Zhang ZL, Moeslund N, Hu MA, Hoffmann R, Venema LH, Van De Wauwer C, Timens W, Okamoto T, Verschuuren EAM, Leuvenink HGD, Eiskjaer H, Erasmus ME. Establishing an economical and widely accessible donation after circulatory death animal abattoir model for lung research using ex vivo lung perfusion.
Artif Organs 2022;
46:2179-2190. [PMID:
35730930 PMCID:
PMC9796928 DOI:
10.1111/aor.14345]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND
Ex vivo lung perfusion (EVLP), is a platform that allows simultaneous testing and treatment of the lungs. However, use of EVLP is costly and requires access to lab animals and accompanying facilities. To increase the use of EVLP for research, we developed a method to perform EVLP using abattoir procured lungs. Furthermore, we were also able to significantly decrease costs.
METHODS
Six pair of lungs were procured from abattoir sheep. The lungs were then flushed and stored in ice for 3 h. A low-flow (20% of cardiac output) approach, a tidal volume of 6 ml/kg bodyweight and total perfusion time of 3 h were chosen. Perfusion fluids and circuits were self-made. Lung biopsies, perfusate collection, respiratory values, circulatory pressures were recorded and hourly blood gas analyses were performed.
RESULTS
Mean pO2 remained stable from 60 min (49.3 ± 7.1 kPa) to 180 min (51.5 kPa ± 8.0), p = 0.66. Pulmonary artery pressure remained ≤15 mm Hg and the left atrial pressure remained between 3 and 5 mm Hg and peak respiratory pressures ≤20 cmH2 O. Lactate dehydrogenase increased from start (96.3 ± 56.4 U/L) to the end of perfusion (315.8 ± 85.0 U/L), p < 0.05. No difference was observed in ATP between procurement and post-EVLP, 129.7 ± 37.4 μmol/g protein to 132.0 ± 23.4 μmol/g, p = 0.92.
CONCLUSIONS
Sheep lungs, acquired from an abattoir, can be ex vivo perfused under similar conditions as lab animal lungs with similar results regarding e.g., oxygenation and ATP restoration. Furthermore, costs can be significantly reduced by making use of this abattoir model. By increasing accessibility and lowering costs for experiments using lung perfusion, more results may be achieved in the field of lung diseases.
Collapse