Limited and excess protein intake of pregnant gilts differently affects body composition and cellularity of skeletal muscle and subcutaneous adipose tissue of newborn and weanling piglets.
Eur J Nutr 2011;
51:151-65. [PMID:
21559991 DOI:
10.1007/s00394-011-0201-8]
[Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 02/02/2023]
Abstract
AIM
This study investigated whether dietary protein intake less (50%) or greater (250%) than requirements throughout gestation differently affects offspring body composition and cellular properties of skeletal muscle and subcutaneous adipose tissue (SCAT).
METHODS
Primiparous gilts were fed iso-energetic diets containing adequate (22 AP), high (21 HP), or low (19 LP) protein contents. Newborn (n = 166) and weanling piglets cross-fostered to sows fed a standard diet (day 28; n = 83) were examined by morphological, biochemical, histological, and molecular analyses of the body, SCAT, and semitendinosus, longissimus, biceps femoris muscles.
RESULTS
Lowered birth weight (BW) in response to the HP and LP diets (p < 0.01) resulted from decreases in all body constituents in LP, and mainly from reduced body fat in HP piglets (p < 0.05). In the light BW class within litters, HP piglets exhibited a greater percentage of muscle tissue (p < 0.05) than LP piglets. Less SCAT mass in HP and LP piglets resulted from reduced (p < 0.05) number, but not the size of adipocytes. The LP diet adversely affected myogenesis and muscular differentiation derived from less (p < 0.01) primary and secondary myofibers, lower creatine kinase activity (p < 0.05), less IGF2 mRNA (p < 0.10), and greater expression of the embryonic myosin heavy chain isoform (p < 0.01). Catch-up growth of LP but not HP pigs until day 28 increased body fat (p = 0.01). Despite compensated muscle growth in LP piglets, the deficit in myofiber number remained.
CONCLUSION
Poor intrauterine environment by limited and excess protein supply retards fetal growth, but only limited protein supply impairs myogenesis, persistently restricts muscle growth potential, and favors obesity at infancy.
Collapse