 DOI: 10.3390/microorganisms11081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, during the ripening of goose sausage, a defect consisting of ammonia and vinegar smell was noticed. The producer of the craft facility, located in Lombardia, a Northern region of Italy, asked us to identify the cause of that defect. Therefore, this study aimed to identify the potential responsible agents for the spoilage of this lot of goose sausages. Spoilage was first detected by sensory analysis using the "needle probing" technique; however, the spoiled sausages were not marketable due to the high ammonia and vinegar smell. The added starter culture did not limit or inhibit the spoilage microorganisms, which were represented by Levilactobacillus brevis, the predominant species, and by Enterococcus faecalis and E. faecium. These microorganisms grew during ripening and produced a large amount of biogenic amines, which could represent a risk for consumers. Furthermore, Lev. brevis, being a heterofermentative lactic acid bacteria (LAB), also produced ethanol, acetic acid, and a variation in the sausage colour. The production of biogenic amines was confirmed in vitro. Furthermore, as observed in a previous study, the second cause of spoilage can be attributed to moulds which grew during ripening; both the isolated strains, Penicillium nalgiovense, added as a starter culture, and P. lanosocoeruleum, present as an environmental contaminant, grew between the meat and casing, producing a large amount of total volatile nitrogen, responsible for the ammonia smell perceived in the ripening area and in the sausages. This is the first description of Levilactobacillus brevis predominance in spoiled goose sausage.
Collapse
Affiliation(s)
- Michela Pellegrini
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Cristian Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 20122 Lodi, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| |
Collapse
|
7
|
García-López JD, Teso-Pérez C, Martín-Platero AM, Peralta-Sánchez JM, Fonollá-Joya J, Martínez-Bueno M, Baños A. Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6, Two Bacteriocinogenic Isolated Strains from Andalusian Spontaneous Fermented Sausages. Foods 2023; 12:2445. [PMID: 37444181 DOI: 10.3390/foods12132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Traditional spontaneously fermented foods are well known for their sensory and safety properties, which is mainly due to their indigenous microflora. Within this group of food, Mediterranean dry-cured sausages stand out as a significant source of lactic-acid bacterial strains (LAB) with biotechnological properties, such as their antimicrobial activity. The aim of this study was to investigate the biodiversity of antagonistic LAB strains from different Andalusian traditional sausages, such as salchichón and chorizo. First, a screening was carried out focusing on the antimicrobial activity against foodborne pathogens, such as Listeria monocytogenes, Escherichia coli, Clostridium perfringens, and Staphylococcus aureus, selecting two strains due to their higher antibiosis properties, both in agar and liquid media. These bacteria were identified as Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6. In addition, genomic studies confirmed the presence of certain structural genes related to the production of bacteriocins. Finally, the culture supernatants of both strains were purified and analyzed by LC-MS/MS, obtaining the relative molecular mass and the amino acid sequence and identifying the peptides as the bacteriocins Pediocin-PA and Leucocin K. In conclusion, genomes and antimicrobial substances of P. acidilactici ST6, a Pediocin-PA producer, and Lpb. paraplantarum BPF2, a Leucocin K producer, isolated from Andalusian salchichón and chorizo, respectively, are presented in this work. Although further studies are required, these strains could be used alone or in combination as starters or protective cultures for the food industry.
Collapse
Affiliation(s)
- José David García-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Claudia Teso-Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Manuel Martín-Platero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida de la Reina Mercedes 6, 41012 Seville, Spain
| | - Juristo Fonollá-Joya
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Alberto Baños
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
8
|
Zhu H, Li P, Wang L, Huang Q, Xu B. Flavor profile of "Dao Ban Xiang" (a traditional dry-cured meat product in Chinese Huizhou cuisine) at different processing stages in winter and summer. Food Sci Nutr 2023; 11:2733-2750. [PMID: 37324930 PMCID: PMC10261732 DOI: 10.1002/fsn3.3225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023] Open
Abstract
"Dao Ban Xiang" is a famous traditional Chinese dry-cured meat product. This study aimed to comparatively analyze the difference in the volatile flavor information of "Dao Ban Xiang" produced in winter and summer. In this study, we determine the physical and chemical properties, free amino acids (FAAs), free fatty acids (FFAs), and volatile compounds in the four processing stages of samples in winter and summer. The content of FAAs decreased significantly during the curing period in winter while increasing steadily in summer. The content of total FFAs increased in both winter and summer, and polyunsaturated fatty acids (PUFAs) decreased significantly in summer. The characteristic compound in winter samples is hexanal, nonanal, and (E)-2-octenal, which may mainly come from the degradation of FAAs, while the characteristic compound in winter samples is hexanal, nonanal, and (E)-2-nonenal, which may mainly be derived from the oxidation of FFAs. This study extends our knowledge on flavor from traditional cured meat products at different processing stages in different seasons and could be useful for the standardization of the traditional and regional meat products.
Collapse
Affiliation(s)
- Hanlin Zhu
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Ping Li
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Lin Wang
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Qianli Huang
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Baocai Xu
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Engineering Research Center of Bio‐Process, Ministry of EducationHefei University of TechnologyHefeiChina
| |
Collapse
|
9
|
Gambi L, Crippa C, Lucchi A, Manfreda G, De Cesare A, Pasquali F. Investigation on the microbiological hazards in an artisanal salami produced in Northern Italy and its production environment in different seasonal periods. Ital J Food Saf 2023; 12:10831. [PMID: 37064520 PMCID: PMC10102968 DOI: 10.4081/ijfs.2023.10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
In the present study, the occurrence of Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. and Escherichia coli VTEC was investigated in two batches of artisanal Italian salami tested in winter and summer. Moreover, enumerations of total bacterial count, lactic acid bacteria and Enterobacteriaceae were performed as well as monitoring of water activity and pH. Samples were taken from raw materials, production process environment, semi-finished product and finished products. The results revealed an overall increase of total bacterial count and lactic acid bacteria during the ripening period, along with a decrease of Enterobacteriaceae, pH and water activity. No significant difference was observed between the two batches. The enterobacterial load appeared to decrease during the maturation period mainly due to a decrease in pH and water activity below the limits that allow the growth of these bacteria. E. coli VTEC, Salmonella spp. or L. monocytogenes were not detected in both winter and summer batches. However, Klebsiella pneumoniae was detected in both summer and winter product. Except for one isolate, no biological hazards were detected in the finished salami, proving the efficacy of the ripening period in controlling the occurrence of microbiological hazard in ripened salami. Further studies are required to assess the virulence potential of the Klebsiella pneumoniae isolates.
Collapse
|
10
|
Camprini L, Pellegrini M, Comi G, Iacumin L. Effects of anaerobic and respiratory adaptation of Lacticaseibacillus casei N87 on fermented sausages production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1044357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Lacticaseibacillus casei N87 was used as starter culture for the production of fermented sausages. The strain was cultivated in anaerobic (A) and respiratory (growth in presence of oxygen and supplementation with haeme and menaquinone in the growth medium; R) conditions. Control without the starter culture inoculation and with the addition of 150 mg/kg of nitrate was also included. The effect on physico-chemical parameters (pH, Aw, weight loss, and color), microbial population, volatilome, proteolysis as well as the survival of the strain was evaluated during 90 days of ripening. Q-PCR and DGGE-PCR analyses demonstrated the ability of the strain used in this study to adapt to this environment and carry out the sausage's fermentation process. The inoculation of the strain did not have any effect on the Aw values, which decreased similarly in the different samples whereas the pH was lower in A samples (5.2) and the weight loss in R samples (2.5% less than the others). The color parameters of the samples inoculated with the starter cultures were comparable to those of the control added with nitrate. The concentration of aldehydes that usually are identified as marker of oxidation processes was similar in the samples inoculated with the starter cultures adapted under respiratory conditions and in the control. On the contrary, a higher level was detected in the samples inoculated with the starter cultivated under anaerobic conditions. The proteolysis that occurred during the ripening indicates the differentiation of the A samples from the others. Nonetheless, the volatile profiles of the inoculated fermented sausages were similar. The study demonstrated that aerobic adaptation of Lcb. casei N87 starter culture gave similar color parameters and amounts of aldehydes in sausages fermentations without nitrate compared to conventional fermentations with nitrate.
Collapse
|
11
|
Bogdanović S, Stanković S, Berić T, Tomasevic I, Heinz V, Terjung N, Dimkić I. Bacteriobiota and Chemical Changes during the Ripening of Traditional Fermented "Pirot 'Ironed' Sausage". Foods 2023; 12:foods12030664. [PMID: 36766190 PMCID: PMC9913956 DOI: 10.3390/foods12030664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
"Pirot 'ironed' sausage" (Pis) is a traditional, fermented sausage, made from different types of meat (beef and chevon), without additives or starter cultures. The physical-chemical properties (pH, water activity, fats, moisture, and protein contents) were examined in the initial meat batter stuffing and during ripening. Total bacterial diversity was examined at different time points using both culturable (traditional) and non-culturable (NGS sequencing) approaches. During the ripening, a decrease in pH value, aw, and moisture content was observed, as well as an increase in protein and fat content. At least a two-fold significant decrease was noted for colorimetric values during the ripening period. The dominance of Proteobacteria and Firmicutes was observed in the non-culturable approach in all studied samples. During the ripening process, an increase in Firmicutes (from 33.5% to 63.5%) with a decrease in Proteobacteria (from 65.4% to 22.3%) was observed. The bacterial genera that were dominant throughout the ripening process were Lactobacillus, Photobacterium, Leuconostoc, Weissella, and Lactococcus, while Carnobacterium, Brochothrix, and Acinetobacter were found also, but in negligible abundance. Among the culturable bacteria, Latilactobacillus sakei (Lactobacillus sakei) and Leuconostoc mesenteoides were present in all stages of ripening.
Collapse
Affiliation(s)
- Svetlana Bogdanović
- Agriculture and Food College of Applied Studies, Ćirila i Metodija 1, 18400 Prokuplje, Serbia
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Tanja Berić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
- Correspondence: (I.T.); (I.D.)
| | - Volker Heinz
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Nino Terjung
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Correspondence: (I.T.); (I.D.)
| |
Collapse
|
12
|
The Characterization of Dry Fermented Sausages under the "Chorizo Zamorano" Quality Label: The Application of an Alternative Statistical Approach. Foods 2023; 12:foods12030483. [PMID: 36766013 PMCID: PMC9914336 DOI: 10.3390/foods12030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The characterization of quality brand meat products, such as "Chorizo Zamorano" dry fermented sausages, involves a wide range of data which makes it necessary to use alternative statistical methodologies. In this study, the feasibility of the Categorical Principal Components Analysis as a multivariate non-linear technique for the characterization of "Chorizo Zamorano" was assessed. The data analyzed were those of eight commercial brands covered by the quality mark over an eight-year period (2013-2020) and included parameters of the physicochemical composition and organoleptic properties of the product. The results showed that "Chorizo Zamorano" has an average moisture content (28.28%), high protein (38.38%) and fat (51.05%) contents, and a very low carbohydrate concentration (1.52%). Results showed that the fat and protein content and the sensory parameters related to external and internal odor appeared to be the studied variables with the greatest influence on the classification of the products according to their quality.
Collapse
|
13
|
Kingkaew E, Konno H, Hosaka Y, Phongsopitanun W, Tanasupawat S. Characterization of Lactic Acid Bacteria from Fermented Fish (pla-paeng-daeng) and Their Cholesterol-lowering and Immunomodulatory Effects. Microbes Environ 2023; 38. [PMID: 36754424 PMCID: PMC10037097 DOI: 10.1264/jsme2.me22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The cholesterol-lowering and immunomodulatory effects and probiotic properties of 25 lactic acid bacteria (LAB) isolated from fermented fish (pla-paeng-daeng) in Thailand were examined in the present study. Based on their phenotypic and genetic characteristics, LAB were identified as Lactiplantibacillus pentosus (Group I, 6 isolates), Lactiplantibacillus argentoratensis (Group II, 1 isolate), Limosilactobacillus fermentum (Group III, 2 isolates), Companilactobacillus pabuli (Group IV, 4 isolates), Companilactobacillus farciminis (Group V, 5 isolates), Companilactobacillus futsaii (Group VI, 6 isolates), and Enterococcus lactis (Group VII, 1 isolate). Lactiplantibacillus pentosus PD3-1 and PD9-2 and Enterococcus lactis PD3-2 exhibited bile salt hydrolase (BSH) activities. The percentage of cholesterol assimilated by all isolates ranged between 21.40 and 54.07%. Bile salt hydrolase-producing isolates tolerated acidic and bile conditions and possessed adhesion properties. They also exerted immunomodulatory effects that affected the production of interleukin-12 (IL-12), interferon-γ (IFN-γ), human β-defensin-2 (hBD-2), and nitric oxide (NO). These isolates meet standard probiotic requirements and exert beneficial effects.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| | | | | | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| |
Collapse
|
14
|
Staphylococcus spp. and Lactobacillus sakei Starters with High Level of Inoculation and an Extended Fermentation Step Improve Safety of Fermented Sausages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Paio do Alentejo (PA) is one of the most popular dry-fermented sausages in Portugal. The aim of the present work was to evaluate the effect of a high concentration of starter cultures with an extended fermentation step on the safety and quality of PA. Physicochemical parameters, microbiological parameters, biogenic amines, colour, texture profile, and sensory attributes were assessed. Five starters were selected based on our previous works. Staphylococcus equorum S2M7, Staphylococcus xylosus CECT7057, Lactobacillus sakei CV3C2, Lactobacillus sakei CECT7056, and a yeast strain (2RB4) were co-inoculated in meat batters at a concentration of 108 cfu/g for bacteria and 106 cfu/g for yeast strain, and 0.25% dextrose was added. Inoculated starters significantly reduced pH, Listeria monocytogenes counts, and total content in biogenic amines. The studied starter cultures did not compromise the sensory characteristics of PA, and thus, their use can be considered to protect these sausages and contribute to their safety.
Collapse
|
15
|
PETROVIĆ TŽ, ILIĆ P, GRUJOVIĆ M, MLADENOVIĆ K, KOCIĆ-TANACKOV S, ČOMIĆ L. Lactobacillus curvatus from fermented sausages as new probiotic functional foods. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Predrag ILIĆ
- College of Agriculture and Food Technology, Serbia
| | | | | | | | | |
Collapse
|
16
|
ŞİMŞEK A. An evaluation of the physicochemical and microbiological characteristics and the hygienic status of naturally fermented camel sausages (sucuks). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.81321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Azim ŞİMŞEK
- Isparta University of Applied Sciences, Turkey
| |
Collapse
|
17
|
Halagarda M, Wójciak KM. Health and safety aspects of traditional European meat products. A review. Meat Sci 2021; 184:108623. [PMID: 34753110 DOI: 10.1016/j.meatsci.2021.108623] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
Meat products constitute one of the most important groups of traditional foods. Thanks to the unique and favorable organoleptic characteristics, and high quality, they are willingly chosen by consumers. Lately, there has been a growing concern over the health aspects of these products. Therefore, the aim of this study was to analyze the nutritional value and factors affecting quality and health safety of traditional meat products on the basis of available literature. The study findings have revealed various issues with uniformity of traditional meat products. Products of the same name may differ substantially considering nutritional value. Reports also indicate that there are some discrepancies which can be attributed to product character (traditional/conventional). They mainly concern the content of moisture, protein, salt, fat, and fatty acid profile. Research suggests that traditional meat products may also be associated with some health safety issues, such as the presence of pathogens, polycyclic aromatic hydrocarbons, nitrate and nitrite residues, N-nitrosamines, biogenic amines and heavy metals.
Collapse
Affiliation(s)
- Michał Halagarda
- Department of Food Product Quality, Cracow University of Economics, 30-033 Kraków, Sienkiewicza 5, Poland.
| | - Karolina M Wójciak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-704 Lublin, Skromna 8 Street, Poland.
| |
Collapse
|
18
|
Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening. Animals (Basel) 2021; 11:ani11113060. [PMID: 34827792 PMCID: PMC8614485 DOI: 10.3390/ani11113060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
This study focused on the characterization of salami produced with meat from different pig breeds. The aim consisted in evaluating the added value of the inclusion of Apulo-Calabrese meat in the production of salami, which was characterized by production until the end of maturation (1, 30, 60, and 120 days). The experimental design involved three types of salami, two of which were produced by partial inclusion of 50 and 75% of the Italian breed pork meat (S50 and S75, respectively). Physicochemical (pH, aw, fatty acid analysis, and malondialdehyde concentration), rheological parameters (texture analyses and color measurement), and bacterial biodiversity were evaluated. Results showed that the partial inclusion of Apulo-Calabrese meat influences the fatty acid profile of final products, which were characterized by a higher percentage of monounsaturated fatty acids compared to traditional salami; however, due to the high content of unsaturated fatty acids, S50 and S75 showed higher values of secondary lipid oxidation up to the 120th day. The linoleic and palmitic acid content significantly affected hardness and brightness. Overall, the ripening process was able to control the microbiological profile and the S50 formulation appeared as a suitable choice that could satisfy consumers for nutritional expectations and sensory profiles.
Collapse
|
19
|
Competition between Starter Cultures and Wild Microbial Population in Sausage Fermentation: A Case Study Regarding a Typical Italian Salami ( Ventricina). Foods 2021; 10:foods10092138. [PMID: 34574248 PMCID: PMC8467601 DOI: 10.3390/foods10092138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The work reports a case study describing how the competition wild microflora vs. starter cultures affects the final product characteristics. This study regards an industrial lot of Ventricina, an Italian long-ripened traditional fermented sausages, produced using starter cultures. After ripening, some relevant organoleptic defects (off-odour, crust formation) were observed. Therefore, analyses were carried out in the inner and outer sausage section to explain this phenomenon. Microbiological analyses indicated a high meat batter contamination and metagenomic analyses evidenced the inability of LAB starter cultures to lead the fermentation process. The results of this not controlled fermentation were the accumulation of high levels of biogenic amines (including histamine) and the formation of a volatile profile different if compared with similar products. Indeed, the volatilome analysis revealed unusually high amounts of molecules such as isovaleric acid, propanoic acid, 1-propanol, which can be responsible for off-odours. This study demonstrated that starter culture use needs to be modulated in relation to production parameters to avoid safety and organoleptic concerns.
Collapse
|
20
|
Technological Parameters, Anti- Listeria Activity, Biogenic Amines Formation and Degradation Ability of L. plantarum Strains Isolated from Sheep-Fermented Sausage. Microorganisms 2021; 9:microorganisms9091895. [PMID: 34576790 PMCID: PMC8470431 DOI: 10.3390/microorganisms9091895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to identify and characterize, from a technological and safety point of view, the lactic acid bacteria (LAB) isolated from traditional sheep-fermented sausage. First, LABs were identified then were screened for some technological parameters such as acidifying and growth ability, proteolytic and lipolytic activity and for antimicrobial activity. Finally, biogenic amine production and degradation abilities were also evaluated. This research reveals the predominance of Lactiplantibacillus (L.) plantarum on LAB community. Almost all L. plantarum strains were active against Listeria monocytogenes strains (inhibition zone diameters > 1 cm). None of the tested strains were positive in histidine (hdcA), lysine (ldc) and tyrosine (tyrdc) decarboxylase genes and only one (L. plantarum PT9-2) was positive to the agmatine deiminase (agdi) gene. Furthermore, given the positive results of the sufl (multi-copper oxidase) gene detection, all strains showed a potential degradation ability of biogenic amines.
Collapse
|
21
|
Boumaiza M, Najjari A, Jaballah S, Boudabous A, Ouzari H. Effect of inoculating
Lactobacillus sakei
strains alone or together with
Staphylococcus xylosus
on microbiological, physicochemical, fatty acid profile, and sensory quality of Tunisian dry‐fermented sausage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohamed Boumaiza
- LR03ES03 Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis Université de Tunis El Manar Tunis Tunisie
- Department of Cell Biology, Faculty of Science Charles University Prague Czech Republic
| | - Afef Najjari
- LR03ES03 Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Sana Jaballah
- LR03ES03 Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Abdellatif Boudabous
- LR03ES03 Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Hadda‐Imene Ouzari
- LR03ES03 Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis Université de Tunis El Manar Tunis Tunisie
| |
Collapse
|
22
|
Zeng X, Yang Q, Zhang W, Liu J, He L, Deng L, Guo X. Effects of Liquid Smoking on the Microbiological and Physicochemical Characteristics of Suan Yu, a Traditional Chinese Fermented Fish Product. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1881675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xuefeng Zeng
- Schol of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Qin Yang
- Schol of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Wei Zhang
- Schol of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Jingui Liu
- Schol of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Laping He
- Schol of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Li Deng
- Schol of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
- School of Economics, Guizhou University of Commerce, Guiyang, Guizhou, China
| | - Xu Guo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
23
|
Palavecino Prpich NZ, Camprubí GE, Cayré ME, Castro MP. Indigenous Microbiota to Leverage Traditional Dry Sausage Production. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6696856. [PMID: 33604370 PMCID: PMC7868150 DOI: 10.1155/2021/6696856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
The main issue addressed in this review is the need for innovation in the artisanal production of dry fermented sausages-leveraging rather than discarding tradition, together with some practical strategies available to achieve it. Throughout the text, emphasis is placed on the autochthonous microbiota responsible for the identity and unique sensory characteristics of these products. The available strategies to introduce innovation in this manufacturing process rely on metabolic flexibility of microbial strains. In this sense, this review evaluates the application of several tools aimed at improving the quality and safety of artisanal dry fermented sausages focusing on the microbial community role. The most studied alternatives to enhance dry sausage production comprise the use of autochthonous starter cultures-including functional and/or probiotic strains, the production of bacteriocins, and the generation of bioactive peptides, which have been thoroughly covered herein. The purpose of this work is to review recent research about novel different strategies available for food technologists to improve safety and quality in the manufacture of dry fermented sausages. Additional support strategies-quality product registers and innovation through tradition-have been suggested as complementary actions towards a successful introduction of indigenous microbial communities into traditional dry sausage production.
Collapse
Affiliation(s)
- Noelia Zulema Palavecino Prpich
- Laboratorio de Microbiología de Alimentos, Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Germán Edgardo Camprubí
- Facultad de Ingeniería, Universidad Nacional del Nordeste (UNNE), Las Heras 727, Resistencia, 3500 Chaco, Argentina
| | - María Elisa Cayré
- Laboratorio de Microbiología de Alimentos, Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina
| | - Marcela Paola Castro
- Laboratorio de Microbiología de Alimentos, Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires, Argentina
| |
Collapse
|
24
|
Najjari A, Boumaiza M, Jaballah S, Boudabous A, Ouzari H. Application of isolated Lactobacillus sakei and Staphylococcus xylosus strains as a probiotic starter culture during the industrial manufacture of Tunisian dry-fermented sausages. Food Sci Nutr 2020; 8:4172-4184. [PMID: 32884698 PMCID: PMC7455971 DOI: 10.1002/fsn3.1711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, lactic acid bacteria has been isolated and selected to be used as starter cultures in meat fermentation for standardization and management of quality of dry-fermented sausage which constitute a considerable challenge. The aim of this study was to evaluate the effect of Lactobacillus sakei strains, isolated from different origins, on qualities of dry-fermented sausages. These last, manufactured with different combinations of starter cultures (L. sakei + Staphylococcus xylosus), were ripened, using the same raw materials and conditions, for 45 days. Samples were collected during this period, and microbiological, physicochemical, fatty acid profile, and sensorial analyses determined. Lactic acid bacteria were the dominant flora during ripening. A desirable PUFA/SFA ratio, corresponding to 1:1.7 (0.6), was detected after 24 days of maturation in sausages inoculated by L. sakei BMG 95 and S. xylosus. Sensory analysis showed that fermented sausages manufactured with L. sakei and S. xylosus had a more desirable odor, flavor, and texture and consequently were preferred overall. In particular, sensory panellists preferred sausages produced with either L. sakei 23K or L. sakei BMG 95 when compared to fermented sausage produced with a commercial starter or no starter at all.
Collapse
Affiliation(s)
- Afef Najjari
- Faculté des Sciences de TunisLR03ES03 Microorganismes et Biomolécules ActivesUniversité de Tunis El ManarTunisTunisia
| | - Mohamed Boumaiza
- Faculté des Sciences de TunisLR03ES03 Microorganismes et Biomolécules ActivesUniversité de Tunis El ManarTunisTunisia
| | - Sana Jaballah
- Faculté des Sciences de TunisLR03ES03 Microorganismes et Biomolécules ActivesUniversité de Tunis El ManarTunisTunisia
| | - Abdelatif Boudabous
- Faculté des Sciences de TunisLR03ES03 Microorganismes et Biomolécules ActivesUniversité de Tunis El ManarTunisTunisia
| | - Hadda‐Imene Ouzari
- Faculté des Sciences de TunisLR03ES03 Microorganismes et Biomolécules ActivesUniversité de Tunis El ManarTunisTunisia
| |
Collapse
|
25
|
Huang Z, Shen Y, Huang X, Qiao M, He RK, Song L. Microbial diversity of representative traditional fermented sausages in different regions of China. J Appl Microbiol 2020; 130:133-141. [PMID: 32219941 DOI: 10.1111/jam.14648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/10/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
AIMS The purpose of this experiment was to study the bacterial diversity of traditional fermented sausages from four typical regions of China (Chengdu, Shenzhen, Changsha and Harbin) and to further evaluate their microbiological safety. METHODS AND RESULTS The diversity of the microbiota of the sausages was studied using the Illumina HiSeq platform. The results showed that compared with the highest diversity of fermented bacteria in Guangdong, the bacterial diversity of fermented sausage was the lowest in Sichuan. The percentage of dominant phylum (Firmicutes, Cyanophyta, Proteobacter) were 78·39, 13·13 and 7·14% in SC, 35·47, 30·36 and 28·04% in GD, 54·81, 28·91 and 14·00% in HN, 20·20, 58·16 and 17·31% in HB respectively. The main genus distribution of fermented sausages in different regions is varied, but lactic acid bacteria and cyanobacteria are generally the main ones. Traditional fermented sausages using natural fermentation methods have poor microbiological safety, and pathogenic and spoilage micro-organisms such as Acinetobacter, Brochothrix and Pseudomonas have been detected in all four regions. CONCLUSIONS The results in this paper provide a microbiota profile of four typical fermented sausages in China. There is a big difference in the microbiota of sausages in different regions, and the good flavour of traditional Chinese fermented sausage is related closely with the abundant microbial resources, however, the natural fermentation method also expose to the product security threats, including spoilage, pathogenic micro-organisms and biogenic amines, etc. SIGNIFICANCE AND IMPACT OF THE STUDY: The results would offer guidance for industrial fermented sausage production with certain flavour and also improve the microbial resource utilization, and contribute to the control of harmful micro-organisms in traditional fermented sausage.
Collapse
Affiliation(s)
- Z Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou, China
| | - Y Shen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou, China
| | - X Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou, China
| | - M Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou, China
| | - R K He
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou, China
| | - L Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou, China
| |
Collapse
|
26
|
Lešić T, Vahčić N, Kos I, Zadravec M, Sinčić Pulić B, Bogdanović T, Petričević S, Listeš E, Škrivanko M, Pleadin J. Characterization of Traditional Croatian Household-Produced Dry-Fermented Sausages. Foods 2020; 9:foods9080990. [PMID: 32722148 PMCID: PMC7466175 DOI: 10.3390/foods9080990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Characterization of five types of traditional Croatian dry-fermented sausages produced by family farms was performed via identification of superficial mycobiota, physicochemical, sensory, instrumental color, fatty acids & fat quality indices. Detailed characterization of these sausages aimed to achieve standardization of their production and composition and to establish and/or improve their specification protocols. Traditional sausages varied significantly (p < 0.05) in all analyzed parameters except for the number of mold isolates. Sausages coming from eastern Croatia had a greater mold species diversity, with the highest number of isolated mycotoxigenic species in Slavonian domestic sausage. Sensory evaluation showed good acceptability of all sausages. According to health recommendations, Kulenova Seka showed the most representable values for most of fat quality indices. The results suggest the need for certain modifications in fat & fatty acid composition and, to a lesser extent, in salt content, however not at the expense of product safety, quality and acceptability.
Collapse
Affiliation(s)
- Tina Lešić
- Croatian Veterinary Institute, Laboratory for Analytical Chemistry, Savska Cesta 143, 10000 Zagreb, Croatia;
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Ivica Kos
- Faculty of Agriculture, University of Zagreb, Department of Animal Science and Technology, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Manuela Zadravec
- Croatian Veterinary Institute, Laboratory for Feed Microbiology, Savska Cesta 143, 10000 Zagreb, Croatia;
| | - Blanka Sinčić Pulić
- Administrative Department of Agriculture, Forestry, Hunting, Fishery and Water Management, Šetalište Pazinske Gimnazije 1, 52000 Pazin, Croatia;
| | - Tanja Bogdanović
- Croatian Veterinary Institute, Regional Veterinary Institute Split, Poljička Cesta 33, 21000 Split, Croatia; (T.B.); (S.P.); (E.L.)
| | - Sandra Petričević
- Croatian Veterinary Institute, Regional Veterinary Institute Split, Poljička Cesta 33, 21000 Split, Croatia; (T.B.); (S.P.); (E.L.)
| | - Eddy Listeš
- Croatian Veterinary Institute, Regional Veterinary Institute Split, Poljička Cesta 33, 21000 Split, Croatia; (T.B.); (S.P.); (E.L.)
| | - Mario Škrivanko
- Croatian Veterinary Institute, Regional Veterinary Institute Vinkovci, Ul. Josipa Kozarca 24, 32100 Vinkovci, Croatia;
| | - Jelka Pleadin
- Croatian Veterinary Institute, Laboratory for Analytical Chemistry, Savska Cesta 143, 10000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|
27
|
Microbial, chemico-physical and volatile aromatic compounds characterization of Pitina PGI, a peculiar sausage-like product of North East Italy. Meat Sci 2020; 163:108081. [DOI: 10.1016/j.meatsci.2020.108081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/28/2019] [Accepted: 02/05/2020] [Indexed: 11/20/2022]
|
28
|
Cullere M, Novelli E, Dalle Zotte A. Fat Inclusion Level, NaCl Content and LAB Starter Cultures in the Manufacturing of Italian-Type Ostrich Salami: Weight Loss and Nutritional Traits. Foods 2020; 9:foods9040476. [PMID: 32290184 PMCID: PMC7230627 DOI: 10.3390/foods9040476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
The experiment studied the effect of two different fat inclusion levels (30% and 40%), NaCl contents (2.4 and 2.6%) and starter cultures (lactic acid bacteria (LAB) 6: L. curvatus/S. xylosus; LAB 8: L. sakei/S. xylosus) on the weight loss and nutritional composition of Italian-type ostrich salami. With this purpose, 8 batches of 9 salami each (n = 72) were prepared. Salami were ripened for 20 weeks: weight loss was monitored throughout the experiment, while salami nutritional composition was evaluated at 10 and 20 weeks of ripening. The lowest fat and highest salt inclusion levels provided the highest cumulative weight loss throughout the trial. At 10 weeks of ripening, salami with 40% fat were the richest in moisture and fat, whereas the leanest ones had the highest protein, ash and cholesterol contents. LAB 6 provided salami with the highest moisture and protein, while LAB 8 increased fat and cholesterol contents. At 20 weeks of ripening the proximate composition of ostrich salami was solely affected by fat inclusion level, with similar findings to those observed at 10 weeks. Overall, fat inclusion level had a great impact on the weight loss and nutritional composition of Italian-style ostrich salami. Reducing the NaCl inclusion from 2.6% to 2.4%, the weight loss of ostrich salami was retarded by approximately 1 week, without affecting the nutritional composition of the final product. Results of the study suggested that it is feasible to produce salami with lower fat and salt contents, while ensuring satisfactory product quality.
Collapse
Affiliation(s)
- Marco Cullere
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Enrico Novelli
- Department of Comparative Biomedicine and Nutrition, University of Padova, Agripolis, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Antonella Dalle Zotte
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell’Università, 16, 35020 Legnaro, Italy;
- Correspondence:
| |
Collapse
|
29
|
Comi G, Muzzin A, Corazzin M, Iacumin L. Lactic Acid Bacteria: Variability Due to Different Pork Breeds, Breeding Systems and Fermented Sausage Production Technology. Foods 2020; 9:E338. [PMID: 32183247 PMCID: PMC7142627 DOI: 10.3390/foods9030338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
Changes in the ecology of the various lactic acid bacteria (LAB) species, which are involved in traditional fermented sausages, were investigated in the light of the use of different breeds of pork, each of which was raised in two different environments and processed using two different technologies. The semi-quantitative molecular method was applied in order to understand how the different species alternate over time, as well as their concentration ratios. A significant increase in LAB over the first days of fermentation characterized the trials where the starter culture wasn't added (T), reaching values of 107-108 cfu g-1. On the other hand, in the trials in which sausages were produced with starter addition, LAB counts had a less significant incremental jump from about 106 cfu g-1 (concentration of the inoculum) to 108 cfu g-1. Lactobacillus sakei and Lb. curvatus were detected as the prevalent population in all the observed fermentations. Pediococcus pentosaceus, Lb. casei, Leuconostoc mesenteroides, Lactococcus garviae, and Lb. graminis also appeared, but their concentration ratios varied depending on the diverse experimental settings. The results of cluster analysis showed that a plant- and breed-specific LAB ecology exists. In addition, it was also observed that the breeding system can influence the presence of certain LAB species.
Collapse
Affiliation(s)
| | | | | | - Lucilla Iacumin
- Department of Agriculture, Food, Environmental and Animal Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| |
Collapse
|
30
|
Charmpi C, Van der Veken D, Van Reckem E, De Vuyst L, Leroy F. Raw meat quality and salt levels affect the bacterial species diversity and community dynamics during the fermentation of pork mince. Food Microbiol 2020; 89:103434. [PMID: 32138992 DOI: 10.1016/j.fm.2020.103434] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/26/2022]
Abstract
Acidification level and temperature modulate the beneficial consortia of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS) during meat fermentation. Less is known about the impact of other factors, such as raw meat quality and salting. These could for instance affect the growth of the pathogen Staphylococcus aureus or of Enterobacterales species, potentially indicative of poor fermentation practice. Therefore, pork batters from either normal or borderline quality (dark-firm-dry, DFD) were compared at various salt concentrations (0-4%) in meat fermentation models. Microbial ecology of the samples was investigated with culture-dependent techniques and (GTG)5-PCR fingerprinting of genomic DNA. Whilst Lactobacillus sakei governed the fermentation of normal meat, Lactobacillus curvatus was more prominent in the fermentation of the DFD meat variant. CNS were favoured during fermentation at rising salt concentrations without much effects on species diversity, consisting mostly of Staphylococcus equorum, Staphylococcus saprophyticus, and Staphylococcus xylosus. During fermentation of DFD meat, S. saprophyticus was less manifest than during that of normal meat. Enterobacterales mainly emerged in DFD meat during fermentation at low salt concentrations. The salt hurdle was insufficient to prevent Enterobacterales when acidification and initial pH were favourable for their growth.
Collapse
Affiliation(s)
- Christina Charmpi
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emiel Van Reckem
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
31
|
Campaniello D, Speranza B, Bevilacqua A, Altieri C, Rosaria Corbo M, Sinigaglia M. Industrial Validation of a Promising Functional Strain of Lactobacillus plantarum to Improve the Quality of Italian Sausages. Microorganisms 2020; 8:microorganisms8010116. [PMID: 31952139 PMCID: PMC7022507 DOI: 10.3390/microorganisms8010116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/08/2023] Open
Abstract
This paper proposes the industrial validation of a functional strain of Lactobacillus plantarum (strain 178). First, acidification in a meat model medium and bioactivity towards Staphylococcus aureus, Salmonella sp., Listeria monocytogenes, and Escherichia coli were assessed; the performances of Lb. plantarum 178 were compared to those of a commercial Lb. sakei and a probiotic Lb. casei. Lb. plantarum 178 inhibited the pathogens and experienced a higher acidification at 15 °C. Lb. casei and Lb. plantarum were used for an industrial fermentation of traditional Italian sausages. The strains assured the correct course of fermentation and inhibited pathogens and enterobacteria. This study represents the scaling up and the validation of a promising strain at industrial level and shows the possibility of performing the fermentation of traditional Italian sausage through functional starter cultures, combining the benefit of a controlled fermentation and possible health benefits.
Collapse
|
32
|
Vinnikova L, Mudryk V, Agunova L. MODERN PRODUCTION TRENDS OF FERMENTED MEAT PRODUCTS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i4.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The work aims to the generalization and analysis of the main problems of production of fermented meat products, which are reflected in scientific publications of the meat processing industry experts. The modern researches of scientists all over the world are aimed to the achievement of bio- and microbiological safety, structure formation, use of new kinds of raw materials, features of color formation, formation of sensory properties, increase of biological value of smoked and uncooked products. The work emphasizes that the quality of finished products and the stability of the technological process depends on the quality of raw materials, the properties of their own microbiota of raw materials and/or introduced starter cultures of microorganisms. The possibility of improving the sanitary condition of raw materials and reducing the impact of pathogenic microorganisms due to the use of ultrasound, hydrostatic high pressure, high-intensity pulsating electric field, cold plasma are described in the work. Also, in addition to physical processing methods, the use of competing microflora, extracts of spicy-aromatic plants, combining salt mixtures, packaging are effective. It is stated that the formation of the structure of the finished product depends on the parameters of the technological process, the activity of exo-endoenzymes and prescription composition. It is shown that the color of fermented meat products and their stability depend on the content of natural pigments and the conditions of their interaction with nitrites under the action of microorganisms with nitrite reductase activity and pH of the environment. The possibility of obtaining a characteristic pink-red color of meat products without the use of nitrites was noted. The results of investigations of the possibility of varying the organoleptic parameters of the finished product by modeling the ingredient composition and fermentation conditions are presented. The possibilities of creation of new types of fermented meat products of functional purpose by the introduction of ω-3 fatty acids, probiotics, macro-, microelements and more are described.
Collapse
|
33
|
Settanni L, Barbaccia P, Bonanno A, Ponte M, Di Gerlando R, Franciosi E, Di Grigoli A, Gaglio R. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiol 2019; 87:103385. [PMID: 31948626 DOI: 10.1016/j.fm.2019.103385] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023]
Abstract
The present work was carried out to evaluate the microbiological and physicochemical composition of salamis produced with the meat of beef, horse, wild boar and pork. Salami productions occurred under controlled laboratory conditions to exclude butchery environmental contaminations, without the addition of nitrate and nitrite. All trials were monitored during the ripening (13 °C and 90% relative humidity) extended until 45 d. The evolution of physicochemical parameters showed that beef and pork salamis were characterized by a higher content of branched chain fatty acids (FA) and rumenic acid than horse and wild boar salamis, whereas the last two productions showed higher values of secondary lipid oxidation. Plate counts showed that lactic acid bacteria (LAB), yeasts and coagulase-negative staphylococci (CNS) populations dominated the microbial community of all productions with Lactobacillus and Staphylococcus as most frequently isolated bacteria. The microbial diversity evaluated by MiSeq Illumina showed the presence of members of Gammaproteobacteria phylum, Moraxellaceae family, Acinetobacter, Pseudomonas, Carnobacterium and Enterococcus in all salamis. This study showed the natural evolution of indigenous fermented meat starter cultures and confirmed a higher suitability of horse and beef meat for nitrate/nitrite free salami production due to their hygienic quality at 30 d.
Collapse
Affiliation(s)
- Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Pietro Barbaccia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Adriana Bonanno
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Marialetizia Ponte
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, San Michele All'Adige, Italy
| | - Antonino Di Grigoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy.
| |
Collapse
|
34
|
Kos I, Maksimović AZ, Zunabović-Pichler M, Mayrhofer S, Domig KJ, Fuka MM. The Influence of Meat Batter Composition and Sausage
Diameter on Microbiota and Sensory Traits of Artisanal
Wild Boar Meat Sausages. Food Technol Biotechnol 2019; 57:378-387. [PMID: 31866751 PMCID: PMC6902292 DOI: 10.17113/ftb.57.03.19.6197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/08/2019] [Indexed: 11/12/2022] Open
Abstract
In this study, the influence of meat batter composition and sausage diameter on the development of microbiota and sensory traits of traditional, spontaneously fermented wild boar meat sausages are evaluated. This research also demonstrates how principal component analysis (PCA) can be used to relate product sensory properties to particular microbial genotype and to select potential starter or adjunct culture. Generally, similar microbiological results were obtained in all types of products. The undesirable microbiota was either not detected at any sausage production stage or its number decreased below the detection limit in ripened sausages. The low growth rate of lactic acid bacteria (LAB) was consistent with the obtained pH and slow acidification rate. Although no differences in the composition of LAB species were noticed between sausage types (50S=50% wild boar meat in small casing, 50L=50% wild boar meat in large casing, 100S=100% wild boar meat in small casing), a clear separation based on LAB genotypes could be observed. Upon quantitative descriptive analysis, significant differences in sensory attributes between sausage types were established. According to the PCA, the overall acceptability traits of sausages are closely linked to one Leuconostoc mesenteroides genotype (LM_4). Of all tested technological properties, LM_4 strains showed remarkable acidification ability, lowering the pH from pH=5.41 to 3.74, and pronounced proteolytic activity on skimmed milk as well as antagonistic activity against Staphylococcus aureus (DSM 20231) and Brochothrix thermosphacta (LMG 17208). Lipolytic and haemolytic activities were not detected, and all analyzed strains were susceptible to tested antibiotics and possessed no biogenic amine genes.
Collapse
Affiliation(s)
- Ivica Kos
- Department of Animal Science and Technology, University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Ana Zgomba Maksimović
- Department of Microbiology, University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Marija Zunabović-Pichler
- Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Sigrid Mayrhofer
- Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Konrad J. Domig
- Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Mirna Mrkonjić Fuka
- Department of Microbiology, University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Reliable identification of lactic acid bacteria by targeted and untargeted high-resolution tandem mass spectrometry. Food Chem 2019; 285:111-118. [DOI: 10.1016/j.foodchem.2019.01.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
|
36
|
Iacumin L, Cattaneo P, Zuccolo C, Galanetto S, Acquafredda A, Comi G. Natural levels of nitrites and nitrates in San Daniele dry cured ham PDO, and in meat, salt and sugna used for its production. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Hidden sugars in the mixture: Effects on microbiota and the sensory characteristics of horse meat sausage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Prado N, Sampayo M, González P, Lombó F, Díaz J. Physicochemical, sensory and microbiological characterization of Asturian Chorizo, a traditional fermented sausage manufactured in Northern Spain. Meat Sci 2019; 156:118-124. [PMID: 31154204 DOI: 10.1016/j.meatsci.2019.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022]
Abstract
Industrial standardization of fermented meat products requires starter culturesto avoid random variations in the initial microbiota of food matrix. This allows to homogenize production batches regarding sensory and physicochemical characteristics. Also, starters contribute to assure safety, as they compete with pathogens or spoilage species, facilitating pH reduction and secretion of inhibitors. Asturian Chorizo is a traditional fermented sausage from Northern Spain, still produced in a traditional way, without starters. This work describes its characterization at the sensory, physicochemical and microbiological levels. In contrast to other fermented sausages, Asturian Chorizo microbiota is represented mainly by Lactobacillus plantarum, with secondary contributions from Lb. sakei and Lb. futsai. This results may path the way towards development of specific starter cultures for this product, avoiding the loss of the original characteristics of the fermented product in a traditional way, as it would happen in the case of using industrial processes with conventional starters.
Collapse
Affiliation(s)
- Natalia Prado
- Agri-food Technological Center of the Principality of Asturias, ASINCAR, Polígono de La Barreda, TL4, parcela 1, 33180 Noreña, Principality of Asturias, Spain.
| | - Marta Sampayo
- Agri-food Technological Center of the Principality of Asturias, ASINCAR, Polígono de La Barreda, TL4, parcela 1, 33180 Noreña, Principality of Asturias, Spain
| | - Pelayo González
- Agri-food Technological Center of the Principality of Asturias, ASINCAR, Polígono de La Barreda, TL4, parcela 1, 33180 Noreña, Principality of Asturias, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
| | - Juan Díaz
- Agri-food Technological Center of the Principality of Asturias, ASINCAR, Polígono de La Barreda, TL4, parcela 1, 33180 Noreña, Principality of Asturias, Spain
| |
Collapse
|
39
|
Janßen D, Ehrmann MA, Vogel RF. Monitoring of assertive Lactobacillus sakei and Lactobacillus curvatus strains using an industrial ring trial experiment. J Appl Microbiol 2018; 126:545-554. [PMID: 30383919 DOI: 10.1111/jam.14144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022]
Abstract
AIMS In a previous study, we used a 5-day fermenting sausage model to characterize assertiveness of Lactobacillus curvatus and Lactobacillus sakei starter strains towards employ autochthonous contaminants. In this work, we probed those findings and their transferability to real sausage fermentation including the drying process in an industrial ring trial experiment. METHODS AND RESULTS Raw fermented sausages ('salami') were produced with three L. curvatus and four L. sakei strains as starter cultures in cooperation with three manufacturers from Germany. We monitored pH, water activity and microbiota dynamics at strain level over a total fermentation and ripening time of 21 days by MALDI-TOF-MS identification of isolates. The principal behaviour of the strains in real sausage fermentations was the same as that one observed in the 5-day model system delineating single strain assertiveness of a bacteriocin producer from co-dominance of strains. CONCLUSIONS The water activity decrease, which is concomitant with the sausage ripening process has only limited impact on the assertiveness and survival of the starter strains. SIGNIFICANCE AND IMPACT OF THE STUDY Results of a 5-day model can provide insight in the assertiveness of a specific starter strain in sausage fermentation.
Collapse
Affiliation(s)
- D Janßen
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Freising, Germany
| | - M A Ehrmann
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Freising, Germany
| | - R F Vogel
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Freising, Germany
| |
Collapse
|
40
|
Chiavari C, Grazia L, Benevelli M, Faustini L, Coloretti F. Physicochemical, microbiological, and sensory characterization of
‘Nduja
, a typical sausage from Calabria, southern Italy. J Food Saf 2018. [DOI: 10.1111/jfs.12572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristiana Chiavari
- Department of Agricultural and Food Sciences ‐ DISTALAlma Mater Studiorum ‐ Università di Bologna Bologna Italy
| | - Luigi Grazia
- Department of Agricultural and Food Sciences ‐ DISTALAlma Mater Studiorum ‐ Università di Bologna Bologna Italy
| | - Marzia Benevelli
- Department of Agricultural and Food Sciences ‐ DISTALAlma Mater Studiorum ‐ Università di Bologna Bologna Italy
| | - Lorena Faustini
- Department of Agricultural and Food Sciences ‐ DISTALAlma Mater Studiorum ‐ Università di Bologna Bologna Italy
| | - Fabio Coloretti
- Department of Agricultural and Food Sciences ‐ DISTALAlma Mater Studiorum ‐ Università di Bologna Bologna Italy
| |
Collapse
|
41
|
Rezac S, Kok CR, Heermann M, Hutkins R. Fermented Foods as a Dietary Source of Live Organisms. Front Microbiol 2018; 9:1785. [PMID: 30197628 PMCID: PMC6117398 DOI: 10.3389/fmicb.2018.01785] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
The popularity of fermented foods and beverages is due to their enhanced shelf-life, safety, functionality, sensory, and nutritional properties. The latter includes the presence of bioactive molecules, vitamins, and other constituents with increased availability due to the process of fermentation. Many fermented foods also contain live microorganisms that may improve gastrointestinal health and provide other health benefits, including lowering the risk of type two diabetes and cardiovascular diseases. The number of organisms in fermented foods can vary significantly, depending on how products were manufactured and processed, as well as conditions and duration of storage. In this review, we surveyed published studies in which lactic acid and other relevant bacteria were enumerated from the most commonly consumed fermented foods, including cultured dairy products, cheese, fermented sausage, fermented vegetables, soy-fermented foods, and fermented cereal products. Most of the reported data were based on retail food samples, rather than experimentally produced products made on a laboratory scale. Results indicated that many of these fermented foods contained 105-7 lactic acid bacteria per mL or gram, although there was considerable variation based on geographical region and sampling time. In general, cultured dairy products consistently contained higher levels, up to 109/mL or g. Although few specific recommendations and claim legislations for what constitutes a relevant dose exist, the findings from this survey revealed that many fermented foods are a good source of live lactic acid bacteria, including species that reportedly provide human health benefits.
Collapse
Affiliation(s)
| | | | | | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln, NE, United States
| |
Collapse
|
42
|
Quijada NM, De Filippis F, Sanz JJ, García-Fernández MDC, Rodríguez-Lázaro D, Ercolini D, Hernández M. Different Lactobacillus populations dominate in “Chorizo de León” manufacturing performed in different production plants. Food Microbiol 2018; 70:94-102. [DOI: 10.1016/j.fm.2017.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023]
|
43
|
Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiol 2017; 72:1-15. [PMID: 29407386 DOI: 10.1016/j.fm.2017.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
Lactobacillus curvatus 54M16 produced bacteriocins sak X, sak Tα, sak Tβ and sak P. The aim of this study was to investigate the anti-listerial activity of the bacteriocins-producing strain against Listeria monocytogenes in vitro co-culture experiments and during the manufacture of fermented sausages. In MRS broth, Lb. curvatus 54M16 was able to inhibit L. monocytogenes to undetectable levels after 48 h at 20 °C or 5 days at 15 °C. Anti-listerial activity was lower during the production of fermented sausages with pathogen inoculation at levels of approximately 4 Log CFU g-1. However, total inhibition of L. monocytogenes native to the raw ingredients was achieved over the course of the fermentation. Moreover, 16S rRNA-based analysis revealed the ability of Lb. curvatus 54M16 to dominate and affect the bacterial ecosystem, whereas spoilage-associated bacterial genera, such as Brochothrix, Psychrobacter, Pseudomonas and some Enterobacteriaceae, were found until the end of ripening in sausages without Lb. curvatus 54M16. The use of the bacteriocins-producing Lb. curvatus 54M16 in fermented sausages could be an important contribution to product safety, provided that eco-physiological factors and other preservation methods are maintained at levels required for the inhibition of pathogens in controlled conditions.
Collapse
|
44
|
Oliveira M, Ferreira V, Magalhães R, Teixeira P. Biocontrol strategies for Mediterranean-style fermented sausages. Food Res Int 2017; 103:438-449. [PMID: 29389634 DOI: 10.1016/j.foodres.2017.10.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 11/26/2022]
Abstract
Naturally fermented meat sausages have a long tradition in Mediterranean countries and are one of the most important groups of traditional foods consumed throughout Europe. Despite all the advances in food science and technology and increased regulatory requirements and concerns for safety and quality during the last decades, the challenge to control important foodborne pathogens in this type of meat products still persists. Simultaneously, growing consumer interest in safe, high quality and minimal processed products, with less additives/preservatives have driven the food industry and scientists in a crusade for innovative technologies to maintain the safety of these products by natural means. Biological control (biocontrol) fits well within this tendency. This review summarizes the latest achievements on biocontrol strategies applied to Mediterranean-style fermented sausages, namely: (i) bioprotective cultures; (ii) bacteriocins; and, (iii) essential oils (EOs).
Collapse
Affiliation(s)
- Márcia Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Vânia Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| |
Collapse
|
45
|
Godziszewska J, Guzek D, Pogorzelska E, Brodowska M, Górska-Horczyczak E, Sakowska A, Wojtasik-Kalinowska I, Gantner M, Wierzbicka A. A simple method of the detection of pork spoilage caused by Rahnella aquatilis. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M. A possible approach to assess acidification of meat starter cultures: a case study from some wild strains of Lactobacillus plantarum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2961-2968. [PMID: 27861952 DOI: 10.1002/jsfa.8135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/27/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The performances of four autochthonous isolates of Lactobacillus plantarum were assessed to study the most important variables acting on acidification and to propose a possible step-by-step approach for the validation at laboratory scale. This main topic was addressed through three intermediate steps: (1) evaluation of acidification in liquid and solid media, as a function of salt, nitrites, nitrates, lactose, pepper and temperature; (2) assessing acidification in a pork-meat preparation; and (3) designing a protocol to improve the performances at sub-optimal temperatures. The concentration of the ingredients and the temperature were combined through a 3k-p Fractional Factorial Design. Acidification and viable count were assessed and modelled through a multi-factorial ANOVA. RESULTS In model systems acidification was affected by lactose and was maximum (ΔpH of ca. 2.8-3.0) in the combinations containing 0.4% lactose, 250 mg kg-1 nitrates or 150 mg kg-1 nitrites, 5% salt, and at 30 °C. Solid media caused a higher acidification. In the pork meat preparation, the effect of salt and nitrites was significant. At 10 °C the strains could not reduce pH, but this ability could be induced using an adaptation step. CONCLUSION Acidification was affected by lactose in the model system, whereas in meat preparation the other variables were significant. In addition, a protocol to improve acidification at 10 °C was optimised. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Barbara Speranza
- Department of the Science of Agriculture, Food and Environment, University of Foggia, 71122, Via Napoli 25, Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, 71122, Via Napoli 25, Foggia, Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, 71122, Via Napoli 25, Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, 71122, Via Napoli 25, Foggia, Italy
| |
Collapse
|
47
|
Iacumin L, Manzano M, Stella S, Comi G. Fate of the microbial population and the physico-chemical parameters of “Sanganel” a typical blood sausages of the Friuli, a north-east region of Italy. Food Microbiol 2017; 63:84-91. [DOI: 10.1016/j.fm.2016.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
48
|
Polese P, Del Torre M, Stecchini ML. Prediction of the impact of processing critical conditions for Listeria monocytogenes growth in artisanal dry-fermented sausages (salami) through a growth/no growth model applicable to time-dependent conditions. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: a review. Int J Food Microbiol 2017; 247:24-37. [DOI: 10.1016/j.ijfoodmicro.2016.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/15/2016] [Accepted: 05/15/2016] [Indexed: 12/16/2022]
|
50
|
García-Díez J, Alheiro J, Pinto AL, Falco V, Fraqueza MJ, Patarata L. Synergistic Activity of Essential Oils from Herbs and Spices Used on Meat Products against Food Borne Pathogens. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Essential oils (EOs) could be utilized as natural agents to improve the safety of meat products. However, the high concentration required to achieve an antimicrobial effect in foods might be incompatible with their sensory acceptance. To avoid this problem, combinations of EOs provide an effective approach reducing the odds of sensory rejection. In our study, 13 EOs of herbs and spices commonly used in the seasoning of meat products were assessed for their antimicrobial activity against Salmonella spp., Listeria monocytogenes, Escherichia coli and Staphylococcus aureus. However, only 7 of them were selected to study their synergistic effect based on their antimicrobial activity and minimum inhibitory concentration (MIC) against foodborne pathogens. EOs of thyme and cinnamon presented the largest antibacterial activity against foodborne pathogens. Combinations of selected EOs displayed a synergic effect against foodborne pathogens and also an important decrease in their individual MIC. Thyme EO presented the lowest individual MIC, but its utilization in combination decreased the MIC of the other EOs. Utilization of cinnamon EO also improved the reduction of the individual MICs of the EOs of cumin and parsley. Our results suggest the potential use of EO mixtures to control foodborne pathogens in meat products. Although the individual MIC values of selected EOs decreased, the sensory impact on meat products needs to be assessed.
Collapse
Affiliation(s)
- Juan García-Díez
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real. Portugal
| | - Joana Alheiro
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real. Portugal
| | - Ana Luisa Pinto
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real. Portugal
| | - Virgilio Falco
- CQ-VR, Centro de Química - Vila Real (CQ-VR). Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real. Portugal
| | - Maria João Fraqueza
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Avenida da UniversidadeTécnica, Pólo Universitário do Alto da Ajuda, 1300–477 Lisbon, Portugal
| | - Luís Patarata
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real. Portugal
| |
Collapse
|