1
|
Zvereva EA, Hendrickson OD, Dzantiev BB, Zherdev AV. Double lateral flow immunosensing of undeclared pork and chicken components of meat products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1148-1156. [PMID: 38562594 PMCID: PMC10981650 DOI: 10.1007/s13197-024-05944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
Adulteration of meat products is a serious problem in the modern society. Consumption of falsified meat products can be hazardous to health and/or lead to violating religious dietary principles. To identify such products, rapid and simple test systems for point-of-need detection are in demand along with complex laboratory methods. This study presents the first double lateral flow (immunochromatographic) test system, which allows simultaneous revealing two prevalent types of falsifications-undeclared addition of pork and chicken components to meat products. In the proposed test system, porcine myoglobin (MG) and chicken immunoglobulin Y (IgY) were used as specific biomarkers recognizable by antibodies. Within the optimization of the analysis, the concentrations of the immune reagents and regimes of their application on the working membrane were selected, which provided minimal limits of detection (LODs) for both analytes. The developed test system enables the detection of MG and IgY with the LODs of 10 and 12 ng/mL, respectively, which accords to addition of 0.1% of the undeclared meat compounds. The applicability of the test system to control the composition of raw meat mixtures and cooked food products was confirmed. The developed approach can be considered as a promising tool for monitoring composition of meat products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05944-y.
Collapse
Affiliation(s)
- Elena A. Zvereva
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Olga D. Hendrickson
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Boris B. Dzantiev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Anatoly V. Zherdev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| |
Collapse
|
2
|
Danawadkar VN, Ruban SW, Milton AAP, Kiran M, Momin KM, Ghatak S, Mohan HV, Porteen K. Development of novel isothermal-based DNA amplification assay for detection of pig tissues in adulterated meat. Eur Food Res Technol 2023; 249:1-9. [PMID: 37362349 PMCID: PMC10079161 DOI: 10.1007/s00217-023-04250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/28/2023]
Abstract
For the first time, we describe an innovative polymerase spiral reaction (PSR) assay for the rapid, simple, and accurate detection of pig tissues or pork in adulterated meat including heat-treated and processed ones. The PSR assay specifically targeting the mitochondrial cytochrome b (cyt-b) gene of the pig was successfully optimized permitting assay results in 65 min time. The developed detection method was 100% specific amplifying only the cyt-b gene and displaying negative results with all the tested non-pork meats. The sensitivity of the developed PSR (760 fg porcine DNA) was tenfold better than the end-point PCR and able to detect heat-treated (121 °C) and adulterated (0.5% pork in beef) meat and processed pork products such as sausages, salami, meatball, soup, curry, etc. The developed PSR-based method can be used for point-of-care detection with minimum instrumentation and technical expertise to guarantee instant clearance of exported and imported meat products. This is the first time that PSR has been adapted for food authenticity purposes.
Collapse
Affiliation(s)
- Vinaykumar N. Danawadkar
- Department of Livestock Products Technology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bangalore, India
| | - S. Wilfred Ruban
- Department of Livestock Products Technology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bangalore, India
| | | | - M. Kiran
- Department of Livestock Products Technology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Nandinagar, Bidar, India
| | - Kasanchi M. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya India
| | - H. V. Mohan
- Department of Veterinary Public Health, Hebbal Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bangalore, India
| | - Kannan Porteen
- Department of Veterinary Public Health, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|
3
|
Zvereva EA, Hendrickson OD, Dzantiev BB, Zherdev AV. Lateral Flow Test System to Control Total Content of Muscle Tissues in Raw Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:9724. [PMID: 36560100 PMCID: PMC9783880 DOI: 10.3390/s22249724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Assessment of the composition of meat-containing products is the task in demand due to their frequent deviations from declared recipes. The paper presents the developed test system for immunochromatographic determination of total meat content. The assay is based on the simultaneous use of monoclonal antibodies, which specifically interacts with mammalian skeletal troponin I, and polyclonal antibodies, which specifically detect bird immunoglobulin Y. To integrate the detection of both types of meat by the same test strip, the antibodies are mixed in the analytical zone of the test strip and in complex with a gold nanoparticle label. The chosen ratios of the antibodies for both mixtures provide the same contribution of different types of mammalian and bird raw materials of muscle tissues to the label binding. The test system demonstrates suitability for products containing beef, pork, rabbit, lamb, chicken, and turkey meat. The minimal detectable content of meat in samples is 0.1%. The samples for the testing are diluted 100 times, thus eliminating matrix effects, and providing high reproducibility of the color intensity for extracts of different compositions. The obtained results allow the recommendation of the developed test system for rapid on-site control of meat products.
Collapse
|
4
|
Application of biosensors for detection of meat species: A short review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Kua JM, Azizi MMF, Abdul Talib MA, Lau HY. Adoption of analytical technologies for verification of authenticity of halal foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1906-1932. [PMID: 36252206 DOI: 10.1080/19440049.2022.2134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halal authentication has become essential in the food industry to ensure food is free from any prohibited ingredients according to Islamic law. Diversification of food origin and adulteration issues have raised concerns among Muslim consumers. Therefore, verification of food constituents and their quality is paramount. From conventional methods based on physical and chemical properties, various diagnostic methods have emerged relying on protein or DNA measurements. Protein-based methods that have been used in halal detection including electrophoresis, chromatographic-based methods, molecular spectroscopy and immunoassays. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are DNA-based techniques that possess better accuracy and sensitivity. Biosensors are miniatured devices that operate by converting biochemical signals into a measurable quantity. CRISPR-Cas is one of the latest novel emerging nucleic acid detection tools in halal food analysis as well as quantification of stable isotopes method for identification of animal species. Within this context, this review provides an overview of the various techniques in halal detection along with their advantages and limitations. The future trend and growth of detection technologies are also discussed in this review.
Collapse
Affiliation(s)
- Jay Mie Kua
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Mohd Afendy Abdul Talib
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| | - Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Development and Application of a Visual Duck Meat Detection Strategy for Molecular Diagnosis of Duck-Derived Components. Foods 2022; 11:foods11131895. [PMID: 35804711 PMCID: PMC9266182 DOI: 10.3390/foods11131895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
To make meat adulteration detection systems faster, simpler and more efficient, we established a duck-derived meat rapid detection Recombinase Polymerase Amplification (dRPA) method by using interleukin 2 (IL-2) from nuclear genomic DNA as the target gene to design specific primers. We tested the dRPA detection system by comparing its sensitivity and specificity using real-time fluorescent PCR technology. By adjusting the ratio of reagents, this method shortens the time of DNA extraction and visualizes results in combination with colloidal gold immunoassay strips. Our results demonstrate that this dRPA method could specifically detect duck-derived components with a sensitivity of up to 23 copies/μL and the accuracy of the results is consistent with real-time fluorescent PCR. Additionally, dRPA can detect at least 1% of the duck meat content by mixing beef and mutton with duck meat in different proportions, which was verified by spot-check market samples. These results can be visualized with colloidal gold immunoassay strips with the same accuracy as real-time fluorescent RPA. dRPA can complete detection within 30 min, which shortens existing detection time and quickly visualizes the detection results on-site. This lays the groundwork for future large-scale standardized duck origin detection.
Collapse
|
7
|
Pranata AW, Yuliana ND, Amalia L, Darmawan N. Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction–gas chromatography–mass spectrometry. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
8
|
Kumar Y, Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr Rev Food Sci Food Saf 2020; 20:900-923. [PMID: 33443804 DOI: 10.1111/1541-4337.12674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/30/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
The authentication of animal species is an important issue due to an increasing trend of adulteration and mislabeling of animal species in processed meat products. Polymerase chain reaction is the most sensitive and specific technique for nucleic acid-based animal species detection. However, it is a time-consuming technique that requires costly thermocyclers and sophisticated labs. In recent times, there is a need of on-site detection by point-of-care (POC) testing methods and devices under low-resource settings. These POC devices must be affordable, sensitive, specific, user-friendly, rapid and robust, equipment free, and delivered to the end users. POC devices should also confirm the concept of micro total analysis system. This review discusses POC testing methods and devices that have been developed for meat species identification. Recent developments in lateral flow assay-based devices for the identification of animal species in meat products are also reviewed. Advancements in increasing the efficiency of lateral flow detection are also discussed.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| | - Kairam Narsaiah
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| |
Collapse
|
9
|
Lateral Flow Immunoassay to Detect the Addition of Beef, Pork, Lamb, and Horse Muscles in Raw Meat Mixtures and Finished Meat Products. Foods 2020; 9:foods9111662. [PMID: 33203004 PMCID: PMC7697940 DOI: 10.3390/foods9111662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
A lateral flow immunoassay for sensitive detection of skeletal troponin I (TnI) as a specific, thermostable marker of muscle tissue was developed. Due to the antibodies' choice, the assay specifically detects mammalian TnI (in beef, pork, lamb, and horse) but does not detect bird TnI (in chicken or turkey), thus enabling differentiation of these types of raw meat materials. The assay is based on a sandwich format of the analysis using gold nanoparticles as labels. The time of the assay is 15 min, and the TnI detection limit is 25 ng/mL. A buffer solution is proposed for efficient extraction of TnI from muscle tissues and from finished meat products that have undergone technological processing (smoking-cooking-smoking, cooking and smoking). The possibility of detecting beef addition in minced chicken down to 1% was demonstrated.
Collapse
|
10
|
Hendrickson OD, Zvereva EA, Vostrikova NL, Chernukha IM, Dzantiev BB, Zherdev AV. Lateral flow immunoassay for sensitive detection of undeclared chicken meat in meat products. Food Chem 2020; 344:128598. [PMID: 33229162 DOI: 10.1016/j.foodchem.2020.128598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/11/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
This study presents the development of an immunochromatographic test system aimed at the detection of chicken additives in meat products. It is based on sandwich-format lateral flow immunoassay (LFIA) of immunoglobulins as a biomarker for species identification. The LFIA based on gold nanoparticles as a label for anti-species antibodies was used to determine chicken immunoglobulins and, accordingly, chicken meat in food products. Absence of cross-reactivity with mammalian species tested in the study confirmed high specificity of the determination. The test system showed good sensitivity and rapidity, allowing for the detection of as low as 0.063% (w/w) chicken meat in raw meat mixtures within 20 min. As a result of the testing of raw and cooked meat products, it was shown that the test system can reliably recognize specific immunoglobulins even after heat processing. The proposed assay can be recommended for rapid on-site screening control of the composition and quality of meat products.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia
| | - Elena A Zvereva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia
| | - Natalia L Vostrikova
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina Street 26, Mocow 109316, Russia
| | - Irina M Chernukha
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina Street 26, Mocow 109316, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
11
|
Čapla J, Zajác P, Čurlej J, Belej Ľ, Kročko M, Bobko M, Benešová L, Jakabová S, Vlčko T. Procedures for the identification and detection of adulteration of fish and meat products. POTRAVINARSTVO 2020. [DOI: 10.5219/1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The addition or exchange of cheaper fish species instead of more expensive fish species is a known form of fraud in the food industry. This can take place accidentally due to the lack of expertise or act as a fraud. The interest in detecting animal species in meat products is based on religious demands (halal and kosher) as well as on product adulterations. Authentication of fish and meat products is critical in the food industry. Meat and fish adulteration, mainly for economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Economically motivated adulteration of food is estimated to create damage of around € 8 to 12 billion per year. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat and fish adulteration. Various analytical methods often based on protein or DNA measurements are utilized to identify fish and meat species. Although many strategies have been adopted to assure the authenticity of fish and meat and meat a fish products, such as the protected designation of origin, protected geographical indication, certificate of specific characteristics, and so on, the coverage is too small, and it is unrealistic to certify all meat products for protection from adulteration. Therefore, effective supervision is very important for ensuring the suitable development of the meat industry, and rapid, effective, accurate, and reliable detection technologies are fundamental technical support for this goal. Recently, several methods, including DNA analysis, protein analysis, and fat-based analysis, have been effectively employed for the identification of meat and fish species.
Collapse
|
12
|
Immunochromatographic Detection of Myoglobin as a Specific Biomarker of Porcine Muscle Tissues in Meat Products. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An immunochromatographic detection of myoglobin (MG) as a specific marker of porcine muscle tissue has been developed. The method is based on the sandwich lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as a label. The developed test system determines MG with a detection limit of 5 ng mL−1 within 15 min. A specific determination of porcine MG and no cross-reactivity with MG from other tested mammals and bird species was demonstrated. The test system is able to detect pork additives, as low as 0.01% (w/w), in minced beef. A technique of MG extraction from muscle tissue has been proposed which allows for rapid and efficient MG extraction from meat samples (within 20 min). The developed test system can serve as an effective means of controlling the authenticity and quality of meat products.
Collapse
|
13
|
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 2020; 19:2256-2296. [PMID: 33337107 DOI: 10.1111/1541-4337.12579] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Shu-Yan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Min Zhang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
14
|
Mabood F, Boqué R, Alkindi A, Al-Harrasi A, Al Amri I, Boukra S, Jabeen F, Hussain J, Abbas G, Naureen Z, Haq QM, Shah H, Khan A, Khalaf S, Kadim I. Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Sci 2020; 163:108084. [DOI: 10.1016/j.meatsci.2020.108084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
|
15
|
Duan S, Ai JX, Sun L, Gao L, Li M, Chen K, Li D. Development and validation of a rapid kit for authenticity of murine meat in meat products with a species-specific PCR assay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:552-560. [PMID: 32039648 DOI: 10.1080/19440049.2020.1718218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adulteration of meat products with murine meat poses a huge threat to consumer health and leads to serious disruption in food markets. Species authentication of murine meat is still technically challenging. We, therefore, developed a species-specific PCR kit consisting of murine meat DNA extraction, PCR reaction and identifying systems. We designed novel universal primers targeting highly conserved region on mitochondrial cytochrome b gene (cyt b) from four murines (lab rats, lab mice, wild rat and wild mice), as well as specific primers for meat from four widely consumed animal species, cattle, sheep, duck and donkey. Simultaneously, pasmid inserted specific cyt b fragment was cloned and used as the internal positve control in the kit. The kit parameters of specificity, sensitivity, stability and validity were determined using mimic counterfeiting meatball. The specificity of the DNA detection kit was 100% in authentication of the four fraudulent meats of cattle, sheep, duck and donkey mixed murine meat. The minimum detection limit of the sample DNA was 0.1 μg. The kit, which had freeze-thawed up to 20 times and stored for 1 year, also was powerful in detecting an amount of 0.1 mg in artificial counterfeited cattle, sheep, duck and donkey meat products. The murine-species DNA detection kit proposed in this study has proved to be a simple, accurate and effective assay, and can be applied to the identification of murine meat traces in common edible meat, to ensure the realisable implementation of meat product market supervision.
Collapse
Affiliation(s)
- Siqi Duan
- School of Laboratory Medicine, Beihua University, Jilin, Jilin, China
| | - Jin Xia Ai
- School of Laboratory Medicine, Beihua University, Jilin, Jilin, China
| | - Liyuan Sun
- School of Laboratory Medicine, Beihua University, Jilin, Jilin, China
| | - Lijun Gao
- School of Laboratory Medicine, Beihua University, Jilin, Jilin, China
| | - Mingcheng Li
- School of Laboratory Medicine, Beihua University, Jilin, Jilin, China.,Deptartment of Molecular Diagnosis, Innovation Center for Detection Technology on DNA Fingerprint of Traditional Chinese Medicine, Jilin, Jilin Province, China
| | - Kun Chen
- School of Laboratory Medicine, Beihua University, Jilin, Jilin, China
| | - Dan Li
- Deptartment of Molecular Diagnosis, Jilin Leining Scientific Service Co. Ltd for Detection of Drug and Food, Jilin, Jilin, China
| |
Collapse
|
16
|
Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I. Current analytical methods for porcine identification in meat and meat products. Food Chem 2020; 324:126664. [PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
Collapse
Affiliation(s)
- Qamar Zia
- A New Mind, Ash Shati, Al Qatif 32617-3732, Saudi Arabia.
| | - Mohammad Alawami
- A New Mind, Ash Shati, Al Qatif 32617-3732, Saudi Arabia; Depaartment of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | | | - Irwan Hanish
- Halal Product Research Institute, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
17
|
Aina GQ, Erwanto Y, Hossain M, Johan MR, Ali ME, Rohman A. The employment of q-PCR using specific primer targeting on mitochondrial cytochrome-b gene for identification of wild boar meat in meatball samples. J Adv Vet Anim Res 2019; 6:300-307. [PMID: 31583226 PMCID: PMC6760509 DOI: 10.5455/javar.2019.f348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/27/2019] [Accepted: 01/12/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of this study was to employ real-time or quantitative polymerase chain reaction (q-PCR) using novel species specific primer (SSP) targeting on mitochondrial cytochrome-b of wild boar species (CYTBWB2-wb) gene for the identification of non-halal meat of wild boar meat (WBM) in meatball products. Materials and Methods: The novel SSP of CYTBWB2-wb was designed by our group using PRIMERQUEST and NCBI software. DNA was extracted using propanol-chloroform-isoamyl alcohol method. The designed SSP was further subjected for validation protocols using DNA isolated from fresh meat and from meatball, which include specificity test, determination of efficiency, limit of detection and repeatability, and application of developed method for analysis of commercially meatball samples Results: The results showed that CYTBWB2-wb was specific to wild boar species against other animal species with optimized annealing temperature of 59°C. The efficiency of q-PCR obtained was 91.9% which is acceptable according to the Codex Allimentarius Commission (2010). DNA, with as low as 5 pg/μl, could be detected using q-PCR with primer of CYTBWB2-wb. The developed method was also used for DNA analysis extracted from meatball samples commercially available. Conclusion: q-PCR using CYTBWB2-wb primers targeting on mitochondrial cytochrome-b gene (forward: CGG TTC CCT CTT AGG CAT TT; Reverse: GGA TGA ACA GGC AGA TGA AGA) can be fruitfully used for the analysis of WBM in commercial meatball samples.
Collapse
Affiliation(s)
- Ganea Qorry Aina
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Yogyakarta, Indonesia.,Department of Medical Laboratory Technology, Politeknik Kesehatan Kementerian Kesehatan Kalimantan Timur, Kalimantan Timur, Indonesia
| | - Yuny Erwanto
- Division of Animal Products Technology, Faculty of Animal Science, Yogyakarta, Indonesia.,Research Centre of Halal Products, Gadjah Mada University, Yogyakarta, Indonesia
| | - Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NanoCat), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre (NanoCat), University of Malaya, Kuala Lumpur, Malaysia
| | - Md Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NanoCat), University of Malaya, Kuala Lumpur, Malaysia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Yogyakarta, Indonesia.,Research Centre of Halal Products, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
18
|
Skouridou V, Tomaso H, Rau J, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O'Sullivan CK. Duplex PCR-ELONA for the detection of pork adulteration in meat products. Food Chem 2019; 287:354-362. [PMID: 30857710 DOI: 10.1016/j.foodchem.2019.02.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 01/22/2023]
Abstract
In this work, a duplex PCR-Enzyme Linked Oligonucleotide Assay (ELONA) is reported for the sensitive and reliable detection of pork adulteration in beef and chicken products, two of the most widely consumed meat types in the world. The strategy relies on the use of species-specific tailed primers for duplex amplification and simple dilution of the PCR reactions for direct colorimetric detection via hybridization, eliminating the need for any other post-amplification steps. A high sensitivity was achieved, with as low as 71-188 pg of genomic DNA able to be detected using mixtures of control DNA from each species. The strategy was validated using DNA add-mixtures as well as DNA extracted from raw meat mixtures and 0.5-1% w/w pork could be easily detected when mixed with beef or chicken. The proposed approach is simple, sensitive and cost-effective compared to equivalent commercial kits suitable for detecting adulterant pork levels in meat products.
Collapse
Affiliation(s)
- Vasso Skouridou
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain.
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Jörg Rau
- Chemical and Veterinary Investigation Office Stuttgart, Schaflandstrasse 3/2, 70736 Fellbach, Germany
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
| | - Mohammad S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
| | - Ciara K O'Sullivan
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
19
|
Fornal E, Montowska M. Species-specific peptide-based liquid chromatography-mass spectrometry monitoring of three poultry species in processed meat products. Food Chem 2019; 283:489-498. [PMID: 30722903 DOI: 10.1016/j.foodchem.2019.01.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Abstract
The detection of adulteration and mislabeling of food products, including intensively processed meat, is a challenge which needs urgent solutions to protect consumers' rights. The aim of the study was to demonstrate the feasibility of species-specific peptide-based LC-MS methods for monitoring duck, goose and chicken in processed meat products. Food commodities of various compositions, subjected to various treatments, including homogenization, cooking, roasting, drying, and sterilization during production, were examined to ensure that MS-based methods are resistant to matrix composition changes. A qualitative LC-QQQ multiple reaction monitoring (MRM) method was developed which allows high-confidence monitoring of duck, goose and chicken meat (ten specific peptides), simultaneously with beef and pork (seven peptides), in the presence of turkey meat, in highly processed food. The developed LC-MS methods can be used for food authentication, monitoring of the food composition conformity with label statements and detection of adulteration of poultry-containing food products.
Collapse
Affiliation(s)
- Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul Wojska Polskiego 31, 60-624 Poznan, Poland.
| |
Collapse
|
20
|
Speranskaya AS, Krinitsina AA, Shipulin GA, Khafizov KF, Logacheva MD. High-Throughput Sequencing for the Authentication of Food Products: Problems and Perspectives. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Ahmed N, Sangale D, Tiknaik A, Prakash B, Hange R, Sanil R, Khan S, Khedkar G. Authentication of origin of meat species processed under various Indian culinary procedures using DNA barcoding. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Mandli J, EL Fatimi I, Seddaoui N, Amine A. Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat. Food Chem 2018; 255:380-389. [DOI: 10.1016/j.foodchem.2018.01.184] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
|
23
|
Lo YT, Shaw PC. DNA-based techniques for authentication of processed food and food supplements. Food Chem 2018; 240:767-774. [DOI: 10.1016/j.foodchem.2017.08.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
|
24
|
Nikzad J, Shahhosseini S, Tabarzad M, Nafissi-Varcheh N, Torshabi M. Simultaneous detection of bovine and porcine DNA in pharmaceutical gelatin capsules by duplex PCR assay for Halal authentication. ACTA ACUST UNITED AC 2017; 25:3. [PMID: 28196517 PMCID: PMC5310068 DOI: 10.1186/s40199-017-0171-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023]
Abstract
Background In the pharmaceutical industry, hard- and soft-shelled capsules are typically made from gelatin, commonly derived from bovine and porcine sources. To ensure that pharmaceutical products comply with halal regulations in Muslim countries (no porcine products allowed), development of a valid, reliable, quick, and most importantly, cost-effective tests are of utmost importance. Methods We developed a species-specific duplex polymerase chain reaction (PCR) assay targeting 149 bp porcine and 271 bp bovine mitochondrial DNA (mtDNA) to simultaneously detect both porcine and bovine DNA (in one reaction at the same time) in gelatin. Some additional simplex PCR tests (targeting 126 bp bovine and 212 bp porcine mtDNA) and real-time PCR using a commercially available kit (for identification of porcine DNA) were used to verify the selectivity and sensitivity of our duplex PCR. After optimization of DNA extraction and PCR methods, hard/soft pharmaceutical gelatin capsules (containing drug) were tested for the presence of porcine and/or bovine DNA. Results Duplex PCR detected the presence of as little as 0.1% porcine DNA, which was more accurate than the commercially available kit. Of all gelatin capsules tested (n = 24), 50% contained porcine DNA (pure porcine gelatin alone or in combination with bovine gelatin). Conclusions Duplex PCR presents an easy-to-follow, quick, low-cost and reliable method to simultaneously detect porcine and bovine DNAs (>100 bp) in minute amounts in highly processed gelatin-containing pharmaceutical products (with a 0.1% sensitivity for porcine DNA) which may be used for halal authentication. Graphical abstract Simultaneous detection of porcine and bovine DNA in gelatin capsules by duplex PCR ![]()
Collapse
Affiliation(s)
- Jafar Nikzad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Nafissi-Varcheh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|