1
|
Mansour ST, Ibrahim H, Zhang J, Farag MA. Extraction and analytical approaches for the determination of post-food processing major carcinogens: A comprehensive review towards healthier processed food. Food Chem 2025; 464:141736. [PMID: 39461318 DOI: 10.1016/j.foodchem.2024.141736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Different food processing methods, e.g. fermentation, grilling, frying, etc., to improve food sensory attributes or shelf-stability are typically employed in different cuisines worldwide. These methods may illicit in-situ health-hazardous chemicals via thermal or enzymatic-mediated processes or chemical interactions with food preservatives. This review provides a comparative overview of the occurrence, extraction, and determination of the major food carcinogens such as nitrosamines (NAs), biogenic amines (BAs), heterocyclic aromatic amines (HAAs), polycyclic aromatic hydrocarbons (PAHs), ethyl carbamate (EC), and malondialdehyde (MDA). Their carcinogenicity levels vary from group 1 (carcinogenic to humans) e.g. benzo[a]pyrene, group 2A (probably carcinogenic to humans) e.g. N-nitrosodiethylamine, group 2B (possibly carcinogenic to humans) e.g. chrysene or group 3 (non-classifiable as carcinogenic to humans) e.g. MDA. Chromatography-based methods are the most predominant techniques used for their analysis. LC-MS is widely used for both volatile/non-volatile NAs, HAAs, BAs, and EC, whereas GC-MS is applied more for volatile NAs, PAHs and MDA.
Collapse
Affiliation(s)
- Somaia T Mansour
- Chemistry Department, American University in Cairo, New Cairo, Egypt.
| | - Hany Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Jiachao Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering Hainan University, Haikou 570228, China.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
2
|
Abbasi A, Hashemi M, Pourjafar H, Hosseini H. Malva neglecta seed polysaccharide mucilage coating enriched by the Lactobacillus brevis TD4 postbiotics: A promising strategy to promote the shelf life of fresh beef. Int J Biol Macromol 2024; 280:135789. [PMID: 39304039 DOI: 10.1016/j.ijbiomac.2024.135789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The need for bioactive-incorporated biodegradable packaging products is growing due to the desire to achieve food goods that have a longer shelf life and enhanced safety. The current study set out to create an edible coating using Malva neglecta seed polysaccharide mucilage (MNSM) containing Lactobacillus brevis TD4-derived postbiotics (PLB), and assess how well the PLB-MNSM edible coating preserved beef slices over a 12-day period of refrigeration. PLB was rich in fatty acids, organic heteropolycyclic compounds, monoterpene and cyclohexanol derivative, prenol lipids, ester compounds, and alpha-CH2-containing aldehyde with significant antimicrobial and antioxidant activities. By adding it to the edible coating at 0, 5, 10, and 15 % v/v, it successfully prevented the proliferation of microbial agents (total viable count, psychrotrophic count, Staphylococcus aureus, Escherichia coli, total coliform bacteria count, and fungi) as well as the oxidation of lipids (thiobarbituric and peroxide values) in beef samples. The samples' pH value, hardness, and moisture content were all more successfully sustained when PLB preparation was applied to the coating solution (P < 0.05). The edible coating consisting of PLB effectively maintained the meat color (L*, a*, b*) and sensory properties. Additionally, the bioactive edible coating comprised of MNSM and PLB, specifically MNSM-15 % PLB, significantly prevented the quality deterioration of beef samples and prolonged the shelf-life of the meat to over 12 days. The outcomes indicated that the MNSM-PLB edible coating has the capacity to be utilized as an antibacterial and antioxidant-rich packing material, hence enhancing the shelf life of meat-based goods.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ferrara D, Beccaria M, Cordero CE, Purcaro G. Microwave-assisted extraction in closed vessel in food analysis. J Sep Sci 2023; 46:e2300390. [PMID: 37654060 DOI: 10.1002/jssc.202300390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Microwave-assisted extraction (MAE) is an important technique in analytical chemistry. It offers several advantages over traditional extraction methods, such as improved extraction efficiency, shorter extraction times, reduced solvent consumption, and enhanced analyte recovery. Using microwaves, heat is directly applied to the sample, leading to rapid and efficient extraction of target compounds by enhancing the solubility and diffusion of the target compounds, thus requiring lower solvent volume. Therefore, MAE can be considered a more environmentally friendly and cost-effective option facilitating the transition toward greener and more sustainable analytical chemistry workflows. This contribution systematically reviews the application of MAE to a selection of target compounds/compounds classes of relevance for food quality and safety assessment. As inclusion criteria, MAE active temperature control and molecularly-resolved characterization of the extracts were considered. Contents include a brief introduction of the principles of operation, available systems characteristics, and key parameters influencing extraction efficiency and selectivity. The application section covers functional food components (e.g., phenols, diterpenes, and carotenoids), lipids, contaminants (e.g., polycyclic aromatic hydrocarbons and mineral oil hydrocarbons), pesticides, veterinary drug residues, and a selection of process contaminants and xenobiotics of relevance for food safety.
Collapse
Affiliation(s)
- Donatella Ferrara
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chiara E Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
4
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
5
|
Simultaneous Dispersive Liquid-Liquid Microextraction and Determination of Different Polycyclic Aromatic Hydrocarbons in Surface Water. Molecules 2022; 27:molecules27238586. [PMID: 36500677 PMCID: PMC9736002 DOI: 10.3390/molecules27238586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants of water, and their determination at trace levels in the aquatic ecosystems is essential. In this work, an ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) procedure was suggested utilizing a binary dispersive agent for recovery of different molecular weight polycyclic aromatic hydrocarbons (PAHs) from waters. The detection was carried out by gas chromatography-mass spectrometry (GC-MS) as well as high-performance liquid chromatography with fluorescence and diode-array detection (HPLC-FD/PDA). The method was optimized for the extraction of analytes with respect to the mixture composition, ratios of components, ultrasonication time and centrifugation parameters. The analytical schemes for PAHs extraction from water samples using different ratios of extraction and dispersive solvents are reported. The mixture consisting of chloroform and methanol was applied for the extraction of PAHs containing two or three fused aromatic rings; the mixture of chloroform and acetonitrile is suitable for PAHs containing more than four aromatic rings. The mixture of chloroform:acetone + acetonitrile was applied in the universal scheme and allowed for the simultaneous extraction of 20 PAHs with different structures. The developed sample preparation schemes were combined with GC-MS and HPLC-FD/PDA, which allowed us to determine the analytes at low concentrations (from 0.0002 µg/L) with the recoveries exceeding 80% and relative standard deviations of about 8%. The developed methods for the determination of 20 PAHs were applied to the analysis of water samples from the Karasun Lake (Krasnodar), Azov Sea (Temryuk) and Black Sea (Sochi).
Collapse
|
6
|
Şahan S, Şahin U, Jakubus M. Determination of Polycyclic Aromatic Hydrocarbons (PAHS) in Sewage Sludge and Compost by Dispersive Solid-Phase Microextraction (SPME) and Ultra-High Performance Liquid Chromatography (UHPLC) with Diode Array Detection (DAD). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Serkan Şahan
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Erciyes University, Kayseri, Turkey
- USeM R&D Company, ERÜ Technology Development Area, Kayseri, Turkey
| | - Uğur Şahin
- USeM R&D Company, ERÜ Technology Development Area, Kayseri, Turkey
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Monika Jakubus
- Department of Soil Science and Land Protection, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Hierarchically porous adsorbent alginate beads incorporating poly(3, 4-ethylenedioxythiophene) for dispersive liquid-solid phase extraction of five polycyclic aromatic hydrocarbons. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Research Progress of Polycyclic Aromatic Hydrocarbons Pretreatment Methods and Application of Computer Simulation Technology for Prediction and Degradation of Electrochemical Concentration Detection. J CHEM-NY 2022. [DOI: 10.1155/2022/6288072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds that are composed of aromatic rings containing only carbon and hydrogen atoms. They are one of the widespread environmental pollutants in the world. In recent years, many scholars have focused on the inhibition, formation mechanism, content of active components, and biodegradation effect of polycyclic aromatic hydrocarbons. They summarized the research progress of pretreatment methods for detection, but rarely discussed the experimental dataset for comprehensive analysis of pollution sources and the impact of different pretreatment technologies on the extraction of different substrates. What is more, computer simulation has not been mentioned. In this study, the pollution sources of polycyclic aromatic hydrocarbons (PAHs) are reviewed, and the related applications of various pretreatment methods such as gel permeation chromatography (GPC) are summarized. Finally, the computer simulation of the response surface method is introduced. The concentration of polycyclic aromatic hydrocarbons is tested or predicted by combining the neural network with the alternating trilinear decomposition (ATLD) algorithm, artificial population algorithm (ABC), and hierarchical genetic algorithm (HGA). Its future development trend is discussed and prospected, which provides a reference for solving the pollution problem. We look forward to providing help for the follow-up research of scholars in this field.
Collapse
|
9
|
Shen X, Huang X, Tang X, Zhan J, Liu S. The Effects of Different Natural Plant Extracts on the Formation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roast Duck. Foods 2022; 11:foods11142104. [PMID: 35885346 PMCID: PMC9321227 DOI: 10.3390/foods11142104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with high carcinogenicity and mutagenicity may be generated in roast duck during high-temperature roasting. Natural extracts with antioxidant effects may inhibit the formation of PAHs. The objective of this study was to compare the effects of green tea extract (GTE); extract of bamboo leaves (EBL); grape seed extract (GSE) and rosemary extract (RE) on PAHs in roast duck to obtain the optimum extract and present a guidance for reducing PAHs in roast duck. The total phenol content and antioxidant capacity of the four extracts were measured, and the PAH changes in the roast duck caused by the four extracts were detected. The total phenol content of GTE was the highest, 277 mg gallic acid equivalent (GAE)/g, while RE was the lowest at 85 mg GAE/g. The antioxidant capacity of RE was 1.9 mmol Trolox/g, which was significantly lower than that of the other three. The four extracts inhibited PAHs formation in roast duck to varying degrees: When the concentration was 25 g/kg, the best inhibitory effects on Benzo [a] pyrene (BaP) and PAH4 (BaP, BaA, BbF and CHR) were obtained from GTE, with inhibition rates of 75.8% and 79.7%, respectively, while the weakest inhibition rates, 32.7% and 43.6%, respectively, were from RE.
Collapse
Affiliation(s)
- Xixi Shen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyuan Huang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Tang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
- Correspondence: ; Tel./Fax: +86-10-82106563
| | - Junliang Zhan
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
| | - Suke Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
| |
Collapse
|
10
|
The Content of Polycyclic Aromatic Hydrocarbons in Slavonska slanina—Traditionally Smoked and Dry-Cured Bacon. Processes (Basel) 2022. [DOI: 10.3390/pr10020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to determine the concentrations of 16 PAHs (PAH16) naphthalene—Nap, acenaphthylene—Anl, acenaphthene—Ane, fluorene—Flu, phenanthrene—Phen, anthracene—Ant, fluoranthene—Flt, pyrene—Pyr, benz[a]anthracene—BaA, chrysene—Chry, benzo[b]fluoranthene—BbF, benzo[k]fluoranthene—BkF, benzo[a]pyrene—BaP, indeno[1,2,3-cd]pyrene—InP, dibenz[a,h]anthracene—DahA and benzo[g,h,i]perylene—BghiP) in Slavonska slanina traditionally smoked bacon over open fire and industrially smoked on a smoke generator with a heated plate. In the samples of Slavoska slanina smoked in a traditional manner, the presence of 11 out of 16 analyzed PAHs was determined (Nap, Anl, Ane, Fln, Ant, Phen, Flt, BaA, Pyr, BbF, BkF). In the samples smoked in industrial conditions, only 2 out of 16 (Nap, Anl) were quantified. In the samples smoked with open fire (the traditional method), PAH4 (BaA, BaP BbF, Chry) concentations were as follows: 14.84 μg kg−1 in the middle, 10.60 μg kg−1 on the surface and 17.37 μg kg−1 in the skin, while the PAH4 content in the samples smoked in industrial conditions were below the level of quantification (<LOQ). The content of carcinogenic BaP was below the limit of quantification in all investigated samples. These findings support the fact that traditional smoking may result in a product safe for consumption, as far as the prescribed legislative recommendations are concerned, but constant monitoring is still needed.
Collapse
|
11
|
Barzegar F, Kamankesh M, Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Omidi N, Barzegar F, Abedi AS, Kamankesh M, Ghanati K, Mohammadi A. Response Surface Methodology of Quantitative of Heterocyclic Aromatic Amines in Fried Fish Using Efficient Microextraction Method Coupled with High-Performance Liquid Chromatography: Central Composite Design. J Chromatogr Sci 2021; 59:473-481. [PMID: 33529315 DOI: 10.1093/chromsci/bmaa137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 11/14/2022]
Abstract
Meat and meat products are indispensable part of our diet. Heat processing of these tasty foods such as fried fish causes to form heterocyclic aromatic amines (HAAs). The sources of heating have directly affected on the level and type of HAAs. In this research, 2-amino-1-methyl-6-phenylimidazo [4'5-b] pyridine (PhIP), 2-amino-3-methylimidazo [4,5-f]quinolone (IQ), 2-amino-3,4-dimethylimidazo [4,5-f] quinoline (MeIQ) and 2-amino-3,4-dimethylimidazo [4,5-f] quinoxaline (MeIQx) were determined using an efficient analytical methodology coupled with high-performance liquid chromatography. The effective parameters were optimized by central composite design. The results of this survey demonstrated that rang of relative standard deviation were between 4.5 and 8.2, extraction recoveries were obtained 86-97% and limits of detection were between 0.40 and 0.63 for 4 HAAs. The amounts of HAAs found in 20 different fried fish samples were between 0 and 4.8 ng g-1. PhIP with 1.57 ng g-1 and MeIQ with 2.08 ng g-1 have the lowest and highest average level of HAAs, respectively.
Collapse
Affiliation(s)
- Narges Omidi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Barzegar
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdol-Samad Abedi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kiandokht Ghanati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Extraction strategies of PAHs from grilled meat for their determination by HPLC–DAD. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Kiani A, Ahmadloo M, Moazzen M, Shariatifar N, Shahsavari S, Arabameri M, Hasani MM, Azari A, Abdel‐Wahhab MA. Monitoring of polycyclic aromatic hydrocarbons and probabilistic health risk assessment in yogurt and butter in Iran. Food Sci Nutr 2021; 9:2114-2128. [PMID: 33841828 PMCID: PMC8020939 DOI: 10.1002/fsn3.2180] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/07/2022] Open
Abstract
This study was conducted to determine the polycyclic aromatic hydrocarbons (PAHs) levels and health risk of yogurt and butter samples collected from Tehran using MSPE/GC-MS (magnetic solid-phase extraction/gas chromatography-mass spectrometry). The results revealed that the limit of detection (LOD) and limit of quantification (LOQ) were ranged from 0.040 to 0.060 and 0.121 to 0.181 μg/kg, respectively; with recoveries ranged from 86.1% to 100.3%. The highest mean of total PAHs was higher in butter (6.87 ± 1.21 μg/kg) than in yogurt (3.82 ± 0.54 μg/kg). The level of benzo (a)pyrene in all samples was lower than of standard levels of the European Union (EU). The highest value of all PAHs in samples was recorded in the winter season and also in the expiration date. The percentile 95% of the total hazard quotient (THQ) due to the consumption of yogurt and butter recorded 1.33E-02 and 3.69E-04 in adults and 6.12E-02 and 1.75E-03 in children, respectively. The percentile of 95% incremental lifetime of cancer risk (ILCR) due to the ingestion of yogurt and butter recorded 1.17E-06 and 2.02E-08 for adults and 5.51E-06 and 9.46E-08 for children, respectively. The rank order of 7 PAHs in adult and children based on P95% Hazard Quotient (HQ) in all samples was benzo(a)anthracene (BaA) > pyrene (P) > fluorene (F) > fluoranthene (Fl) > acenaphthylene (Ace) > anthracene (A) > naphthalene (NA). According to the Monte Carlo Simulation (MCS) method, health-risk assessment showed that children and adults are not at significant health risk.
Collapse
Affiliation(s)
- Amin Kiani
- Department of Public HealthSchool of Public HealthFasa University of Medical SciencesFasaIran
| | - Mahsa Ahmadloo
- Department of Food Safety and HygieneSchool of Public HealthQazvin University of Medical SciencesQazvinIran
| | - Mojtaba Moazzen
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Nabi Shariatifar
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Saeed Shahsavari
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Majid Arabameri
- Food Safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| | - Mohammad Mahdi Hasani
- Department of Environmental Health EngineeringFaculty of HealthTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Ali Azari
- Department of Environmental Health EngineeringFaculty of HealthKashan University of Medical SciencesKashanIran
| | | |
Collapse
|
15
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
16
|
SIDDIQUE R, ZAHOOR AF, AHMAD S, AHMAD H, MANSHA A, ZAHID FM, FAISAL S, AADIL RM. GC-MS analysis of PAHs in charcoal grilled rabbit meat with and without additives. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.34720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Sajjad AHMAD
- University of Engineering and Technology Lahore,, Pakistan
| | - Hamad AHMAD
- University of Management and Technology, Pakistan
| | | | | | | | | |
Collapse
|
17
|
Zhang W, Zhou P, Liu W, Wang H, Wang X. Enhanced adsorption/extraction of five typical polycyclic aromatic hydrocarbons from meat samples using magnetic effervescent tablets composed of dicationic ionic liquids and NiFe2O4 nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Optimization of extraction conditions for polycyclic aromatic hydrocarbons determination in smoked rice using the high performance liquid chromatography-fluorescence detection. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00372-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Zhang Q, Liu P, Li S, Zhang X, Chen M. Progress in the analytical research methods of polycyclic aromatic hydrocarbons (PAHs). J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1746668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qiongyao Zhang
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ping Liu
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Shuling Li
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Xuejiao Zhang
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Mengdi Chen
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
20
|
Slámová T, Sadowska-Rociek A, Fraňková A, Surma M, Banout J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Jinadasa BKKK, Monteau F, Morais S. Critical review of micro-extraction techniques used in the determination of polycyclic aromatic hydrocarbons in biological, environmental and food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1004-1026. [PMID: 32186468 DOI: 10.1080/19440049.2020.1733103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous environmental contaminants and their accurate determination is very important to human health and environment safety. In this review, sorptive-based micro-extraction techniques [such as Solid-Phase Micro-extraction (SPME), Stir Bar Sorptive Extraction (SBSE), Micro-extraction in Packed Sorbent (MEPS)] and solvent-based micro-extraction [Membrane-Mediated Liquid-Phase Micro-extraction (MM-LPME), Dispersive Liquid-Liquid Micro-extraction (DLLME), and Single Drop Micro-extraction (SDME)] developed for quantification of PAHs in environmental, biological and food samples are reviewed. Moreover, recent micro-extraction techniques that have been coupled with other sample extraction strategies are also briefly discussed. The main objectives of these micro-extraction techniques are to perform extraction, pre-concentration and clean up together as one step, and the reduction of the analysis time, cost and solvent following the green chemistry guidelines.
Collapse
Affiliation(s)
- B K K K Jinadasa
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Fabrice Monteau
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior De Engenharia Do Porto, Instituto Politécnico Do Porto , Porto, Portugal
| |
Collapse
|
22
|
Carabajal M, Teglia CM, Cerutti S, Culzoni MJ, Goicoechea HC. Applications of liquid-phase microextraction procedures to complex samples assisted by response surface methodology for optimization. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104436] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Mohammadi A, Barzegar F, Kamankesh M, Mousavi Khaneghah A. Heterocyclic aromatic amines in doner kebab: Quantitation using an efficient microextraction technique coupled with reversed-phase high-performance liquid chromatography. Food Sci Nutr 2020; 8:88-96. [PMID: 31993135 PMCID: PMC6977492 DOI: 10.1002/fsn3.1262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 11/10/2022] Open
Abstract
The safety of doner kebab as a traditional Middle East tasty food can threaten via the formation of dangerous compounds such as heterocyclic aromatic amines during heat process. In this regard, the current investigation was devoted to measuring of 4 HAAs (2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)) in doner kebab samples with an innovative microextraction technique combined with high-performance liquid chromatography. The limit of detection was in the range of 4.8 and 5.3 ng/g, while relative standard deviations were between 6.5% and 8.3%, and recoveries were calculated in the range of 89%-97%. The most and the least total mean values of HAA levels were 13.30 ng/g for MeIQx and 5.0 ng/g for IQ. The proposed method showed a high capability to extract trace amount of HAAs from a complex matrix such as doner kebab. Also, this technique is easy, high sensitive, selective, accurate and efficient.
Collapse
Affiliation(s)
- Abdorreza Mohammadi
- Department of Food Science and TechnologyFaculty of Nutrition ScienceFood Science and Technology/National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
- Food Safety Research CenterShahid Beheshty University of Medical SciencesTehranIran
| | - Fatemeh Barzegar
- Department of Food Science and TechnologyFaculty of Nutrition ScienceFood Science and Technology/National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Marzieh Kamankesh
- Department of Food Science and TechnologyFaculty of Nutrition ScienceFood Science and Technology/National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Amin Mousavi Khaneghah
- Department of Food ScienceFaculty of Food EngineeringUniversity of Campinas (UNICAMP)CampinasSão PauloBrazil
| |
Collapse
|
24
|
Levels of polycyclic aromatic hydrocarbons in milk and milk powder samples and their likely risk assessment in Iranian population. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103331] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Jia L, Yang J, Zhao W, Jing X. Air-assisted ionic liquid dispersive liquid-liquid microextraction based on solidification of the aqueous phase for the determination of triazole fungicides in water samples by high-performance liquid chromatography. RSC Adv 2019; 9:36664-36669. [PMID: 35547267 PMCID: PMC9087865 DOI: 10.1039/c9ra07348e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/03/2019] [Indexed: 01/24/2023] Open
Abstract
A simple, rapid, and environmentally friendly approach was introduced to determine triazole fungicides in water samples by air-assisted ionic liquid dispersive liquid-liquid microextraction based on solidification of the aqueous phase using high-performance liquid chromatography-diode array detection. Ionic liquid was applied as the extraction solvent rather than a high-toxicity extraction solvent. The air-assisted dispersion method induced a trace amount of the ionic liquid to disperse as small droplets in the water sample, which significantly increased the contact area between the organic phase and the aqueous phase for the rapid transfer of target fungicides without using a dispersion solvent or auxiliary extraction devices. The solidification of the aqueous phase facilitated the collection of extraction solvent. The type of extraction solvent, the volume ratio of the extraction solvent to the water sample, the number of extraction cycles, the addition of NaCl, and pH values were evaluated. The recoveries were 72.65-100.13% with a relative standard deviation of 0.92% to 5.99%. The limits of quantification varied from 0.65 ng mL-1 to 1.83 ng mL-1. This approach can be used to determine fungicides in ground, river, and lake water samples.
Collapse
Affiliation(s)
- Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang Jiangxi 330047 China
| | - Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| |
Collapse
|
26
|
Microwave-Based Technique for Fast and Reliable Extraction of Organic Contaminants from Food, with a Special Focus on Hydrocarbon Contaminants. Foods 2019; 8:foods8100503. [PMID: 31623166 PMCID: PMC6836030 DOI: 10.3390/foods8100503] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/18/2023] Open
Abstract
Due to food complexity and the low amount at which contaminants are usually present in food, their analytical determination can be particularly challenging. Conventional sample preparation methods making use of large solvent volumes and involving intensive sample manipulation can lead to sample contamination or losses of analytes. To overcome the disadvantages of conventional sample preparation, many researchers put their efforts toward the development of rapid and environmental-friendly methods, minimizing solvent consumption. In this context, microwave-assisted-extraction (MAE) has obtained, over the last years, increasing attention from analytical chemists and it has been successfully utilized for the extraction of various contaminants from different foods. In the first part of this review, an updated overview of the microwave-based extraction technique used for rapid and efficient extraction of organic contaminants from food is given. The principle of the technique, a description of available instrumentation, optimization of parameters affecting the extraction yield, as well as integrated techniques for further purification/enrichment prior to the analytical determination, are illustrated. In the second part of the review, the latest applications concerning the use of microwave energy for the determination of hydrocarbon contaminants-namely polycyclic aromatic hydrocarbons (PAHs) and mineral oil hydrocarbons (MOH)-are reported and critically overviewed and future trends are delineated.
Collapse
|
27
|
Development and application of microwave-assisted extraction and advanced low density microextraction technique coupled with high-performance liquid chromatography for the successful determination of heterocyclic aromatic amines in barbecued meat sample and method optimization using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Moreda-Piñeiro J, Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Barzegar F, Kamankesh M, Mohammadi A. Heterocyclic aromatic amines in cooked food: A review on formation, health risk-toxicology and their analytical techniques. Food Chem 2019; 280:240-254. [DOI: 10.1016/j.foodchem.2018.12.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
|
31
|
Wojnowski W, Namieśnik J, Płotka-Wasylka J. Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: Estimation of meat's freshness. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Mahmoudpour M, Ezzati Nazhad Dolatabadi J, Torbati M, Homayouni-Rad A. Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens Bioelectron 2019; 127:72-84. [DOI: 10.1016/j.bios.2018.12.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/02/2023]
|
33
|
Lu J, Lu S, Yao D, Huang X, Lai H, Yin X. Preparation of ionic liquid‐modified magnetic nanoparticles based on thiol‐ene click chemistry for the analysis of polycyclic aromatic hydrocarbons in water and smoked meat samples. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junyu Lu
- College of Chemistry and Biology EngineeringHechi University Yizhou China
| | - Sufen Lu
- College of Chemistry and Biology EngineeringHechi University Yizhou China
| | - Dongmei Yao
- College of Chemistry and Biology EngineeringHechi University Yizhou China
| | - Xiuxiang Huang
- College of Chemistry and Biology EngineeringHechi University Yizhou China
| | - Hongfang Lai
- College of Chemistry and Biology EngineeringHechi University Yizhou China
| | - Xiuju Yin
- College of Chemistry and Biology EngineeringHechi University Yizhou China
| |
Collapse
|
34
|
Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method – A review. Talanta 2018; 190:335-356. [DOI: 10.1016/j.talanta.2018.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
|
35
|
Dong X, Wang Q, Peng J, Wu M, Pan B, Xing B. Transfer of polycyclic aromatic hydrocarbons from mother to fetus in relation to pregnancy complications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:61-68. [PMID: 29702403 DOI: 10.1016/j.scitotenv.2018.04.274] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
The accumulation and transfer of carcinogens, including polycyclic aromatic hydrocarbons (PAHs), in the human body, especially from mother to fetus, has been the subject of many research studies, but the related data are limited and the mechanisms are unknown. This is the first study to investigate the distribution of PAHs in paired samples of maternal blood, placenta tissue, and umbilical cord blood in relation to pregnancy complications. Sixty-four pairs of samples were collected in Kunming, China; 18 were from healthy pregnant women and 46 were from patients with pregnancy complications. The predominant PAHs in these pregnant women were high-molecular-weight (HMW) compounds, mainly from the incomplete combustion or pyrolysis of biomass. In the control group, the total amount of HMW compounds (ΣHMWPAHs) was significantly higher in maternal blood than in umbilical cord blood, which suggested that placenta may decrease PAH transfer in healthy pregnant women. However, this phenomenon was not observed for low-molecular-weight PAHs or in the case group. In the control group, Σ16PAH and ΣHMWPAH in the placenta were higher than those in maternal blood and umbilical cord blood; for the case group, a contrasting result was observed. ΣHMWPAHs in the placenta was significantly higher in the control group than in the case group. The same results were observed after the exclusion of the impact of the genotypes of the PAH metabolic enzymes (both phase I and phase II enzymes). Thus, the decreased PAH transfer from mother to fetus may partially result from the accumulation of PAHs inside the placenta.
Collapse
Affiliation(s)
- Xudong Dong
- The Obstetrical Department of the First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming 650500, China
| | - Qibing Wang
- The Obstetrical Department of the First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming 650500, China
| | - Juan Peng
- The Obstetrical Department of the First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming 650500, China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
36
|
Al-Thaiban H, Al-Tamimi N, Helaleh M. Development of QuEChERS Method for the Determination of Polycyclic Aromatic Hydrocarbons in Smoked Meat Products Using GC-MS from Qatar. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:9206237. [PMID: 30116652 PMCID: PMC6079466 DOI: 10.1155/2018/9206237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/24/2018] [Indexed: 05/31/2023]
Abstract
A simple and fast method for the determination of PAHs in smoked meat samples was described. The QuEChERS (Z-Sep) procedure was used for sample preparation. Gas chromatograph-mass spectrometer with electron ionization (EI) was used to separate and detect the PAHs. All 16 common PAHs were analyzed successfully. Matrix-matched calibration was applied. Spiked samples were performed at 1 ng/g (n=10) and 10 ng/g (n=10) for two days. Overall recoveries of PAHs were within 74 to 117%, with RSDs within 1.15 to 37.57% and 1 and 10 ng/g wet weight for first and second day, respectively. In most of the analyzed smoked meat samples, there were no exceeded levels compared to the maximum levels declared by Commission Regulation (EU) number 835/2011. The method can be recommended for routine analysis for laboratories having a large number of samples.
Collapse
Affiliation(s)
- Hussain Al-Thaiban
- Anti Doping Lab-Qatar, Toxicology Multipurpose laboratory, P.O. Box 27775, Doha, Qatar
| | - Nada Al-Tamimi
- Anti Doping Lab-Qatar, Toxicology Multipurpose laboratory, P.O. Box 27775, Doha, Qatar
| | - Murad Helaleh
- Anti Doping Lab-Qatar, Toxicology Multipurpose laboratory, P.O. Box 27775, Doha, Qatar
| |
Collapse
|
37
|
Silva M, Viegas O, Melo A, Finteiro D, Pinho O, Ferreira IMPLVO. Fast and Reliable Extraction of Polycyclic Aromatic Hydrocarbons from Grilled and Smoked Muscle Foods. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1325-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Zhou Z, Fu Y, Qin Q, Lu X, Shi X, Zhao C, Xu G. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples. J Chromatogr A 2018; 1560:19-25. [DOI: 10.1016/j.chroma.2018.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 01/20/2023]
|
39
|
Chen Y, Cai K, Tu Z, Nie W, Ji T, Hu B, Chen C, Jiang S. Prediction of benzo[a]pyrene content of smoked sausage using back-propagation artificial neural network. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3022-3030. [PMID: 29193124 DOI: 10.1002/jsfa.8801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/15/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Benzo[a]pyrene (BaP), a potent mutagen and carcinogen, is reported to be present in processed meat products and, in particular, in smoked meat. However, few methods exist for predictive determination of the BaP content of smoked meats such as sausage. In this study, an artificial neural network (ANN) model based on the back-propagation (BP) algorithm was used to predict the BaP content of smoked sausage. RESULTS The results showed that the BP network based on the Levenberg-Marquardt algorithm was the best suited for creating a nonlinear map between the input and output parameters. The optimal network structure was 3-7-1 and the learning rate was 0.6. This BP-ANN model allowed for accurate predictions, with the correlation coefficients (R) for the experimentally determined training, validation, test and global data sets being 0.94, 0.96, 0.95 and 0.95 respectively. The validation performance was 0.013, suggesting that the proposed BP-ANN may be used to predictively detect the BaP content of smoked meat products. CONCLUSION An effective predictive model was constructed for estimation of the BaP content of smoked sausage using ANN modeling techniques, which shows potential to predict the BaP content in smoked sausage. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Chen
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Kezhou Cai
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zehui Tu
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Wen Nie
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Tuo Ji
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Bing Hu
- Anhui Grain & Oil Quality Inspection Station, China National Supervision and Examination Center For Foodstuff Quality, Hefei, China
| | - Conggui Chen
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
40
|
Wu J, Sun J, Cheng H, Liu J, Wang Y. Analysis of polycyclic aromatic hydrocarbons by capillary electrochromatography by using capillary columns packed with polycyclic-aromatic-hydrocarbon-specific particles. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiabei Wu
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou China
| | - Jiannan Sun
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou China
| | - Heyong Cheng
- Qianjiang College; Hangzhou Normal University; Hangzhou China
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou China
| | - Jinhua Liu
- Qianjiang College; Hangzhou Normal University; Hangzhou China
| | - Yuanchao Wang
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou China
| |
Collapse
|
41
|
Habibi H, Mohammadi A, Farhoodi M, Jazaeri S. Application and Optimization of Microwave-Assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography for the Determination of Oleuropein and Hydroxytyrosol in Olive Pomace. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1279-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
A Highly Sensitive Dispersive Microextraction Method with Magnetic Carbon Nanocomposites Coupled with Dispersive Liquid–Liquid Microextraction and Two Miscible Stripping Solvents Followed by GC–MS for Quantification of 16 PAHs in Environmental Samples. Chromatographia 2018. [DOI: 10.1007/s10337-018-3469-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Sobral MMC, Cunha SC, Faria MA, Ferreira IM. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr Rev Food Sci Food Saf 2018; 17:309-333. [PMID: 33350087 DOI: 10.1111/1541-4337.12327] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023]
Abstract
Meat and fish are muscle foods rich in valuable nutrients, such as high-quality proteins, vitamins, and minerals, and, in the case of fish, also unsaturated fatty acids. The escalation of meat and fish production has increased the occurrence of pesticide and antibiotic residues, as result of pest control on feed crops, and antibiotics used to fight infections in animals. Meat and fish are usually cooked to enrich taste, soften texture, increase safety, and improve nutrient digestibility. However, the impact of cooking on nutritional properties and formation of deleterious compounds must be understood. This review summarizes studies, published in the last decade, that have focused on how domestic cooking affects: (i) composition of nutrients (protein, fatty acids, vitamins, and minerals); (ii) antibiotic and pesticide residue contents; and (iii) the formation of cooking-induced contaminants (heterocyclic aromatic amines, polycyclic aromatic hydrocarbons, and thermal degradation products of antibiotics and pesticides). Cooking affects the nutritional composition of meat and fish; frying is the cooking method that causes the greatest impact. Cooking may reduce the pesticide and antibiotic residues present in contaminated raw meat and fish; however, it may result in the formation of degradation products of unknown identity and toxicity. Control of cooking time and temperature, use of antioxidant-rich marinades, and avoiding the dripping of fat during charcoal grilling can reduce the formation of cooking-induced contaminants.
Collapse
Affiliation(s)
- M Madalena C Sobral
- LAQV/REQUIMTE, Dept. de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia - Univ. do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV/REQUIMTE, Dept. de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia - Univ. do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Dept. de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia - Univ. do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Isabel Mplvo Ferreira
- LAQV/REQUIMTE, Dept. de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia - Univ. do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Norouzi E, Kamankesh M, Mohammadi A, Attaran A. Acrylamide in bread samples: Determining using ultrasonic-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
|
46
|
Zokaei M, Abedi AS, Kamankesh M, Shojaee-Aliababadi S, Mohammadi A. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples. Food Chem 2017; 234:55-61. [DOI: 10.1016/j.foodchem.2017.04.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/20/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
|
47
|
Habibi H, Mohammadi A, Kamankesh M. Hydroxymethylfurfural in fruit puree and juice: preconcentration and determination using microextraction method coupled with high-performance liquid chromatography and optimization by Box–Behnken design. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9630-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Determination of Polycyclic Aromatic Hydrocarbons (PAH4) in the Traditional Lebanese Grilled Chicken: Implementation of New, Rapid and Economic Analysis Method. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0990-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Heidari N, Ghiasvand A, Abdolhosseini S. Amino-silica/graphene oxide nanocomposite coated cotton as an efficient sorbent for needle trap device. Anal Chim Acta 2017; 975:11-19. [DOI: 10.1016/j.aca.2017.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
50
|
Kamankesh M, Mohammadi A, Mollahosseini A, Jazaeri S, Shahdoostkhany M. Vitamin D3: Preconcentration and Determination in Cereal Samples Using Ultrasonic-Assisted Extraction and Microextraction Method. Cereal Chem 2017. [DOI: 10.1094/cchem-08-16-0209-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marzieh Kamankesh
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Sahar Jazaeri
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shahdoostkhany
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|