1
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
3
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
Germann AT, Nakielski A, Dietsch M, Petzel T, Moser D, Triesch S, Westhoff P, Axmann IM. A systematic overexpression approach reveals native targets to increase squalene production in Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2023; 14:1024981. [PMID: 37324717 PMCID: PMC10266222 DOI: 10.3389/fpls.2023.1024981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.
Collapse
Affiliation(s)
- Anna T. Germann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tim Petzel
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Moser
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023; 9:e14708. [PMID: 37151658 PMCID: PMC10161259 DOI: 10.1016/j.heliyon.2023.e14708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
The growing use of photosynthetic microorganisms for food and food-related applications is driving related biotechnology research forward. Increasing consumer acceptance, high sustainability, demand of eco-friendly sources for food, and considerable global economic concern are among the main factors to enhance the focus on the novel foods. In the cases of not toxic strains, photosynthetic microorganisms not only provide a source of sustainable nutrients but are also potentially healthy. Several published studies showed that microalgae are sources of accessible protein and fatty acids. More than 400 manuscripts were published per year in the last 4 years. Furthermore, industrial approaches utilizing these microorganisms are resulting in new jobs and services. This is in line with the global strategy for bioeconomy that aims to support sustainable development of bio-based sectors. Despite the recognized potential of the microalgal biomass value chain, significant knowledge gaps still exist especially regarding their optimized production and utilization. This review highlights the potential of microalgae and cyanobacteria for food and food-related applications as well as their market size. The chosen topics also include advanced production as mixed microbial communities, production of high-value biomolecules, photoproduction of terpenoid flavoring compounds, their utilization for sustainable agriculture, application as source of nutrients in space, and a comparison with heterotrophic microorganisms like yeast to better evaluate their advantages over existing nutrient sources. This comprehensive assessment should stimulate further interest in this highly relevant research topic.
Collapse
Affiliation(s)
- Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Corresponding author.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Jörg Ullmann
- Roquette Klötze GmbH & Co. KG, Lockstedter Chaussee 1, D-38486, Klötze, Germany
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Elia Lio
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Anna T. Germann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Nakielski
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - David A. Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Lessingstr. 8, D-07743, Jena, Germany
| | - Ted Chavkin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Francesco Secundo
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Brian Pfleger
- Knufmann GmbH, Bergstraße 23, D-38486, Klötze, Germany
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
- Corresponding author. Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| |
Collapse
|
6
|
Rodrigues JS, Bourgade B, Galle KR, Lindberg P. Mapping competitive pathways to terpenoid biosynthesis in Synechocystis sp. PCC 6803 using an antisense RNA synthetic tool. Microb Cell Fact 2023; 22:35. [PMID: 36823631 PMCID: PMC9951418 DOI: 10.1186/s12934-023-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Synechocystis sp. PCC 6803 utilizes pyruvate and glyceraldehyde 3-phosphate via the methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of terpenoids. Considering the deep connection of the MEP pathway to the central carbon metabolism, and the low carbon partitioning towards terpenoid biosynthesis, significant changes in the metabolic network are required to increase cyanobacterial production of terpenoids. RESULTS We used the Hfq-MicC antisense RNA regulatory tool, under control of the nickel-inducible PnrsB promoter, to target 12 different genes involved in terpenoid biosynthesis, central carbon metabolism, amino acid biosynthesis and ATP production, and evaluated the changes in the performance of an isoprene-producing cyanobacterial strain. Six candidate targets showed a positive effect on isoprene production: three genes involved in terpenoid biosynthesis (crtE, chlP and thiG), two involved in amino acid biosynthesis (ilvG and ccmA) and one involved in sugar catabolism (gpi). The same strategy was applied to interfere with different parts of the terpenoid biosynthetic pathway in a bisabolene-producing strain. Increased bisabolene production was observed not only when interfering with chlorophyll a biosynthesis, but also with carotenogenesis. CONCLUSIONS We demonstrated that the Hfq-MicC synthetic tool can be used to evaluate the effects of gene knockdown on heterologous terpenoid production, despite the need for further optimization of the technique. Possible targets for future engineering of Synechocystis aiming at improved terpenoid microbial production were identified.
Collapse
Affiliation(s)
- João S. Rodrigues
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden
| | - Barbara Bourgade
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden
| | - Karen R. Galle
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden ,grid.5808.50000 0001 1503 7226Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:121-142. [PMID: 36541855 DOI: 10.1021/acs.jafc.2c07543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Valencene and nootkatone, two sesquiterpenes, extracted from natural sources, have great market potential with diverse applications. This paper aims to comprehensively review the recent advances in valencene and nootkatone, including source, production, physicochemical and biological properties, safety and pharmacokinetics evaluation, potential uses, and their industrial applications as well as future research directions. Microbial biosynthesis offers a promising alternative approach for sustainable production of valencene and nootkatone. Both compounds exert various beneficial activities, including antimicrobial, insecticidal, antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, hepatoprotective, and nephroprotective and other activities. However, most of the studies are performed in animals and in vitro, making it difficult to give a conclusive description about their health benefits and extend their application. Hence, more attention should be paid to in vivo and long-term clinical studies in the future. Moreover, valencene and nootkatone are considered safe for consumption and show great promise in the applications of food, cosmetic, pharmaceutical, chemical, and agricultural industries.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Zhi-Jian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
8
|
Tan C, Xu P, Tao F. Carbon-negative synthetic biology: challenges and emerging trends of cyanobacterial technology. Trends Biotechnol 2022; 40:1488-1502. [PMID: 36253158 DOI: 10.1016/j.tibtech.2022.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Global warming and climate instability have spurred interest in using renewable carbon resources for the sustainable production of chemicals. Cyanobacteria are ideal cellular factories for carbon-negative production of chemicals owing to their great potentials for directly utilizing light and CO2 as sole energy and carbon sources, respectively. However, several challenges in adapting cyanobacterial technology to industry, such as low productivity, poor tolerance, and product harvesting difficulty, remain. Synthetic biology may finally address these challenges. Here, we summarize recent advances in the production of value-added chemicals using cyanobacterial cell factories, particularly in carbon-negative synthetic biology and emerging trends in cyanobacterial applications. We also propose several perspectives on the future development of cyanobacterial technology for commercialization.
Collapse
Affiliation(s)
- Chunlin Tan
- The State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- The State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- The State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Semi-continuous cultivation strategy for improving the growth of Synechocystis sp. PCC 6803 based on the growth model of volume average light intensity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Klaus O, Hilgers F, Nakielski A, Hasenklever D, Jaeger KE, Axmann IM, Drepper T. Engineering phototrophic bacteria for the production of terpenoids. Curr Opin Biotechnol 2022; 77:102764. [PMID: 35932511 DOI: 10.1016/j.copbio.2022.102764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
With more than 80 000 compounds, terpenoids represent one of the largest classes of secondary metabolites naturally produced by various plants and other organisms. Owing to the tremendous structural diversity, they offer a wide range of properties relevant for biotechnological and pharmaceutical applications. In this context, heterologous terpenoid production in engineered microbial hosts represents an often cost-effective and eco-friendly way to make these valuable compounds industrially available. This review provides an overview of current strategies to employ and engineer oxygenic and anoxygenic phototrophic bacteria as alternative cell factories for sustainable terpenoid production. Besides terpenoid pathway engineering, the effects of different illumination strategies on terpenoid photoproduction are key elements in the latest studies.
Collapse
Affiliation(s)
- Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Hasenklever
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; Institute of Bio, and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
11
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
12
|
Srivastava A, Kalwani M, Chakdar H, Pabbi S, Shukla P. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review. BIORESOURCE TECHNOLOGY 2022; 352:127071. [PMID: 35351568 DOI: 10.1016/j.biortech.2022.127071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are photosynthetic eukaryotes that serve as microbial cell factories for the production of useful biochemicals, including pigments. These pigments are eco-friendly alternatives to synthetic dyes and reduce environmental and health risks. They also exhibit excellent anti-oxidative properties, making them a useful commodity in the nutrition and pharmaceutical industries. Light-harvesting pigments such as chlorophylls and phycobilins, and photoprotective carotenoids are some of the most common microalgal pigments. The increasing demand for these pigments in industrial applications has prompted a need to improve their metabolic yield in microalgal cells. So far, expensive cultivation methods and sensitivity to microbial contamination remain the main obstacles to the large-scale production of these pigments. This review highlights current issues and future prospects related to the production of microalgal pigments. The review also emphasizes the use of engineering approaches such as genetic engineering, and optimization of media components and physical parameters to increase their commercial-scale production.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohneesh Kalwani
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pratyoosh Shukla
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
13
|
Cha Y, Li W, Wu T, You X, Chen H, Zhu C, Zhuo M, Chen B, Li S. Probing the Synergistic Ratio of P450/CPR To Improve (+)-Nootkatone Production in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:815-825. [PMID: 35015539 DOI: 10.1021/acs.jafc.1c07035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
(+)-Nootkatone is an expensive sesquiterpene substance found in grapefruit peels and the heartwood of yellow cedar. It can be used as a food additive, perfume, and insect repellent; therefore, its highly efficient production is greatly needed. However, the low catalytic efficiency of the membrane-anchored cytochrome P450/P450 reductase system (HPO/AtCPR) is the main challenge and limits the production of (+)-nootkatone. We developed an effective high-throughput screening system based on cell wall destruction to probe the optimal ratio of HPO/AtCPR, which achieved a twofold elevation in (+)-valencene oxidation in Saccharomyces cerevisiae. An engineered strain PK2RI-AtC/Hm6A was constructed to realize de novo (+)-nootkatone production by a series of metabolic engineering strategies. In biphasic fed-batch fermentation, maximum titers of 3.73 and 1.02 g/L for (+)-valencene and (+)-nootkatone, respectively, were achieved. The dramatically improved performance of the constructed S. cerevisiae provides an excellent approach for economical production of (+)-nootkatone from glucose.
Collapse
Affiliation(s)
- Yaping Cha
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wen Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xia You
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Chen
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
15
|
Younis NS, Mohamed ME, El Semary NA. Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis sp.: Characterization, Antimicrobial and Diabetic Wound-Healing Actions. Mar Drugs 2022; 20:56. [PMID: 35049911 PMCID: PMC8781738 DOI: 10.3390/md20010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Green nanotechnology is now accepted as an environmentally friendly and cost-effective advance with various biomedical applications. The cyanobacterium Synechocystis sp. is a unicellular spherical cyanobacterium with photo- and hetero-trophic capabilities. This study investigates the ability of this cyanobacterial species to produce silver nanoparticles (AgNPs) and the wound-healing properties of the produced nanoparticles in diabetic animals. METHODS UV-visible and FT-IR spectroscopy and and electron microscopy techniques investigated AgNPs' producibility by Synechocystis sp. when supplemented with silver ion source. The produced AgNPs were evaluated for their antimicrobial, anti-oxidative, anti-inflammatory, and diabetic wound healing along with their angiogenesis potential. RESULTS The cyanobacterium biosynthesized spherical AgNPs with a diameter range of 10 to 35 nm. The produced AgNPs exhibited wound-healing properties verified with increased contraction percentage, tensile strength and hydroxyproline level in incision diabetic wounded animals. AgNPs treatment decreased epithelialization period, amplified the wound closure percentage, and elevated collagen, hydroxyproline and hexosamine contents, which improved angiogenesis factors' contents (HIF-1α, TGF-β1 and VEGF) in excision wound models. AgNPs intensified catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, and glutathione (GSH) and nitric oxide content and reduced malondialdehyde (MDA) level. IL-1β, IL-6, TNF-α, and NF-κB (the inflammatory mediators) were decreased with AgNPs' topical application. CONCLUSION Biosynthesized AgNPs via Synechocystis sp. exhibited antimicrobial, anti-oxidative, anti-inflammatory, and angiogenesis promoting effects in diabetic wounded animals.
Collapse
Affiliation(s)
- Nancy S. Younis
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Maged E. Mohamed
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Pharmacognosy Department, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nermin A. El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| |
Collapse
|
16
|
Abstract
Genetic engineering of cyanobacteria is currently limited to genomic integration via homologous recombination and RSF1010-based conjugative vector systems. Here, we introduce a rationally designed conjugative vector with two BioBrick-based cloning sites which enables facilitated and modular cloning. This streamlined vector is suitable for a variety of synthetic biology applications, such as expression of multiple enzymes from metabolic pathways for the production of biofuels or secondary metabolites, or screening of modular parts such as promoters, further facilitating applications to improve crop plants using synthetic biology. Finally, we present a general approach to cloning of constructs, as well as detailed protocols for conjugation and culturing of strains carrying said constructs.
Collapse
Affiliation(s)
- Anna Behle
- Department of Biology, Institute for Synthetic Microbiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ilka M Axmann
- Department of Biology, Institute for Synthetic Microbiology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
17
|
Sengupta A, Liu D, Pakrasi HB. CRISPR-Cas mediated genome engineering of cyanobacteria. Methods Enzymol 2022; 676:403-432. [DOI: 10.1016/bs.mie.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|