1
|
Cantarero-Aparicio MA, Angón E, González-Esquivel C, Blanco FP, Perea JM. Exploring the effects of ageing on instrumental and sensory characteristics of meat from Lidia breed females: A comparative study of two commercial types. Meat Sci 2024; 219:109648. [PMID: 39260185 DOI: 10.1016/j.meatsci.2024.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The aim of this study was to assess the influence of ageing on instrumental and sensory qualities in Longissimus thoracis et lumborum (LTL) from heifers (n = 200) and cows (n = 100) of Lidia breed. The animals were slaughtered as heifers (24-48 months) or cull cows (> 48 months). For instrumental analysis, pars Thoracis aged at 7, 14 and 28 days was used; for sensory analysis, pars Lumborum aged at 14 and 28 days was evaluated. Heifers showed redder and yellower meat (P < 0.05) and cows showed slightly higher Water Holding Capacity (WHC): Thawing Loss (TL) = P < 0.05; Drip Loss (DL) = P < 0.01; Pressure Loss (PL) = P < 0.01; Cooking Loss (CL) = P < 0.05. Ageing generated changes in meat colour, with increases in lightness (L*, linear pattern, P < 0.001) and oscillations in a* and b* (quadratic patterns; P < 0.05 and P < 0.001, respectively). Ageing affected TL (increasing, P < 0.001) and PL (decreasing, P < 0.05), and generated a significant improvement in Warner Bratzler Shear Force (WBSF) values (P < 0.001). Commercial type revealed changes in consumer panel ratings for flavour (P < 0.05), juiciness (P < 0.01), tenderness (P < 0.001) and overall acceptability (P < 0.001), with better results in these parameters for cull cows. In contrast to the usual, ageing did not affect the sensory traits. There was no significant interaction between commercial type and ageing time, except for beef flavour, which worsened with ageing (P < 0.05).
Collapse
Affiliation(s)
| | - Elena Angón
- Departamento de Producción Animal, Universidad de Córdoba, 14071 Cordoba, Spain.
| | - Carlos González-Esquivel
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), Universidad Nacional Autónoma de México (UNAM), Morelia 58190, Mexico
| | | | - José Manuel Perea
- Departamento de Producción Animal, Universidad de Córdoba, 14071 Cordoba, Spain
| |
Collapse
|
2
|
Ding Z, Liu C, Zhang Z, Zhang C, Huang F. Effect of mitochondrial calcium homeostasis-mediated endogenous enzyme activation on tenderness of beef muscle based on MCU modulators. Food Chem X 2024; 22:101366. [PMID: 38623508 PMCID: PMC11016958 DOI: 10.1016/j.fochx.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
The mitochondrial calcium uniporter (MCU) occupies a noteworthy position in the regulation of mitochondrial calcium uptake. This study investigated the effects of MCU modulator-mediated mitochondrial calcium on mitochondrial dysfunction, oxidative stress, endogenous enzyme activities, and tenderness during postmortem aging. Spermine, as an activator of MCU, resulted in an increase in mitochondrial calcium levels, not only disrupting mitochondrial morphology but also triggering mitochondrial oxidative stress and downregulation of antioxidant factors. Additionally, the spermine group underwent later activation of calpain and earlier activation of caspases, as well as the myofibril fragmentation index was initially lower and then higher compared with control group, indicating that endogenous enzymes played an indispensable role in different aging periods. Interestingly, the results of the Ru360 (an inhibitor of MCU) group were opposite to those aforementioned findings. Our data provide a novel perspective on the regulatory mechanism of mitochondrial calcium homeostasis mediated by MCU on tenderness.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zihan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
3
|
Kerth CR, Legako JF, Woerner DR, Brooks JC, Lancaster JM, O'Quinn TG, Nair M, Miller RK. A current review of U.S. beef flavor I: Measuring beef flavor. Meat Sci 2024; 210:109437. [PMID: 38278005 DOI: 10.1016/j.meatsci.2024.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Historically, consumer acceptance of beef was determined by tenderness. Developments in genetics and management over the last couple of decades have improved tenderness to the point that it is secondary to other factors in beef's taste. Flavor, however, is an extraordinarily complex taste attribute dependent on biological sensors in the mouth, sinus cavity, and jaws. The culinary industry has recently focused on innovative ways to give consumers new products satisfying their curiosity about different foods, especially proteins. Competition from plant-based, cell-based, and even other animal-based proteins provides diversity in consumers' ability to select a protein that satisfies their desire to include unique products in their diet. Consequently, the beef industry has focused on flavor for the last 10 to 15 years to determine whether it can provide the guardrails for beef consumption in the future. The U.S. beef industry formed a Flavor Working Group in 2012 composed of the authors listed here to investigate new and innovative ways to manage and measure beef flavor. The results of this working group have resulted in dozens of papers, presentations, abstracts, and symposia. The objective of this manuscript is to summarize the research developed by this working group and by others worldwide that have investigated methodologies that measure beef flavor. This paper will describe the strengths of the research in beef flavor measurement and point out future needs that might be identified as technology advances.
Collapse
Affiliation(s)
- Chris R Kerth
- Animal Science Department, Texas A&M University, College Station, TX 77843, USA.
| | - Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Dale R Woerner
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - J Chance Brooks
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Travis G O'Quinn
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Mahesh Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Rhonda K Miller
- Animal Science Department, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Bai X, Yin F, Ru A, Li M, Tian W, Zhang G, Chen Q, Chai R, Liu Y, Cui W, Shi H, Zhu C, Zhao G. Myosin heavy chain isoform expression and meat quality characteristics of different muscles in yak (Bos grunniens). Meat Sci 2024; 209:109414. [PMID: 38101288 DOI: 10.1016/j.meatsci.2023.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Myosin heavy chain (MHC) isoforms and meat quality characteristics of different muscles were investigated to explore their potential relationships in yaks. Results showed that semitendinosus (ST), longissimus thoracis (LT), and infraspinatus (IS) have a greater ratio of MHC IIb (47.84%), MHC IIa (73.27%), and MHC I (24.26%), respectively, than the other two muscles. Compared with LT or ST, IS exhibited more intense color, greater water-holding capacity, and initial tenderness with higher intermuscular fat (IMF) and collagen (of lower cross-linking level), presenting overall better quality. Variations in MHC isoforms accounted for the muscle-specific meat quality. Specifically, MHC I was positively associated with redness, myoglobin, IMF, collagen, pH, and thermal stability and negatively associated with myofibril fragmentation index, fiber thickness, collagen cross-linking, and drip loss. These results provide insights into the relationships between MHC isoforms and meat quality in yaks and the MHC I isoform has an extensive influence on meat quality.
Collapse
Affiliation(s)
- Xueyuan Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Yin
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Ang Ru
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiyan Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingwen Chen
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Rong Chai
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenming Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongmei Shi
- National Beef Cattle and Yak Industry Technology System Gannan Comprehensive Test Station, Hezuo 747000, China
| | - Chaozhi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Chai W, Qu H, Ma Q, Zhu M, Li M, Zhan Y, Liu Z, Xu J, Yao H, Li Z, Wang C. RNA-seq analysis identifies differentially expressed gene in different types of donkey skeletal muscles. Anim Biotechnol 2023; 34:1786-1795. [PMID: 35302433 DOI: 10.1080/10495398.2022.2050920] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The main component of donkey meat is skeletal muscle, and different muscle fibers have been found to be associated with meat quality. However, RNA-seq technology has yet to be used to profile the transcriptomic changes of different muscles of the donkey. In this study, the characterizations of different muscles on the gene expression profiles of Dezhou donkey were obtained, the aim was to identify the important genes in donkey muscles, and aid in improving donkey meat quality via RNA-seq. In the donkey gluteus (DG) and donkey longissimus dorsi (DL) group, GO enrichment indicated that DEGs were mainly involved in the biological regulation and metabolic process, and KEGG analysis shows that a total of 427 DEGs were mapped to 216 KEGG pathways and 23 KEGG pathways were significantly enriched such as the ribosome, glycolysis/gluconeogenesis, glucagon signaling pathway and biosynthesis of amino acids pathways. Meanwhile, 504 DEGs were mapped to 223 KEGG pathways, in which 17 were significantly enriched including cardiac muscle contraction and oxytocin signaling pathway in donkey hamstring muscles (DH) and DL group. In addition, the tenderness in donkey meat might involve muscle fiber type and glucose metabolism, which might profit from the DEGs including MYH1, MYH7, TNNC1, TNNI3, TPM3, ALDOA, ENO3, and PGK1. The genes found in this study will provide some ideas for further understanding the molecular mechanism of donkey meat quality.
Collapse
Affiliation(s)
- Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Honglei Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Liaocheng, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Mengmeng Li
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Ziwen Liu
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Jing Xu
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huanfen Yao
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Zeyu Li
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
6
|
Reichhardt CC, Stafford CD, Cuthbert JM, Dang DS, Motsinger LA, Taylor MJ, Briggs RK, Brady TJ, Thomas AJ, Garcia MD, Matarneh SK, Thornton KJ. Cattle breed type and anabolic implants impact calpastatin expression and abundance of mRNA associated with protein turnover in the longissimus thoracis of feedlot steers. J Anim Sci 2022; 100:6652317. [PMID: 35908782 PMCID: PMC9339321 DOI: 10.1093/jas/skac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
Two methods that the beef cattle industry can use to improve efficiency, sustainability, and economic viability are growth promotants and crossbreeding cattle of different breed types. In the United States, over 90% of cattle receive an anabolic implant at some point during production resulting in an overall increase in skeletal muscle growth. Recent research suggests that the two main cattle breed types, Bos indicus and Bos taurus, respond differently to anabolic implants. The objective of this study was to characterize changes that occur in skeletal muscle following implanting in Bos indicus influenced steers or Bos taurus steers. Twenty steers were stratified by initial weight in a 2 × 2 factorial design examining two different breeds: Angus (AN; n = 10) or Santa Gertrudis influenced (SG; n = 10), and two implant strategies: no implant (CON; n = 10) or a combined implant containing 120 mg TBA and 24 mg E2 (IMP; n = 10; Revalor-S, Merck Animal Health). Skeletal muscle biopsies were taken from the longissimus thoracis (LT) 2 and 10 d post-implantation. The mRNA abundance of 24 genes associated with skeletal muscle growth were examined, as well as the protein expression of µ-calpain and calpastatin. Succinate dehydrogenase mRNA abundance was impacted (P = 0.05) by a breed × treatment interaction 2 d post-implanting, with SG-CON having a greater increased abundance than all other steers. A tendency for a breed × treatment interaction was observed for calpain-6 mRNA (P = 0.07), with SG-CON having greater abundance than AN-CON and SG-IMP. Additionally, calpastatin protein expression was altered (P = 0.01) by a breed × treatment interaction, with SG-CON and SG-IMP steers having increased expression (P = 0.01) compared with AN-CON steers. At 2 d post-implanting, a breed × treatment interaction was observed with SG-CON steers having greater (P = 0.05) mRNA abundance of mitogen-activated protein kinase compared with AN-CON steers. Furthermore, breed affected (P = 0.05) calpastatin abundance with AN steers having increased (P = 0.05) abundance 2 d post-implanting compared with SG steers. Meanwhile, implants tended to affect (P = 0.09) muscle RING finger protein-1 mRNA abundance, with CON steers having increased (P = 0.09) abundance compared with that of IMP steers. These findings suggest that cattle breed type and anabolic implants impact calpastatin expression and mRNA abundance associated with protein turnover in the LT of feedlot steers 2 and 10 d post-implantation.
Collapse
Affiliation(s)
- Caleb C Reichhardt
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA.,Department of Biology, Westminster College, Salt Lake City, UT 84105, USA
| | - David S Dang
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Laura A Motsinger
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Mackenzie J Taylor
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Reganne K Briggs
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Tevan J Brady
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Matthew D Garcia
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
7
|
Dang DS, Zhai C, Nair MN, Thornton KJ, Sawalhah MN, Matarneh SK. Tandem mass tag labeling to assess proteome differences between intermediate and very tender beef steaks. J Anim Sci 2022; 100:6652319. [PMID: 35908783 PMCID: PMC9339282 DOI: 10.1093/jas/skac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Tenderness is considered as one of the most important quality attributes dictating consumers' overall satisfaction and future purchasing decisions of fresh beef. However, the ability to predict and manage tenderness has proven very challenging due to the numerous factors that contribute to variation in end-product tenderness. Proteomic profiling allows for global examination of differentially abundant proteins in the meat and can provide new insight into biological mechanisms related to meat tenderness. Hence, the objective of this study was to examine proteomic profiles of beef longissimus lumborum (LL) steaks varying in tenderness, with the intention to identify potential biomarkers related to tenderness. For this purpose, beef LL muscle samples were collected from 99 carcasses at 0 and 384 h postmortem. Based on Warner-Bratzler shear force values at 384 h, 16 samples with the highest (intermediate tender, IT) and lowest (very tender, VT) values were selected to be used for proteomic analysis in this study (n = 8 per category). Using tandem mass tag-based proteomics, a total of 876 proteins were identified, of which 51 proteins were differentially abundant (P < 0.05) between the tenderness categories and aging periods. The differentially identified proteins encompassed a wide array of biological processes related to muscle contraction, calcium signaling, metabolism, extracellular matrix organization, chaperone, and apoptosis. A greater (P < 0.05) relative abundance of proteins associated with carbohydrate metabolism and apoptosis, and a lower (P < 0.05) relative abundance of proteins involved in muscle contraction was observed in the VT steaks after aging compared with the IT steaks, suggesting that more proteolysis occurred in the VT steaks. This may be explained by the greater (P < 0.05) abundance of chaperonin and calcium-binding proteins in the IT steaks, which could have limited the extent of postmortem proteolysis in these steaks. In addition, a greater (P < 0.05) abundance of connective tissue proteins was also observed in the IT steaks, which likely contributed to the difference in tenderness due to added background toughness. The established proteomic database obtained in this study may provide a reference for future research regarding potential protein biomarkers that are associated with meat tenderness.
Collapse
Affiliation(s)
- David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA
| | - Chaoyu Zhai
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Mohammed N Sawalhah
- Department of Lands Management and Environment, Prince Al-Hasan Bin Talal Faculty for Natural Resources and Environment, The Hashemite University, Zarqa 13133, Jordan
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
8
|
Onopiuk A, Szpicer A, Pogorzelski G, Wierzbicka A, Poltorak A. Analysis of the impact of exogenous preparations of cysteine proteases on tenderness of beef muscles Semimembranosus and Longissimus thoracis et lumborum. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Dang DS, Stafford CD, Taylor MJ, Buhler JF, Thornton KJ, Matarneh SK. Ultrasonication of beef improves calpain-1 autolysis and caspase-3 activity by elevating cytosolic calcium and inducing mitochondrial dysfunction. Meat Sci 2021; 183:108646. [PMID: 34392092 DOI: 10.1016/j.meatsci.2021.108646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
The objective of this study was to investigate if ultrasonication of bovine longissimus thoracis et lumborum (LTL) steaks increases calpain-1 and caspase-3 activities, and if so, to explore the underlying mechanisms that trigger their activation. Post-rigor bovine LTL steaks were subjected to ultrasonication at 40 kHz and 12 W/cm2 for 40 min and subsequently aged for 14 d at 4 °C. Ultrasonication improved beef tenderness (P < 0.05) without negatively impacting pH, color, or cook loss (P > 0.05). Improved tenderness in the ultrasonicated steaks was associated with greater degradation of titin, desmin, troponin-T, and calpastatin and increased calpain-1 autolysis and caspase-3 activity (P < 0.05). In addition, ultrasonicated steaks had greater levels of cytosolic calcium and reactive oxygen species and lower mitochondrial oxygen consumption rate (P < 0.05). These data indicate that improved beef tenderness following ultrasonication is, in part, a function of increased calpain-1 and caspase-3 activities, potentially by elevating cytosolic calcium and inducing mitochondrial dysfunction, respectively.
Collapse
Affiliation(s)
- David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Mackenzie J Taylor
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
10
|
Feeding strategies impact animal growth and beef color and tenderness. Meat Sci 2021; 183:108599. [PMID: 34365253 DOI: 10.1016/j.meatsci.2021.108599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
The impact of growth rate (GR) and finishing regime (FR) on growth and meat quality traits of Angus x Nellore crossbred steers, harvested at a constant body weight (530 ± 20 kg) or time on feed (140 days), was evaluated. Treatments were: 1) feedlot, high GR; 2) feedlot, low GR; 3) pasture, high GR and 4) pasture, low GR. Live body composition, carcass and meat quality traits were evaluated. High GR had greater impact on muscle and fat deposition in feedlot-finished, but not in pasture-finished animals. Feedlot animals had higher Longissimus muscle area, backfat thickness, meat luminosity and tenderness when compared to pasture groups. Moreover, pasture- and feedlot-finished animals with similar GR did not differ in the chromatic attributes of non-aged meat, regardless of endpoint. Thus, GR appeared to be the main factor driving beef chromatic parameters, while FR had a major impact on achromatic attributes and tenderness of meat.
Collapse
|
11
|
Buhler JF, Dang DS, Stafford CD, Keele NE, Esco AN, Thornton KJ, Cornforth DP, Matarneh SK. Injection of iodoacetic acid into pre-rigor bovine muscle simulates dark cutting conditions. Meat Sci 2021; 176:108486. [PMID: 33711679 DOI: 10.1016/j.meatsci.2021.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to develop an in situ model for dark cutting beef. Iodoacetic acid (IAA) was injected at different concentrations (0, 0.625, 1.25, 2.5, 3.75, 5, or 10 μmol/g of muscle) into pre-rigor bovine longissimus thoracis et lumborum (LTL) muscle samples, and pH and color were evaluated over a 48 h period. Injection of IAA blunted muscle pH decline and lowered lightness (L*), redness (a*), and yellowness (b*) values (P ≤ 0.05) in a concentration dependent fashion. In a follow-up study, LTL muscle samples were injected with 5 μmol IAA/g of muscle to test whether IAA maintains its effect over a 336 h post-mortem storage period. In addition to inhibiting pH decline and decreasing color values, IAA increased LTL muscle water holding capacity (WHC) and firmness (P ≤ 0.05) throughout the 336 h post-mortem storage period. Collectively, these data suggest that pre-rigor injection of IAA generates beef with dark cutting-like characteristics.
Collapse
Affiliation(s)
- Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Natalie E Keele
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Abigail N Esco
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Daren P Cornforth
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|