1
|
Zheng X, Liang X, Chen Q, Xie J, Dong H, Yang J, Zhang J. Physiological Responses of Juvenile Bullfrogs ( Aquarana catesbeiana) to Salinity Stress. Animals (Basel) 2024; 14:3454. [PMID: 39682419 DOI: 10.3390/ani14233454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Bullfrogs (Aquarana catesbeiana) are increasingly farmed for their high nutritional value and adaptability to intensive aquaculture systems. However, salinity stress due to environmental changes and habitat salinization poses a significant challenge for both wild and farmed bullfrogs. This study examines the physiological responses of juvenile bullfrogs to varying salinity levels (0, 2, 4, 6 ppt) to better understand their capacity for osmoregulation and adaptation to salinization. Juvenile bullfrogs underwent salinity treatments for one week, and various physiological parameters, including digestive enzyme activity, antioxidant enzyme activity, and serum biochemical indicators, were measured. The study revealed that moderate salinity (2-4 ppt) enhanced pepsin and amylase activity while maintaining high survival rates. However, higher salinity levels (6 ppt) impaired antioxidant defense mechanisms and liver tissue, increasing oxidative stress markers such as malondialdehyde (MDA). The results suggest that bullfrogs possess a degree of salt tolerance, which may predict their resilience to future landscape salinization driven by environmental changes. This research provides valuable insights into the osmoregulatory mechanisms of amphibians under salinity stress, addressing a critical gap in knowledge essential for both conservation and aquaculture management.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xueying Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qiuyu Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jingyi Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jinlong Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Sun SS, Feng L, Jiang WD, Liu Y, Ren HM, Jin XW, Zhou XQ, Wu P. Declined flesh quality resulting from niacin deficiency is associated with elevated glycolysis and impaired mitochondrial homeostasis in grass carp (Ctenopharyngodon idella). Food Chem 2024; 451:139426. [PMID: 38670026 DOI: 10.1016/j.foodchem.2024.139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Energy metabolism exerts profound impacts on flesh quality. Niacin can be transformed into nicotinamide adenine dinucleotide (NAD), which is indispensable to energy metabolism. To investigate whether niacin deficiency could affect energy metabolism and flesh quality, six diets with graded levels of 0.49, 9.30, 21.30, 33.30, 45.30 and 57.30 mg/kg niacin were fed to grass carp (Ctenopharyngodon idella) for 63 days. The results showed that niacin deficiency declined flesh quality by changing amino acid and fatty acid profiles, decreasing shear force, increasing cooking loss and accelerating pH decline. The accelerated pH decline might be associated with enhanced glycolysis as evident by increased hexokinase (HK), pyruvate kinase (PK) and lactic dehydrogenase (LDH) activities, and mitochondrial dysfunction as evident by destroyed mitochondrial morphology, impaired respiratory chain complex I and antioxidant ability. Based on PWG and cooking loss, the niacin requirements for sub-adult grass carp were 31.95 mg/kg and 29.66 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shun-Shi Sun
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
3
|
Liu S, Du M, Sun J, Tu Y, Gu X, Cai P, Lu Z, Wang Y, Shan T. Bacillus subtilis and Enterococcus faecium co-fermented feed alters antioxidant capacity, muscle fibre characteristics and lipid profiles of finishing pigs. Br J Nutr 2024; 131:1298-1307. [PMID: 38098370 DOI: 10.1017/s000711452300291x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Man Du
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Overview of omics applications in elucidating the underlying mechanisms of biochemical and biological factors associated with meat safety and nutrition. J Proteomics 2023; 276:104840. [PMID: 36758853 DOI: 10.1016/j.jprot.2023.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.
Collapse
|
5
|
Li C, Bassey AP, Zhou G. Molecular Changes of Meat Proteins During Processing and Their Impact on Quality and Nutritional Values. Annu Rev Food Sci Technol 2023; 14:85-111. [PMID: 36972162 DOI: 10.1146/annurev-food-052720-124932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Meats are rich in lipids and proteins, exposing them to rapid oxidative changes. Proteins are essential to the human diet, and changes in the structure and functional attributes can greatly influence the quality and nutritional value of meats. In this article, we review the molecular changes of proteins during processing, their impact on the nutritional value of fresh and processed meat, the digestibility and bioavailability of meat proteins, the risks associated with high meat intake, and the preventive strategies employed to mitigate these risks. This information provides new research directions to reduce or prevent oxidative processes that influence the quality and nutritional values of meat.
Collapse
Affiliation(s)
- Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| |
Collapse
|
6
|
A Novel Gas Sensor for Detecting Pork Freshness Based on PANI/AgNWs/Silk. Foods 2022; 11:foods11152372. [PMID: 35954138 PMCID: PMC9368743 DOI: 10.3390/foods11152372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
A novel, operational, reliable, flexible gas sensor based on silk fibroin fibers (SFFs) as a substrate was proposed for detecting the freshness of pork. Silk is one of the earliest animal fibers utilized by humans, and SFFs exposed many biological micromolecules on the surface. Thus, the gas sensor was fabricated through polyaniline (PANI) and silver nanowires (AgNWs) and deposited on SFFs by in-suit polymerization. With trimethylamine (TMA) as a model gas, the sensing properties of the PANI/AgNWs/silk composites were examined at room temperature, and the linear correlativity was very prominent between these sensing measures and the TMA measures in the range of 3.33 μg/L-1200 μg/L. When the pork sample is detected by the sensor, it can be classified into fresh or stale pork with the total volatile basic nitrogen (TVB-N) as an index. The result indicated that the gas sensor was effective and showed great potential for applications to detect the freshness of pork.
Collapse
|
7
|
Study on the changes of goat meat quality and the expression of 17 quality-related genes within 48 h of postmortem aging. Food Res Int 2022; 158:111506. [DOI: 10.1016/j.foodres.2022.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
|
8
|
Ren C, Li X, Bai Y, Schroyen M, Zhang D. Phosphorylation and acetylation of glycolytic enzymes cooperatively regulate their activity and lamb meat quality. Food Chem 2022; 397:133739. [DOI: 10.1016/j.foodchem.2022.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/26/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
|