1
|
Haq IU, Asghar B, Manzoor A, Ali S, Nauman K, Ahmad S, Hopkins DL, Nasir J. Investigating the impact of sous vide cooking on the eating quality of spent buffalo (BUBALUS BUBALIS) meat. Meat Sci 2024; 209:109417. [PMID: 38147799 DOI: 10.1016/j.meatsci.2023.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
This study describes the impact of sous vide cooking at different temperatures and time intervals on the eating quality, specifically tenderness of two muscles, bicep femoris (BF) and semitendinosus (ST) from spent buffalo (Bubalus bubalis). Spent buffalo refers to water buffalo that are no longer considered productive following a sixth lactation cycle. Steaks from each muscle were obtained and cooked at three combinations of time and temperature, namely 55 °C-8H, 65 °C-5H, and 95 °C-45 M, respectively. Warner-Bratzler Shear Force (WBSF), cooking loss, cooking yield, color, water activity (aw), total water content (TWC), total collagen content (TCC), heat soluble collagen (HSC), myofibrillar fragmentation index (MFI), and sensory evaluation were measured. The collagen solubilization results showed that temperature and time interacted (P ≤ 0.05), reducing the toughness of the muscles. The tenderization achieved through sous vide cooking was mainly attributed to the thermal denaturation of proteins at the typically lower temperatures and extended time used, weakening of connective tissue through collagen solubilization, and water retention. More cooking loss (P ≤ 0.05) was observed at high temperature treatment of 95 °C-45 M. Meat color, TWC, MFI, and overall acceptability exhibited differences among treatments (P ≤ 0.05). An extended heat interval at lower temperatures caused initial denaturation of myofibrillar proteins, then solubilization of connective tissue proteins. Cooking treatment 55 °C-8H (P ≤ 0.05) reduced the WBSF in both muscles; however, the ST appeared more tender than BF.
Collapse
Affiliation(s)
- Ihtesham Ul Haq
- Department of Meat Science and Technology, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Bilal Asghar
- Department of Meat Science and Technology, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, AB T6G 1C9, Canada.
| | - Adeel Manzoor
- Department of Meat Science and Technology, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sher Ali
- Department of Meat Science and Technology, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Kashif Nauman
- Department of Meat Science and Technology, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | - Jamal Nasir
- Department of Meat Science and Technology, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Latoch A, Głuchowski A, Czarniecka-Skubina E. Sous-Vide as an Alternative Method of Cooking to Improve the Quality of Meat: A Review. Foods 2023; 12:3110. [PMID: 37628109 PMCID: PMC10453940 DOI: 10.3390/foods12163110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sous-vide (SV) is a method of cooking previously vacuum-packed raw materials under strictly controlled conditions of time and temperature. Over the past few years, scientific articles have explored the physical, biochemical, and microbiological properties of SV cooking. In this review, we provide a critical appraisal of SV as an alternative method of meat cooking, including the types of methods, types of SV meat products, and effects of SV parameters on the meat quality and the mechanisms of transformation taking place in meat during SV cooking. Based on the available data, it can be concluded that most research on the SV method refers to poultry. The yield of the process depends on the meat type and characteristics, and decreases with increasing temperature, while time duration does not have an impact. Appropriate temperatures in this method make it possible to control the changes in products and affect their sensory quality. Vacuum conditions are given a minor role, but they are important during storage. The limited number of studies on the approximate composition of SV meat products makes it challenging to draw summarizing conclusions on this subject. The SV method allows for a higher microbiological quality of stored meat than conventional methods. The literature suggests that the SV method of preparing beef, pork, and poultry has many advantages.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Artur Głuchowski
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| |
Collapse
|
3
|
Gil M, Rudy M, Stanisławczyk R, Duma-Kocan P. Effect of Traditional Cooking and Sous Vide Heat Treatment, Cold Storage Time and Muscle on Physicochemical and Sensory Properties of Beef Meat. Molecules 2022; 27:7307. [PMID: 36364132 PMCID: PMC9655509 DOI: 10.3390/molecules27217307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 03/06/2024] Open
Abstract
Consumers are avoiding the consumption of highly processed foods, aware of the negative effects of the additives or high temperatures used on the biological value of the food. This causes an interest in ways of minimal processing or low-temperature cooking procedures. However, to achieve the desired organoleptic quality, it is necessary to know the relationship between the parameters of the treatments and the type of raw material. The purpose of this study was to investigate the complex effects of traditional cooking and sous vide heat treatment, cold storage time and muscle on the physicochemical and sensory properties of beef. The study material consisted of samples of musculus longissimus thoracis and musculus semitendinosus obtained from beef half-carcasses. The muscles were subjected to traditional cooking in water at 95 °C until the temperature inside the piece reached 65 °C and sous vide treatment at 65 °C for 2 h. The study was performed after 2 and 21 days of cold storage. Instrumental evaluation of texture parameters, color and sensory evaluation of meat was carried out. Meat stored for 21 days was characterized by more favorable TPA test (Texture Profile Analysis) results compared to meat evaluated 48 h post mortem. The study also showed positive effects of sous vide heat treatment on texture parameters and sensory properties (especially on tenderness and palatability), as well as differences in the formation of quality traits between muscles. Given the trends associated with energy-saving technologies, it is desirable to seek the optimal combination of temperature and time of fixation treatments at an acceptable level of quality. The use of low-temperature cooking for as little as 2 h, yields positive results in sensory evaluation of juiciness, tenderness, or palatability.
Collapse
Affiliation(s)
| | - Mariusz Rudy
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszow, Poland
| | | | | |
Collapse
|
4
|
Structural Changes, Electrophoretic Pattern, and Quality Attributes of Camel Meat Treated with Fresh Ginger Extract and Papain Powder. Foods 2022; 11:foods11131876. [PMID: 35804690 PMCID: PMC9266158 DOI: 10.3390/foods11131876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Camel is a valuable source of meat for African and Asian countries; however, the most important problem associated with camel meat is its extreme toughness. This toughness has been attributed to its contents of connective tissue, which become more crossly linked in old animals. The toughness of camel meat decreases the consumer acceptance of this meat and reduces its chances of being utilized as a raw material for further processing into meat products. Ginger and papain were used in the current study as tenderizing enzymes, and the structural changes, electrophoretic pattern, physicochemical characteristics, and sensory scores of the treated meat were examined. The treatment of camel meat with ginger and papain resulted in marked destructive changes in the connective tissue and myofibers, and a reduction in the protein bands, with a consequent improvement in its tenderness. All the enzyme-treated samples exhibited significant increases in the protein solubility, with significant decreases in the shear-force values. Moreover, an improvement in the sensory scores of the raw and cooked meat and a reduction in the bacterial counts after the treatments were recorded. Ginger and papain induced a significant improvement in the physicochemical characteristics, sensory attributes, and bacterial counts of the camel meat; therefore, these materials can be utilized by meat processors to boost the consumer acceptance of this meat, and to increase its suitability as a raw material for further meat processing.
Collapse
|